A lightweight and multilingual framework for crisis information extraction from Twitter data

Interdonato Roberto, Guillaume Jean-Loup, Doucet Antoine. 2019. A lightweight and multilingual framework for crisis information extraction from Twitter data. Social Network Analysis and Mining, 9:65, 20 p.

Journal article ; Article de recherche ; Article de revue à comité de lecture
[img] Published version - Anglais
Access restricted to CIRAD agents
Use under authorization by the author or CIRAD.

Télécharger (2MB) | Request a copy

Abstract : Obtaining relevant timely information during crisis events is a challenging task that can be fundamental to handle the consequences deriving from both unexpected events (e.g., terrorist attacks) and partially predictable ones (i.e., natural disasters). Even though microblogging-based online social networks (e.g., Twitter) have become an attractive data source in these emergency situations, overcoming the information overload deriving from mass events is not trivial. The aim of this work was to enable unsupervised extraction of relevant information from Twitter data during a crisis event, offering a lightweight alternative to learning-based approaches. The proposed lightweight crisis management framework integrates natural language processing and clustering techniques in order to produce a ranking of tweets relevant to a crisis situation based on their informativeness. Experiments carried out on six Twitter collections in two languages (English and French) proved the significance and the flexibility of our approach.

Mots-clés Agrovoc : Crise économique, Catastrophe, Réseaux sociaux, Fouille de textes, fouille de données, Analyse de données, Traitement des données, Traitement de l'information

Mots-clés complémentaires : Twitter

Mots-clés libres : Gestion de crise, Analyse de réseaux sociaux, Fouille de textes, Twitter

Classification Agris : U10 - Computer science, mathematics and statistics
C30 - Documentation and information

Champ stratégique Cirad : CTS 7 (2019-) - Hors champs stratégiques

Auteurs et affiliations

  • Interdonato Roberto, CIRAD-ES-UMR TETIS (FRA) - auteur correspondant
  • Guillaume Jean-Loup, Université de La Rochelle (FRA)
  • Doucet Antoine, Université de La Rochelle (FRA)

Source : Cirad-Agritrop (

View Item (staff only) View Item (staff only)

[ Page générée et mise en cache le 2021-06-07 ]