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A B S T R A C T   

Process-based crop models are popular tools to analyze and simulate the response of agricultural systems to 
weather, agronomic, or genetic factors. They are often developed in modeling platforms to ensure their future 
extension and to couple different crop models with a soil model and a crop management event scheduler. The 
intercomparison and improvement of crop simulation models is difficult due to the lack of efficient methods for 
exchanging biophysical processes between modeling platforms. We developed Crop2ML, a modeling framework 
that enables the description and the assembly of crop model components independently of the formalism of 
modeling platforms and the exchange of components between platforms. Crop2ML is based on a declarative 
architecture of modular model representation to describe the biophysical processes and their transformation to 
model components that conform to crop modeling platforms. Here, we present Crop2ML framework and describe 
the mechanisms of import and export between Crop2ML and modeling platforms.   

1. Introduction 

The wide range of crop process-based models (PBM) reflects the 
evolution of our knowledge of the soil-plant-atmosphere system and the 
rich historical development for more than five decades (reviewed in 
Jones et al., 2017; Muller and Martre 2019). The high diversity of PBM is 
due to their multiple applications and the complexity of the system 

influenced by several factors, e.g. weather, soil, crop management 
(Basso et al., 2013) and genotypic factors (Wang et al., 2019). Most of 
the PBM are continuous models, formalized using ordinary differential 
equations, but are implemented as discrete time simulation models 
using finite difference equations. They are commonly decomposed into 
simpler biophysical functions (e.g. phenology, morphogenesis, resource 
acquisition, pests and diseases impact) often implemented by recurrent 
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equations with control flows. Another common characteristic is that 
PBM simulate plant growth and development at the scale of the canopy 
or average plant level without spatial dependence with a daily or 
sub-daily time step. 

PBM are often implemented in modeling and simulation platforms at 
a higher level of abstraction to facilitate model development (Rizzoli 
et al., 2008). These platforms offer not only scalable, modular, and 
robust modelling solutions but also the ability to analyze, evaluate, 
reuse and combine models. The diversity of PBM led the crop modeling 
community to compare their performance and to improve them by 
aggregating modelers’ knowledge or by introducing improvements 
provided from diverse research groups under the umbrella of large in-
ternational collaborative projects such as the Agricultural Model Inter-
comparison and Improvement Project (AgMIP; Rosenzweig et al., 2013). 
Studies conducted in the context of model intercomparison and 
improvement exercises (e.g. Asseng et al., 2013; Wang et al., 2017) 
pointed out the large uncertainty of PBM simulations and have analyzed 
the sources of uncertainty or the processes involved. These intercom-
parison results showed the potential and limits of PBM and highlighted 
the need to analyze models at the process level, but also to exchange 
model components describing specific processes between simulation 
platforms (e.g. Donatelli et al., 2014; Wang et al., 2017). The uncer-
tainty of a PBM component may be related to its validity domain, inputs, 
parameters, structure, and the underlying scientific hypotheses (Walker 
et al., 2003). Epistemic uncertainty may arise from incomplete or lack of 
knowledge of these sources. The uncertainty of PBM results from the 
aggregation of the uncertainty of each of its component (Refsgaard et al., 
2007). A framework that would allow the exchange of model compo-
nents between different platforms would give crop modelers the ability 
to test alternative hypotheses in the same model, thus helping to reduce 
epistemic uncertainty. 

Although most crop simulation platforms provide modular ap-
proaches and reuse techniques, there is little exchange of PBM compo-
nents between them despite theoretical and application interests. PBM 
components often contain source code developed in different program-
ming languages and are tightly coupled to the platforms. Therefore, 
model components are not seamlessly reusable outside the modeling 
platforms in which they have been developed without recoding or 
wrapping them (Holzworth et al., 2014; Rizzoli et al., 2008). 
Re-implementing a component in several platforms is a tedious and 
cumbersome task and requires a minimum knowledge of the different 
platforms. The wrapping solution treats components as black boxes 
taking little or no advantage of the framework (Rizzoli et al., 2008) or as 
white boxes but with a high-level of complexity (Fernique and Pradal, 
2018; Pradal et al., 2008). Other reuse approaches in environmental 
modeling have been explored. Declarative modeling can provide 
portability and facilitate integration between independent, uncoordi-
nated models (Athanasiadis and Villa, 2013). However, model specifi-
cations are seldom separate from implementation details. Model 
builders rely often directly on implementation that hides the scientific 
content of a model (i.e. its Algorithm) and its structure. Moreover, the 
publication of PBM components in scientific journals does not provide 
sufficient description associated with the modeled processes, which is a 
fundamental criterion for reuse (Pradal et al., 2013). This raises the 
problem of reproducibility and reliability of scientific results that are 
strongly linked to the platforms in which the models have been imple-
mented and tested (Cohen-Boulakia et al., 2017; Hinsen, 2016). 

Visual domain-specific languages such as Simile (Muetzelfeldt and 
Massheder 2003) or Stella (Richmond, 1985) provide a rich graphical 
interface to build models but become difficult to use for complex models 
and require many widgets to represent graphically nested control flows. 
Multiscale modelling and simulation frameworks (Marshall-Colon et al., 
2017; Pradal et al., 2015) propose model interface designs which en-
ables communication of multi-language components as black box com-
ponents. Other declarative modelling languages are also used in the 
Systems Biology community who have developed declarative open 

standard such as SBML (Hucka et al., 2010), CELLML (Cuellar et al., 
2003), or NEUROML (Le Franc et al., 2012) to describe biological 
models. However, crop modelers generally use procedural modelling 
rather than a mathematical formalism like differential or reaction 
equations as it is commonly done in System biology. 

An alternative to the problem of PBM component reuse between PBM 
platforms is the use of a centralized framework that enables the devel-
opment of PBM components regardless of the modeling platforms 
(Fig. 1). We followed this approach and developed a modeling frame-
work called Crop2ML (Crop Modelling Meta Language) that separates 
the structure of a model component from its implementation. Given that 
the wrapping solution was excluded because of the lack of transparency 
and high maintenance cost and that Crop2ML does not aim at replacing 
existing modeling platforms or at simulating components within large 
modeling solutions (crop models), we created a solution that generates 
components, from a metalanguage, for specific PBM platforms. It pro-
vides a centralized PBM components repository to store model compo-
nents in a standard format to facilitate their access and reuse. This reuse 
approach is supported by the Agricultural Modeling Exchange Initiative 
(AMEI), which brings together some of the most widely used crop 
modelling and simulation platforms, including the Agricultural Pro-
duction Systems sIMulator (APSIM, Holzworth et al., 2018), the Bio-
physical Model Applications (BioMA; Donatelli et al., 2010), the 
Decision Support System for Agrotechnology Transfer (DSSAT; Jones 
et al., 2003; Hoogenboom et al., 2019), OpenAlea (Pradal et al., 2015), 
the REnovation and COORDination of agroecosystems modelling (RE-
CORD; Bergez et al., 2013), and the Scientific Impact assessment and 
Modeling Platform for Advanced Crop and Ecosystem management 
(Simplace; Gaiser et al., 2013) and other crop models such as STICS 
(Brisson et al., 2010) or SiriusQuality (Martre et al., 2006). Here, we first 
present the main components of Crop2ML framework. Then we describe 
the mechanisms of importing and exporting between Crop2ML and PBM 
platforms. We then discuss our approach and present some perspectives. 

2. Crop2ML: a centralized framework for crop model 
components development and sharing 

Crop2ML is a framework for crop model component development, 
exchange, and reuse between PBM platforms. It is designed following 
FAIR principles for research software (Lamprecht et al., 2019) to 
provide: 

• Simplicity: Model specifications are defined using a declarative lan-
guage (eXtensible Markup Language [XML]; Bray et al., 2008) with 
generic concepts shared between PBM platforms and model algo-
rithms are encoded using a minimal language.  

• Transparency: Models are shared as documented components in a 
well-defined format (Crop2ML format). 

• Flexibility: Model units are composed with a shared abstract repre-
sentation of model structure.  

• Findability: Model specifications include rich metadata and are 
assigned a globally unique and persistent identifier for each released 
version.  

• Reusability: Model components are transformed into PBM platform- 
compliant code to support efficient interoperability.  

• Reproducibility: Model components can be executed and tested 
regardless of the PBM platforms.  

• Modularity: Three levels of modularity of models are defined: (single) 
model units, composite models and package. Package contains model 
units and composite as well as data. It provides the flexibility to make 
different compositions based on these models. 

We used the principles of Lamprecht et al. (2019) for assessing the 
FAIR-ness of Crop2ML framework (Supplementary data Table C1). 

C.A. Midingoyi et al.                                                                                                                                                                                                                           



Environmental Modelling and Software 142 (2021) 105055

3

2.1. Design and concepts of Crop2ML model specification 

Software modularity is one of the main criteria of reuse. Jones et al. 
(2001) proposed key elements for modular model structure, which is an 
essential first step to enhance collaborative modelling effort. Crop2ML 
follows and extends these principals. In most PBM, the system is 
decomposed into compartments such as plant parts or soil layers that 
interact. For each compartment, different processes are described and 
assembled in components to simulate the response of the compartment. 
These processes can be subdivided into discrete, explanatory, indepen-
dent biophysical sub-processes, which could be individually modeled 
(ModelUnit) or composed (ModelComposite). A modular model struc-
ture requires making an objective decomposition of the system to avoid 
coarse granularity models, which limit reusability. A ModelUnit should 
not encapsulate alternative assumptions and formalisms, making it 
easier to test them. In addition, the management of input and output 
data, such as data access, logging, and file generation, must be managed 
separately from the implementation of model component. These design 
principles foster the reuse of components, which are intended to be in-
tegrated and simulated with a large variety of input data formats in 
different PBM platforms. Moreover, to emphasis modularity, the tem-
poral integration loop must be removed from the model process 

implementation. This makes it possible to reuse the same process with 
different modeling formalisms or simulation frameworks that manage 
temporal dynamics of the simulation differently (e.g. different numeri-
cal integration techniques). 

Crop2ML provides a level of abstraction that enables a shared rep-
resentation of model components between PBM platforms. A ModelUnit 
is defined with the following descriptive elements (Fig. 2a):  

• a model description;  
• a list of inputs;  
• a list of outputs;  
• an initialization step of the state variables;  
• a link pointing to the source of the model Algorithm;  
• a list of usual mathematical functions;  
• a set of unit tests with parameterization shared between modeling 

platforms. 

A ModelComposite includes the same elements as a ModelUnit. In 
addition, it contains a list of Models and the links between them. 
(Fig. 2b). However, if control structures are necessary to express the 
behavior of a ModelComposite, the Algorithm can be explicitly provided. 

The Crop2ML model specification is based on XML Language. XML is 

Fig. 1. From a combinatorial to a centralized exchange framework. The schema illustrates the reduction of import export links between platforms in a centralized 
(right) versus combinatorial exchange framework. 

Fig. 2. Crop2ML concepts for model specifications: ModelUnit (a) and ModelComposite (b). “+”, one or more elements; “*”, zero or more elements; “?”, zero or 
one element. 
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a widely used declarative metalanguage for describing or structuring 
data in a portable format with some descriptive elements. XML format is 
used in several PBM platforms for template parametrization and model 
simulation configuration (e.g. APSIM, BioMA, RECORD, Simplace, Sir-
iusQuality). This reinforces our choice on this format since the trans-
formation between different XML documents or in any language is 
relatively straightforward, allows using XML as a bridge between het-
erogeneous structures and it facilitates collaborative development. 
Moreover, the use of XML and a formal description of model specifica-
tions and their associated metadata facilitate machine readability and 
model exchange. In the following sections, we describe the concepts of 
Crop2ML model specifications. 

2.1.1. Description 
The core description of a Crop2ML model contains the name of the 

model, an identifier that ensures the provenance of the model and a 
version number (Fig. 3). The identifier of the model is specified to keep 
the property of the component. Since PBM are dynamic models, the time 
step is an important factor that is specified to allow a multi temporal- 
scale composition. In addition, other elements are described to pro-
vide rich metadata, including author names and affiliations, citable and 
findable references (e.g. doi) and a brief description of the model. The 
description also includes usage licenses compatible with the model 
dependencies. 

2.1.2. Inputs – outputs 
In Crop2ML, a component takes parameter and variable values as 

inputs and produces variable values as outputs. A variable is a quantity 
which is given by the context of the experiment (input data) or calcu-
lated by the model (output data), while the value of a parameter is an 
input that can be specified by the modeler within a defined interval. 
Variables and parameters are distinguished with input type attributes and 
are categorized with variable category and parameter category attributes, 
respectively (Table 1). 

Crop2ML currently supports four basic types: integer, double, strings 
and logical. It also supports two collection types: lists and arrays, which 
contain a sequence of elements of basic types. They are explicitly 
specified in a datatype attribute, similar to the VarInfo type (Donatelli 
and Rizzoli, 2008). It also provides a common representation of date/-
time. The domain of validity of each variable is specified by min and max 
attributes. A measurement unit can also be associated to the variables 
and parameters. Fig. 4 gives an example of inputs and outputs 
specifications. 

2.1.3. Initialization 
State variables of Crop2ML ModelUnits and ModelComposites are 

initialized at the start of a simulation and are specified with an Initiali-
zation element. This element is optional, and the default values of state 
variables are used if it is omitted. Initialization may also be a function 
that assigns initial values to state variables. In this case, the Initialization 
element contains the path to the source code of the initialization 
function. 

2.1.4. Algorithm 
Algorithm elements link the model specifications with the model 

algorithm (Fig. 5). A model algorithm describes the behavior of a 
component in terms of a sequence of inputs, successive rules or actions, 
conditions and a flow of instructions from inputs to outputs including 
mathematical expressions. A model algorithm can be implemented in 
different programming languages. However, Crop2ML proposes to 
encode the model algorithm in a shared language, CyML (Midingoyi 
et al., 2020). The CyML source code is the common representation for 
model algorithm shared by the supported languages and platforms (see 
Section 2.2.). 

Fig. 3. Example of a Crop2ML ModelUnit core description.  

Table 1 
Category, definition, and example of variables and parameters in Crop2ML.  

Input 
Type 

Category Definition Example 

Variable State Characterizes the behavior 
of a component 

Leaf area index, weight 
of a plant part, canopy 
temperature 

Rate Defines the change of one 
state variable 

Transpiration rate, leaf 
growth rate 

Auxiliary Intermediate variable 
computed by an auxiliary 
function 

Dry matter partitioning, 
shoot number 

Exogenous Driven variables that do not 
depend on other variables 
of the system or component 

Mean air temperature, 
wind speed 

Parameter Constant Absolute constant Boltzmann constant 
Soil Soil parameter N mineralization 

constant, maximum 
rootable soil depth 

Species Crop parameter with fixed 
value for a species 

Maximum respiration 
rate 

Genotypic Crop parameter that can 
take different values for 
different genotypes 
(cultivars) 

Phyllochron, grain 
filling duration  
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2.1.5. Function 
A function is a utility routine that can be called from the model Al-

gorithm or from other functions. It reduces the code length and improves 
the readability of the encoded algorithm. If a model needs an external 
function, this function must be declared in the model specification by 
referencing the path where the function is implemented. A function can 
also be used for model adaptations such as temporal aggregation or 
integration, unit conversion to link model components without changing 
their algorithms. Crop2ML provides a shared library of mathematical 
functions in different languages such as standard functions, interpola-
tion, or upper and lower bound functions. Modelers can use these 
functions in their own algorithm, implemented in the CyML language. 

2.1.6. Parameter sets and test sets 
A Crop2ML model specification includes one or more sets of model 

parameterizations used for different unit tests (Fig. 6). A parameteri-
zation is a set of values assigned to an input parameter of a model. It is 
described by a name and a description. A unit test in Crop2ML is 
described in the Testsets element and allows comparing estimated and 
expected outputs values. Several unit tests can be specified. They are 
described by their name, their description and the name of parameters set 
associated to them. Each test provides a list of values assigned to each 
variable and the expected values of the model outputs. A numerical 
precision could be associated with the output of the test to check its 
validity. 

2.1.7. Model links 
Model links are specified in a ModelComposite and depict how Mod-

elUnits or ModelComposites are interconnected. A ModelComposite is a 
port graph (Andrei and Kirchner, 2009) that defines a dataflow where 
nodes are ModelUnits, and ports are inputs and outputs of the ModelUnits. 
Edges are oriented links connecting output ports of a source ModelUnit to 
the input ports of a target ModelUnit (Fig. 7). Three types of links must be 
specified: InternalLink is the connection between an input of one 
sub-model and the output of another sub-model, InputLink is the 
connection between an input port of a sub-model and an input port of 
the composite model, and OutputLink is the connection between a 
ModelUnit or ModelComposite output port, that can be either a ModelUnit 
or ModelComposite, and a ModelComposite output port. These connec-
tions show the hierarchical structure of a ModelComposite. This modeling 
approach enhances reusability and has been used with success (Wyatt, 
1990). 

2.2. CyML: the common modelling language of biophysical processes in 
crop models 

We defined a set of common features resulting from the intersection 
of the programming languages supported by PBM platforms to propose a 
shared modelling language. A design choice was to define a subset of an 
existing language that can provide these common features. We needed a 
widely used high-level language with a low learning curve so that 
modelers with basic programming skills could efficiently use it. The 
transformation of a language with dynamic typing can make code 

Fig. 4. Example of input and output specifications of a Crop2ML model.  

Fig. 5. Example of a link to an Algorithm file.  

Fig. 6. Example of parameterization and unit tests in Crop2ML.  
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transformation into programming languages with static typing ambig-
uous. Therefore, we choose Cython, a high-level language that combines 
the expressive power of Python language with explicit type declaration 
of C language (Behnel et al., 2011). It is compiled directly in efficient C 
code, which improves runtime speed and makes it possible to interact 
with C, C++ and Fortran source code. However, not all Cython syntax 
can be directly transformed in all target languages. For instance, the 
yield statement and anonymous functions are not supported by Fortran. 
Therefore, we defined CyML (Cython Meta Language), a sub-set of 
Cython to address the implementation of the model Algorithm (Mid-
ingoyi et al., 2020). 

We use CyML as a pivot language between various platform lan-
guages, which can be mapped to their syntax and semantics. The 
structure and syntax of CyML, as well as its transformation system to 
various languages and platforms is detailed in Midingoyi et al. (2020). In 
brief, CyML supports datatypes defined in the model specification and 
provides standard mathematical functions and operators. In addition to 
local variable declaration and assignment statements, control structures 
are used in the flow of instructions described by the encoded algorithms. 
These include conditional statements (if, elif and else) to check if a 
condition is satisfied before addressing part of an Algorithm, sequential 

statement (for loop) with an incremental index on a data collection, and 
a repetitive statement (while) used to repeat part of an algorithm while a 
condition is satisfied. These structures can be nested. To support 
modular designs and the reuse of ModelUnits and functions, CyML pro-
vides import mechanisms, which assumes that imported ModelUnits or 
functions are referenced. 

Crop2ML framework provides a source-to-source transformation 
system (CyMLT) which converts CyML source code into procedural 
(Fortran, Python, C++), object-oriented (Java, C#, C++, Python) and 
scripting or functional (R, Python) languages (Midingoyi et al., 2020). 
CyMLT implementation relies on the transformation of the abstract 
syntax tree (AST) generated from the syntax analysis of the CyML code. 
The AST is transformed to a self-contained representation of the source 
code called Abstract Semantic Graph, which is independent of the source 
language. CyMLT proposes a unique approach to transform the Abstract 
Semantic Graph into readable source code in many different languages. 
The generated code is independent from the transformation system and 
can be run outside the Crop2ML framework. The transformation system 
integrates model documentation based on the model specification into 
generated code. 

2.3. Crop2ML model package 

In the context of large projects and collaborative work, it is useful to 
define some requirements or standards to facilitate common exchange. 
Crop2ML provides a logical, standardized but flexible support to facili-
tate model sharing between modeling platforms through the definition 
of a directory structure (Fig. 8). This template includes a folder that 
contains model description and associated algorithms, a repository of 
source code for each language and modeling platforms. It also includes a 
folder containing input data for a ModelComposite simulation, and a 
folder containing the unit tests. To save time and avoid omission of 
mandatory files or folders during package creation, we created a cook-
iecutter (Roy, 2017) template that automatically generates Crop2ML 
package templates (https://crop2ml.readthedocs.io/en/latest/user/pac 
kage.html). It increases model reusability by automatically generating 
a project that follows shared guidelines. Any ModelUnit or Mod-
elComposite can be extracted as a stand-alone model from an existing 
package, tested, reused, or integrated in other ModelComposite or 
package. The notion of package-dependency increases the modularity of 
Crop2ML and avoids model duplicity. 

2.4. Crop2ML model lifecycle management 

Crop2ML aims at collaborative model development that supports the 
entire model lifecycle, including model creation, editing, verification, 
validation, transformation, composition, and documentation. Therefore, 
we developed tools and services to support all the steps of a Crop2ML 
model lifecycle. 

2.4.1. Model analysis 
Crop2ML models conform to a specific Document Type Definition 

(DTD) that describes Crop2ML concepts. Model analysis verifies if the 
model specifications are a well-formed XML document validated by 
Crop2ML DTD. The analysis of a ModelComposite consists of checking 
model composability through port datatypes and units. Most XML edi-
tors can check the validity of an XML document against a DTD but the 
Crop2ML software environment (see Section 3.2) ensures this. 

2.4.2. Model validation 
Crop2ML model components can be validated by executing unit 

tests. It consists of using the parameter and variable values from the 
model specification to produce unit tests in different languages. Unit 
tests are generated in Jupyter notebook format, a document format for 
publishing source codes and reproducible computational workflows that 
could be executed in the appropriate kernel in Crop2ML software 

Fig. 7. Graph of a ModelComposite. Three ModelUnits (M1 to M3) are con-
nected to form a first level of composition, which is linked to a fourth Mod-
elUnit (M4). Link1 is an InputLink, Link2 is an InternalLink, and Link3 is an 
OutputLink. OutputLink is specified to clearly define the outputs of the Mod-
elComposite, which necessarily include all state variables. Each model 
component has input ports In1, In2, …, and output ports Out1, Out2, …, where 
1, 2, …, are internal (local) port numbers. 
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environment. This format is useful for code and documentation pub-
lishing and real-time collaboration when running on a remote server 
(Kluyver et al., 2016). Unit tests may also be associated with a model 
publication. 

2.4.3. Model transformation 
The success of Crop2ML model reuse through a white box approach 

comes from its ability to generate model components that conform to 
platform requirements. The transformation of a model component from 
a platform to another one goes through Crop2ML model representation. 
It relies on a system of transformation to and from Crop2ML and the 
platforms. 

For some PBM platforms, meta-information of model components are 
described inside their implementation as documentation. For other 
platforms meta-information are encoded in a textual or visual pro-
gramming language. CyMLT generates from Crop2ML model either 
appropriate documentation or variables and parameters specifications 
based on the artifacts of the target platforms. In addition, CyMLT gen-
erates model component algorithms in various languages. Given a model 
component provided by a platform, meta-information are extracted by 
identifying Crop2ML concepts inside the component to generate 
Crop2ML model meta-information. Moreover, algorithms in CyML are 
produced to obtain a complete Crop2ML model. 

2.4.4. Model documentation 
Sharing model knowledge requires detailed information on the 

model. Crop2ML generates model documentation from the model 
specification. From the relationships between the ModelUnits of a Mod-
elComposite, the diagram flow of the ModelComposite is generated. It may 
constitute part of the model documentation and gives a first description 
of the model component. This allows groups of modelers to understand 
the model structure and evaluate the component. 

3. Crop2ML software environment and tools 

3.1. PyCrop2ML: a Python library for Crop2ML 

Pycrop2ML is an open, modular, and extensible library developed in 
Python that implements all the steps of Crop2ML model lifecycle. It is 
designed to support the current Crop2ML model specifications but can 
easily be adapted to support future versions. Pycrop2ML can be inte-
grated into other software projects as a plug-in. It allows:  

• Verifying a Crop2ML model: This is ensured through a model parser 
based on the Crop2ML DTD. 

• Transforming a Crop2ML ModelUnit to source code: PyCrop2ML in-
tegrates CyMLT that generates model components that conform to 
PBM platform requirements.  

• Transforming a CyML source code to various languages: Regardless 
of Crop2ML model specifications, any CyML source code can also be 
transformed into the target languages. This source code can be used 
as auxiliary functions for Crop2ML model development. 

• Transforming source code to Jupyter notebook format: Each Mod-
elUnit source code generated can be translated as a cell of Jupyter 
notebook, as well as, each unit test, allowing its execution in 
Crop2ML JupyterLab environment. 

• Transforming a Crop2ML ModelComposite: A Crop2ML Mod-
elComposite provided as a directed graph can be transformed to 
source code as a sequential order of the submodels.  

• Visualizing a ModelComposite: Pycrop2ML provides a function to 
visualize a ModelComposite with the links between ModelUnits 
(Fig. 9). 

PyCrop2ML is written in Python and can be executed via a command- 
line interface, inputting either a Crop2ML package or CyML source code, 
as well as the target language or platform for transformation. Users with 
no knowledge of the Python language can easily run PyCrop2ML via the 
command line. The PyCrop2ML library incorporates three crop model 
components as model examples that can be used to test the different 
functionalities. 

Fig. 8. Tree view of the structure of a Crop2ML model component package.  
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3.2. CropMStudio: A JupyterLab environment for Crop2ML model life 
cycle management 

Crop2ML model specifications can be created or edited using any 
XML editor. However, to fulfil our objective of collaborative model 
development accessible to modelers with no specific programming 
skills, we developed a user-friendly interface based on the PyCrop2ML 

package to manage the lifecycle of Crop2ML model components 
(Fig. 10). Since Crop2ML models are transformed in different languages, 
it is useful to execute the unit tests in a single environment. Our solution, 
named CropMStudio, uses the JupyterLab environment (https://jupyte 
rlab.readthedocs.io), an open-source web application that allows 
working with code in different languages through different language 
backends kernels. We installed Python, Java, C#, C++, R and Fortran 

Fig. 9. Visualization of energy balance ModelComposite provided from SiriusQuality wheat model developed with the BioMA platform. Ellipses are ModelUnits and 
arrows represent the link between two ModelUnits. 

Fig. 10. Schematic representation of the Crop2ML framework showing Crop2ML model lifecycle from the creation of a package to model transformation.  
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kernels to execute ModelUnit tests. The current version of CropMStudio 
can be accessed through a web browser and run locally like a desktop 
application. Another motivation to use JupyterLab is to make publica-
tion results reproducible in a shared environment based on the capacity 
to produce interactive and readable code documents (Kluyver et al., 
2016). 

4. Interoperability between various simulation platforms 

The interoperability between simulation platforms is based on two 
transformation processes (import and export) via Crop2ML. The import 
process consists of transforming any platform model component to 
Crop2ML model. The export process consists of transforming Crop2ML 
models to any platform. Detailed descriptions of the import/export 
mechanisms in five widely used platforms with different architectures 
(BioMA, DSSAT, Record, OpenAlea, SIMPLACE) are provided in Sup-
plementary data (Appendix C). Table 2 summarizes the interoperability 
of model components between these platforms. Platforms are based on 
various programming languages, which requires the definition of 
transformation rules between CyML and various languages including C# 
(BioMA), Java (Simplace), C++ (Record), Python (OpenAlea) and 
Fortran (DSSAT) in both directions. We identified the levels of granu-
larity of modeling processes that correspond to Crop2ML concepts such 
as ModelUnit and ModelComposite in each platform. We also considered 
how documentation or model specifications are described in these 
platforms. 

The export process, from Crop2ML to platforms, is automatically 
done in BioMA, OpenAlea and Simplace. The modularity principle in 
BioMA matches Crop2ML, which allows associating simple and com-
posite BioMA strategies with Crop2ML ModelUnit and ModelComposite, 
respectively. Moreover, all the Crop2ML elements are well translated 
into the VarInfo type attributes (Donatelli and Rizzoli, 2008), and 
Crop2ML model algorithms are transformed to a method of a strategy 
class that takes generated domain classes as inputs. OpenAlea relies on 
two families of approaches: component-based architecture and scientific 
workflows. Thus, Crop2ML exports ModelUnits as OpenAlea components 
and ModelComposite as OpenAlea workflows. ModelComposite can thus 
be visualized and edited using VisuAlea, the visual programming envi-
ronment in OpenAlea. Widgets of ModelUnit are automatically generated 
based on the type of inputs that is mapped to an OpenAlea interface. 
Simplace is based on the concept of software units, called SimCompo-
nents as the smallest building blocks that map with ModelUnits. Mod-
elComposite are converted into a combination of SimComponents 
(SimComponentGroup). Variables and parameters descriptions are 
automatically included in the SimComponents descriptive part. 

In DSSAT and Record the export process is many automatic but some 
aspects need to be done manually. In DSSAT, Crop2ML transformation 
system generates a submodule in Fortran 90 for each ModelUnit. It also 
generates a sequence of submodules calls for composite models. One 
issue that makes this transformation not completely automatic is that 
Crop2ML does not manage the handling of input and output files. 
Therefore, it requires to manually add the input and output methods into 

the generated submodules. The concepts of atomic and coupled models 
in Record are mapped with those of Crop2ML. Thus, atomic model 
classes are generated in C++ to correspond to ModelUnits. However, the 
configuration and simulation file (VPZ) representing the ModelComposite 
is manually completed with further information such as the description 
of simulation result files. 

The import process (from simulation platforms to Crop2ML) is only 
partially automatic. Platform tools produce automatically the meta- 
information in Crop2ML format but algorithms are manually con-
verted into the CyML language that leads to a semi-automatic trans-
formation. A complete automatic transformation would require the 
implementation of source-to-source transformation from platforms’ 
language into CyML. In BioMA, VarInfo attributes are extracted from 
BioMA strategies to produce Crop2ML model meta-information. The 
process of automatically retrieving the estimate method to produce 
model Algorithm in CyML is not implemented yet. The description of 
component in OpenAlea is very generic compared to Crop2ML concepts. 
Although OpenAlea is mainly built for Functional Structural Plant 
Modeling (FSPM) application, there is no plant domain specific 
description associated with inputs and outputs such as units, categories 
of variables and parameters. Thus, the generation of model description 
in Crop2ML is partial. It requires further description of components that 
can be provided in documentation or by extending OpenAlea concepts. 
Like BioMA, the SimComponent specific descriptors in Simplace allows 
generating ModelUnits meta-information. The process method (algo-
rithm) is currently translated manually in CyML. Links between the 
different SimComponents (Unit) stored in the SimComponentGroup 
(Composition) are automatically exported to the Crop2ML structure. 
However, there is a loss of information since when a ModelUnit is 
activated or ignored it is not transferred to the Crop2ML structure. In 
DSSAT, unlike in the other platforms, the description of physiological 
processes is provided as documentation in submodules and it is not fully 
complete with respect to Crop2ML specifications. Inputs and outputs 
variables and their descriptions, units can be clearly identified, based on 
systematic platform guidelines. DSSAT submodules contain specific 
platform variables such as control variables that need to be removed to 
produce CyML model algorithms. In Record, as in DSSAT, there is no 
explicit specification of a model. The documentation of a model within 
its associated C++ class is used to generate partial ModelUnit meta- 
information. The parsing of the VPZ file, that contains the structure of 
composite models in Record, is used to generate a ModelComposite. 
However, it is not possible to represent retroaction loops in Crop2ML as 
it is done in Record with coupled models. 

In order to illustrate Crop2ML concepts and transformation results, a 
phenology and an energy balance models are used. Phenology, the 
timing of crop development is the heart of most crop growth models and 
is an essential component of most crop modeling platforms. The energy 
balance model involves interconnected components that allows esti-
mating canopy temperature, evapotranspiration, and heat transfer be-
tween the canopy and the air. These processes are implemented as 
BioMA standalone components (Manceau and Martre, 2018) of the 
wheat PBM SiriusQuality (He et al., 2012; Martre et al., 2006). The two 

Table 2 
Import and Export processes between Crop2ML and PBM platforms. A, automatic; P, partially automatic; M, manual.  

PBM 
Platforms 

From Crop2ML to PBM platforms  From PBM platforms to Crop2ML 

A P M To be completed  A P M To be automatized 

BioMA         Source transformation from C# to CyML 
DSSAT    Integration of I/O     Source transformation from Fortran to CyML 

Remove I/O 
More variable description 

Record    Complete VPZ file     Source transformation from C++ to CyML 
More variable description 

OpenAlea         Source transformation from Python to CyML 
More variable description 

SIMPLACE         Source transformation from SIMLPACE Java to CyML  
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Table 3 
Declaration of the inputs and Algorithm of a Crop2ML ModelUnit of the Penman-Monteith evapotranspiration model and the equivalent source code generated by CyMLT for Record, BioMA, and DSSAT. The declaration of 
a single variable is given as an example.  

Framework or 
platform/language 

Variable declaration Algorithm 

Crop2ML/CyML 

Record/C++

BioMA/C# 

DSSAT/Fortran 

(continued on next page) 
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components were converted into Crop2ML packages, and then auto-
matically translated into different languages and model components 
that conform to different PBM platforms. These packages are presented 
in Appendixes A and B. In Table 3 we illustrate how to represent a 
parameter and an Algorithm in a Crop2ML ModelUnit and its translation 
with CyMLT in Record, BioMA, and DSSAT. The implementations of the 
model differ between the platforms. For instance, DSSAT defines a 
subroutine with all the variables as argument, Record defines a class 
method (compute) with the variables as attributes of the class and uses 
specific operator “()” to manage temporal variables, while BioMA de-
fines a class method (CalculateModel) that takes as argument data 
structures implementing each category of variables (state, rate, auxil-
iary, exogenous). The aim of model transformation is to provide to the 
platforms alternative model components that could easily replace their 
corresponding components to analyze the effects of new hypotheses into 
their modeling solutions. 

The sequence of ModelUnits that compose a Crop2ML Mod-
elComposite is formally modeled as a directed acyclic graph. This means 
that there is no feedback loop or retroaction at a given time step, instead 
they are usually represented by a cycle in the ModelComposite. Alter-
natively, a state variable can be defined explicitly as two variables with 
respect to the current and the previous time. Thus, a composite model 
may take as input a state variable at previous time and a state variable at 
current time as output, making implicitly a loop with respect to time 
advance. Another way to represent feedback inside a time step is to 
associate an explicit Algorithm to the ModelComposite that defines how 
to run it. However, this feature is not supported by two simulation 
platforms (OpenAlea and RECORD). 

5. Discussion 

The Crop2ML framework enables a user to exchange and reuse bio-
physical components between various PBM platforms through shared 
declarative specifications. The use of a minimal language to describe the 
model Algorithm once and the transformation system facilitates reuse of 
models’ components. ModelUnits and ModelComposite can be accessed 
and composed following a white box approach. Therefore, the Crop2ML 
approach greatly increases the ability of modelers to share their algo-
rithms. The protocol will allow modelers to borrow components easily 
and will facilitate their intercomparison and improvement in different 
PBM platforms. 

5.1. How does Crop2ML address model reuse compared to other 
initiatives? 

Some initiatives addressed model reuse by providing multi-scale and 
multi-language integrative frameworks such as Crops in silico (Mar-
shall-Colon et al., 2017) the Open Modeling Foundation OpenMI (Bua-
hin and Horsburgh, 2018). These frameworks can compose and simulate 
heterogeneous models provided by different frameworks through a 
communication interface. The model components are often wrapped 
and are represented as black-box components. All state variables are not 
always exposed as model outputs, which may limit their integration in 
an existing modeling solution. Therefore, these frameworks enhance 
model reuse in their own environment but they do not address reus-
ability with other PBM platforms. Many existing PBM platforms do not 
support the coupling of models written in multiple languages (e.g. 
BioMA, APSIM next generation). 

Donatelli and Rizzoli (2008) proposed a design pattern for 
platform-independent model components to enhance modularity and to 
facilitate model reuse in several PBM platforms via simple wrappers. 
However, this approach fixes the structure of the components. The lack 
of specification or meta-information makes the reuse of model compo-
nents between platforms difficult. Even in component-based systems, 
explicit information about the component itself and its inputs and out-
puts (types, units and boundary conditions) are required to ensure a Ta
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syntactic composability and to meet the specificities of the platforms. 
Moreover, the knowledge of the structure underlying the source code of 
a component is also required to systematically extract model informa-
tion (variables and algorithms) for their transformation and integration 
in different platforms. We thus argue that model component reuse is 
improved if it is supported by model specification. Crop2ML defines an 
abstract representation of model design shared by PBM platforms 
through some shared concepts enriching or extending those proposed by 
Athanasiadis et al. (2011) with other attributes and a formal and shared 
description of unit tests. We included unit tests in Crop2ML specifica-
tions to ensure model transformation validation and some imperative 
constructs for model dynamics. 

Several initiatives have used declarative modeling to describe model 
specifications and address model reuse issues. The approach proposed 
by Villa et al. (2006) is similar to ours but it is limited to models where 
the dynamics of the modeled processes is represented by simple math-
ematical expressions without control structures, which does not match 
crop modeling context. Hucka et al. (2003) used MathML (Ausbrooks 
et al., 2003) to express interactions between variables through mathe-
matical formalisms well defined in the systems biology community. This 
approach is similar to that of Rizzoli et al. (2008) and is useful when 
processes are governed by differential equations. However, in the PBM 
context, simulation platforms use algorithms to describe processes 
rather than mathematical formalisms with differential equations. 
Moreover, in PBM, variables that drive the system are temporal series 
that change the behavior of the system at discrete time. This does not 
require finding a general solution of recurrent equations used in crop 
models but rather estimating at each time step the state variables of the 
system. 

Automated model transformation is a core aspect of model-driven 
development (Cuadrado and Molina, 2007). It uses Model-Driven En-
gineering (MDE) principles based on metamodeling concepts. Crop2ML 
is in line with MDE. It defines structured concepts representing its 
metamodel, with which all Crop2ML models are conform, and a model 
transformation to generate PBM platforms’ components. Model Driven 
Architecture (Brown, 2004) is a framework of MDE that provides several 
standard languages (e.g., ATL, QVT, ETL, Henshin, VIATRA, and Strat-
ego) for model transformation (Jouault and Kurtev, 2006; Kurtev et al., 
2006). Crop2ML is based on a transformation process through a set of 
refinement of models and code with some extensible rules defined as 
templates in Python. Most MDE approaches allow model to model or 
model to code transformation where a model represents the specifica-
tion in our case. However, the use of transformation language standards 
was inappropriate in our context to unify transformation process 

towards many languages with different paradigms (Bucchiarone et al., 
2020). Crop2ML produces code in a target language but also adapts the 
code to fit with PBM platform specificities. To our knowledge, model 
transformation languages in MDE do not support code generation in 
multiple languages with extended features in the same environment. 

5.2. Connecting Crop2ML to PBM platforms 

Given that Crop2ML datatypes do not handle complex data struc-
tures other than arrays and lists, some compromises or transformation 
should be made to the import-export process on the platform side with 
respect to handling other data structures used in platforms. As an 
example, BioMA provides the Dictionary data type that is a set of keys 
associated with values to represent either input or output variables. This 
data type is not handled by Crop2ML, and by most PBM platforms. As an 
alternative, Dictionaries can be expressed in Crop2ML as two list data-
type variables that represent keys and values of the dictionary. 

The simulation Algorithm defining the feedback loop is explicitly 
described as control flow in some platforms (e.g. BioMA) but this is not 
the case in other platforms (e.g. Record, where the VPZ file representing 
the simulation model file is handled by the simulation engine VLE). 
Different simulation engines are based on different models of compu-
tation used by the platforms such as dataflow (e.g. OpenAlea), DEVS 
simulation (e.g. Record), control flow (e.g. BioMA, DSSAT, and Sim-
place). These models of computation are used to coordinate the execu-
tion of the model. The current version of Crop2ML framework does not 
take into account the specificities of simulation engines and addresses 
components which can be sequentially composed. 

The Crop2ML transformation system is designed to support the 
specificities of the target PBM platforms. However, the semantic of a 
Crop2ML model is based on shared concepts to describe at a high level a 
biophysical process by a discrete-time model. There is no semantic 
reason to support the description of each instance of the concepts. For 
example, since we have not defined a convention to name process var-
iables, the integration of a Crop2ML component into a PBM modeling 
solution requires adapting the name of its variables. In the future, we 
could annotate Crop2ML models to add semantic information to make 
semantic links between any Crop2ML model variables or parameters 
with those of model components of PBM platforms. This will also allow a 
semantic composability of Crop2ML models instead of a syntactic 
composability that analyzes whether the pair of variables to be linked 
are compatible. However, this would require the crop modeling com-
munity to agree on shared semantics and ontologies of crop model 
variables and parameter representations. Until now this has been a real 

Fig. 11. Schema illustrating CyML transformation extensibility to support bidirectional source transformation.  
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challenge as the crop modeling community has not be too keen on 
adapting standards (White et al., 2013). In addition, to facilitate the 
exchange and reuse of model components, semantic descriptions of 
model variables and parameters would facilitate the linking of crop 
models to plant phenomics data (Neveu et al., 2018). 

We were able to achieve fully-automatic export of Crop2ML model to 
several PBM platforms. The import process into Crop2ML is more mixed 
regarding the overall differences between PBM platforms. It is much 
easier to start with concepts shared and reused by PBM platforms than to 
start from divergent views of model representations to achieve a 
particular result. Some PBM platforms need to extend their concepts for 
model specification or to provide a rich model documentation in order to 
produce complete Crop2ML model specifications. This reveals the need 
of a good level of abstraction to represent a model in various PBM 
platforms. The higher the level of abstraction, the further the description 
moves away from the platforms and the less easy it is to understand. On 
the other hand, if the level of abstraction is too low, it is not always 
possible to represent all features of the models present in the platforms. 

5.3. Future developments 

A common model repository infrastructure is essential for efficient 
model exchange (Glont et al., 2018; Lloyd et al., 2008). Currently, 
Crop2ML model components are stored in Github repositories. We aim 
to provide a Crop2ML model repository to store models in a shared 
format to make them easily accessible and reusable by the plant and crop 
modeling community. This repository should aim at hosting alternative 
biophysical processes. It will help modelers to operate on multiple 
model components, compare processes, or evaluate the impact of the 
integration of alternative models of biophysical processes in crop 
models. The success of the Crop2ML repository requires that the com-
munity gives access to their models by feeding the repository, which will 
be curated by the AMEI consortium to avoid error propagation. 

Crop2ML has some limitations, which can be addressed in the next 
versions, either by extending the model specifications with shared 
concepts or by adapting the target PBM platforms to Crop2ML specifi-
cation and language. It is an ongoing, long-term activity, to satisfy 
platform requirements and facilitate Crop2ML model life-cycle man-
agement to make Crop2ML a standard for the plant and crop modeling 
community. 

The transformation of a model component of a PBM platform into a 
Crop2ML package requires rewriting the model algorithms in the CyML 
language. This limit is currently being addressed by extending the CyML 
transpiler to a bidirectional transpiler. Thereby, PBM platforms could 
provide model algorithms in the language they use and the extended 
CyMLT will transform them in CyML and target languages used by other 
PBM platforms (Fig. 11). This is a two-step process. First, the model 
algorithms in the language of the source PBM platform will be parsed 
and an AST will be generated. Second, the rules for transforming this 
AST into the CyML AST will be applied. The second step will reuse the 
CyML transformation tool developed by Midingoyi et al. (2020) to 
produce model algorithms compatible with other languages and PBM 
platforms. 

Other future developments of Crop2ML include:  

● Enhance Crop2ML model repositories with model annotation to link 
publications to models for reproducibility;  

● Add unit checks and conversions in Crop2ML to improve model 
validity; 

● Define a methodology to link Crop2ML with plant structure repre-
sentation for multiscale viewing and analysis; 

● Define and implement an ontology of crop model variable and pa-
rameters to allow better Crop2ML model interpretation and improve 
transformation between PBM platforms and the integration of model 
component in complex modeling solutions. 

● Extend Crop2MLab prototype by including bidirectional trans-
formation and the creation of a web interface on a remote server in 
order to give users the possibility to handle Crop2ML model lifecycle 
without local installation. 

6. Conclusion 

At the interface between modeling and software engineering, this 
paper addresses plant and crop model component reuse by proposing the 
Crop2ML framework. Despite all the differences between PBM plat-
forms, some common features can be identified that enabled model 
representation regardless of the platforms’ specificities. Crop2ML pro-
vides structured concepts to support the definition of ModelUnit and 
ModelComposite and allows their transformation to make them 
compatible with PBM platforms at implementation level. Therefore, 
Crop2ML defines a new unified crop model representation that considers 
the abstraction of PBM component features in several PBM platforms. 
Moreover, Crop2ML uses a domain specific language to describe bio-
physical processes and auxiliary functions to represent model dynamics 
based on a subset of the Cython language, which can then be automat-
ically transformed into different target languages. Crop2ML proposes an 
open framework to manage all the steps of model lifecycle. 
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