
Environmental Modelling and Software 142 (2021) 105055

Available online 30 April 2021
1364-8152/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Crop2ML: An open-source multi-language modeling framework for the
exchange and reuse of crop model components

Cyrille Ahmed Midingoyi a, Christophe Pradal b,c,**, Andreas Enders d, Davide Fumagalli e,
Hélène Raynal f, Marcello Donatelli g, Ioannis N. Athanasiadis h, Cheryl Porter i,
Gerrit Hoogenboom i,j, Dean Holzworth k, Frédérick Garcia l, Peter Thorburn m, Pierre Martre a,*

a LEPSE, Univ Montpellier, INRAE, Institut Agro, Montpellier, France
b CIRAD, UMR AGAP Institut, F-34398, Montpellier, France
c LIRMM, Univ Montpellier, Inria, CNRS, Montpellier, France
d Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
e Institute for Environment and Sustainability, Joint Research Centre, European Commission, Ispra, Italy
f AGIR, INRAE, INP Toulouse, Castanet-Tolosan, France
g Research Centre for Agriculture and Environment, CREA-AA, Bologna, Italy
h Wageningen University, Wageningen, the Netherlands
i Agricultural & Biological Engineering, University of Florida, Gainesville, USA
j Institute for Sustainable Food Systems, University of Florida, Gainesville, USA
k CSIRO Agriculture and Food, Toowoomba, Australia
l MIAT, INRAE, Castanet-Tolosan, France
m CSIRO Agriculture and Food, Brisbane, Australia

A R T I C L E I N F O

Keywords:
Crop model
Crop2ML
Component-based software
Model exchange and reuse

A B S T R A C T

Process-based crop models are popular tools to analyze and simulate the response of agricultural systems to
weather, agronomic, or genetic factors. They are often developed in modeling platforms to ensure their future
extension and to couple different crop models with a soil model and a crop management event scheduler. The
intercomparison and improvement of crop simulation models is difficult due to the lack of efficient methods for
exchanging biophysical processes between modeling platforms. We developed Crop2ML, a modeling framework
that enables the description and the assembly of crop model components independently of the formalism of
modeling platforms and the exchange of components between platforms. Crop2ML is based on a declarative
architecture of modular model representation to describe the biophysical processes and their transformation to
model components that conform to crop modeling platforms. Here, we present Crop2ML framework and describe
the mechanisms of import and export between Crop2ML and modeling platforms.

1. Introduction

The wide range of crop process-based models (PBM) reflects the
evolution of our knowledge of the soil-plant-atmosphere system and the
rich historical development for more than five decades (reviewed in
Jones et al., 2017; Muller and Martre 2019). The high diversity of PBM is
due to their multiple applications and the complexity of the system

influenced by several factors, e.g. weather, soil, crop management
(Basso et al., 2013) and genotypic factors (Wang et al., 2019). Most of
the PBM are continuous models, formalized using ordinary differential
equations, but are implemented as discrete time simulation models
using finite difference equations. They are commonly decomposed into
simpler biophysical functions (e.g. phenology, morphogenesis, resource
acquisition, pests and diseases impact) often implemented by recurrent

* Corresponding author. INRAE – UMR LEPSE. 2 place Viala, 34 060, Montpellier, France.
** Corresponding author. CIRAD – UMR AGAP, Avenue Agropolis, 34 398, Montferrier-sur-Lez, France.

E-mail addresses: cyrille.midingoyi@inrae.fr (C.A. Midingoyi), christophe.pradal@cirad.fr (C. Pradal), aenders@uni-bonn.de (A. Enders), davide.fumagalli@ext.
ec.europa.eu (D. Fumagalli), helene.raynal@inrae.fr (H. Raynal), marcello.donatelli@crea.gov.it (M. Donatelli), ioannis.athanasiadis@wur.nl (I.N. Athanasiadis),
cporter@ufl.edu (C. Porter), gerrit@ufl.edu (G. Hoogenboom), dean.holzworth@csiro.au (D. Holzworth), frederick.garcia@inrae.fr (F. Garcia), peter.thorburn@
csiro.au (P. Thorburn), pierre.martre@inrae.fr (P. Martre).

Contents lists available at ScienceDirect

Environmental Modelling and Software

journal homepage: www.elsevier.com/locate/envsoft

https://doi.org/10.1016/j.envsoft.2021.105055
Accepted 15 April 2021

mailto:cyrille.midingoyi@inrae.fr
mailto:christophe.pradal@cirad.fr
mailto:aenders@uni-bonn.de
mailto:davide.fumagalli@ext.ec.europa.eu
mailto:davide.fumagalli@ext.ec.europa.eu
mailto:helene.raynal@inrae.fr
mailto:marcello.donatelli@crea.gov.it
mailto:ioannis.athanasiadis@wur.nl
mailto:cporter@ufl.edu
mailto:gerrit@ufl.edu
mailto:dean.holzworth@csiro.au
mailto:frederick.garcia@inrae.fr
mailto:peter.thorburn@csiro.au
mailto:peter.thorburn@csiro.au
mailto:pierre.martre@inrae.fr
www.sciencedirect.com/science/journal/13648152
https://www.elsevier.com/locate/envsoft
https://doi.org/10.1016/j.envsoft.2021.105055
https://doi.org/10.1016/j.envsoft.2021.105055
https://doi.org/10.1016/j.envsoft.2021.105055
http://crossmark.crossref.org/dialog/?doi=10.1016/j.envsoft.2021.105055&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Environmental Modelling and Software 142 (2021) 105055

2

equations with control flows. Another common characteristic is that
PBM simulate plant growth and development at the scale of the canopy
or average plant level without spatial dependence with a daily or
sub-daily time step.

PBM are often implemented in modeling and simulation platforms at
a higher level of abstraction to facilitate model development (Rizzoli
et al., 2008). These platforms offer not only scalable, modular, and
robust modelling solutions but also the ability to analyze, evaluate,
reuse and combine models. The diversity of PBM led the crop modeling
community to compare their performance and to improve them by
aggregating modelers’ knowledge or by introducing improvements
provided from diverse research groups under the umbrella of large in-
ternational collaborative projects such as the Agricultural Model Inter-
comparison and Improvement Project (AgMIP; Rosenzweig et al., 2013).
Studies conducted in the context of model intercomparison and
improvement exercises (e.g. Asseng et al., 2013; Wang et al., 2017)
pointed out the large uncertainty of PBM simulations and have analyzed
the sources of uncertainty or the processes involved. These intercom-
parison results showed the potential and limits of PBM and highlighted
the need to analyze models at the process level, but also to exchange
model components describing specific processes between simulation
platforms (e.g. Donatelli et al., 2014; Wang et al., 2017). The uncer-
tainty of a PBM component may be related to its validity domain, inputs,
parameters, structure, and the underlying scientific hypotheses (Walker
et al., 2003). Epistemic uncertainty may arise from incomplete or lack of
knowledge of these sources. The uncertainty of PBM results from the
aggregation of the uncertainty of each of its component (Refsgaard et al.,
2007). A framework that would allow the exchange of model compo-
nents between different platforms would give crop modelers the ability
to test alternative hypotheses in the same model, thus helping to reduce
epistemic uncertainty.

Although most crop simulation platforms provide modular ap-
proaches and reuse techniques, there is little exchange of PBM compo-
nents between them despite theoretical and application interests. PBM
components often contain source code developed in different program-
ming languages and are tightly coupled to the platforms. Therefore,
model components are not seamlessly reusable outside the modeling
platforms in which they have been developed without recoding or
wrapping them (Holzworth et al., 2014; Rizzoli et al., 2008).
Re-implementing a component in several platforms is a tedious and
cumbersome task and requires a minimum knowledge of the different
platforms. The wrapping solution treats components as black boxes
taking little or no advantage of the framework (Rizzoli et al., 2008) or as
white boxes but with a high-level of complexity (Fernique and Pradal,
2018; Pradal et al., 2008). Other reuse approaches in environmental
modeling have been explored. Declarative modeling can provide
portability and facilitate integration between independent, uncoordi-
nated models (Athanasiadis and Villa, 2013). However, model specifi-
cations are seldom separate from implementation details. Model
builders rely often directly on implementation that hides the scientific
content of a model (i.e. its Algorithm) and its structure. Moreover, the
publication of PBM components in scientific journals does not provide
sufficient description associated with the modeled processes, which is a
fundamental criterion for reuse (Pradal et al., 2013). This raises the
problem of reproducibility and reliability of scientific results that are
strongly linked to the platforms in which the models have been imple-
mented and tested (Cohen-Boulakia et al., 2017; Hinsen, 2016).

Visual domain-specific languages such as Simile (Muetzelfeldt and
Massheder 2003) or Stella (Richmond, 1985) provide a rich graphical
interface to build models but become difficult to use for complex models
and require many widgets to represent graphically nested control flows.
Multiscale modelling and simulation frameworks (Marshall-Colon et al.,
2017; Pradal et al., 2015) propose model interface designs which en-
ables communication of multi-language components as black box com-
ponents. Other declarative modelling languages are also used in the
Systems Biology community who have developed declarative open

standard such as SBML (Hucka et al., 2010), CELLML (Cuellar et al.,
2003), or NEUROML (Le Franc et al., 2012) to describe biological
models. However, crop modelers generally use procedural modelling
rather than a mathematical formalism like differential or reaction
equations as it is commonly done in System biology.

An alternative to the problem of PBM component reuse between PBM
platforms is the use of a centralized framework that enables the devel-
opment of PBM components regardless of the modeling platforms
(Fig. 1). We followed this approach and developed a modeling frame-
work called Crop2ML (Crop Modelling Meta Language) that separates
the structure of a model component from its implementation. Given that
the wrapping solution was excluded because of the lack of transparency
and high maintenance cost and that Crop2ML does not aim at replacing
existing modeling platforms or at simulating components within large
modeling solutions (crop models), we created a solution that generates
components, from a metalanguage, for specific PBM platforms. It pro-
vides a centralized PBM components repository to store model compo-
nents in a standard format to facilitate their access and reuse. This reuse
approach is supported by the Agricultural Modeling Exchange Initiative
(AMEI), which brings together some of the most widely used crop
modelling and simulation platforms, including the Agricultural Pro-
duction Systems sIMulator (APSIM, Holzworth et al., 2018), the Bio-
physical Model Applications (BioMA; Donatelli et al., 2010), the
Decision Support System for Agrotechnology Transfer (DSSAT; Jones
et al., 2003; Hoogenboom et al., 2019), OpenAlea (Pradal et al., 2015),
the REnovation and COORDination of agroecosystems modelling (RE-
CORD; Bergez et al., 2013), and the Scientific Impact assessment and
Modeling Platform for Advanced Crop and Ecosystem management
(Simplace; Gaiser et al., 2013) and other crop models such as STICS
(Brisson et al., 2010) or SiriusQuality (Martre et al., 2006). Here, we first
present the main components of Crop2ML framework. Then we describe
the mechanisms of importing and exporting between Crop2ML and PBM
platforms. We then discuss our approach and present some perspectives.

2. Crop2ML: a centralized framework for crop model
components development and sharing

Crop2ML is a framework for crop model component development,
exchange, and reuse between PBM platforms. It is designed following
FAIR principles for research software (Lamprecht et al., 2019) to
provide:

• Simplicity: Model specifications are defined using a declarative lan-
guage (eXtensible Markup Language [XML]; Bray et al., 2008) with
generic concepts shared between PBM platforms and model algo-
rithms are encoded using a minimal language.

• Transparency: Models are shared as documented components in a
well-defined format (Crop2ML format).

• Flexibility: Model units are composed with a shared abstract repre-
sentation of model structure.

• Findability: Model specifications include rich metadata and are
assigned a globally unique and persistent identifier for each released
version.

• Reusability: Model components are transformed into PBM platform-
compliant code to support efficient interoperability.

• Reproducibility: Model components can be executed and tested
regardless of the PBM platforms.

• Modularity: Three levels of modularity of models are defined: (single)
model units, composite models and package. Package contains model
units and composite as well as data. It provides the flexibility to make
different compositions based on these models.

We used the principles of Lamprecht et al. (2019) for assessing the
FAIR-ness of Crop2ML framework (Supplementary data Table C1).

C.A. Midingoyi et al.

Environmental Modelling and Software 142 (2021) 105055

3

2.1. Design and concepts of Crop2ML model specification

Software modularity is one of the main criteria of reuse. Jones et al.
(2001) proposed key elements for modular model structure, which is an
essential first step to enhance collaborative modelling effort. Crop2ML
follows and extends these principals. In most PBM, the system is
decomposed into compartments such as plant parts or soil layers that
interact. For each compartment, different processes are described and
assembled in components to simulate the response of the compartment.
These processes can be subdivided into discrete, explanatory, indepen-
dent biophysical sub-processes, which could be individually modeled
(ModelUnit) or composed (ModelComposite). A modular model struc-
ture requires making an objective decomposition of the system to avoid
coarse granularity models, which limit reusability. A ModelUnit should
not encapsulate alternative assumptions and formalisms, making it
easier to test them. In addition, the management of input and output
data, such as data access, logging, and file generation, must be managed
separately from the implementation of model component. These design
principles foster the reuse of components, which are intended to be in-
tegrated and simulated with a large variety of input data formats in
different PBM platforms. Moreover, to emphasis modularity, the tem-
poral integration loop must be removed from the model process

implementation. This makes it possible to reuse the same process with
different modeling formalisms or simulation frameworks that manage
temporal dynamics of the simulation differently (e.g. different numeri-
cal integration techniques).

Crop2ML provides a level of abstraction that enables a shared rep-
resentation of model components between PBM platforms. A ModelUnit
is defined with the following descriptive elements (Fig. 2a):

• a model description;
• a list of inputs;
• a list of outputs;
• an initialization step of the state variables;
• a link pointing to the source of the model Algorithm;
• a list of usual mathematical functions;
• a set of unit tests with parameterization shared between modeling

platforms.

A ModelComposite includes the same elements as a ModelUnit. In
addition, it contains a list of Models and the links between them.
(Fig. 2b). However, if control structures are necessary to express the
behavior of a ModelComposite, the Algorithm can be explicitly provided.

The Crop2ML model specification is based on XML Language. XML is

Fig. 1. From a combinatorial to a centralized exchange framework. The schema illustrates the reduction of import export links between platforms in a centralized
(right) versus combinatorial exchange framework.

Fig. 2. Crop2ML concepts for model specifications: ModelUnit (a) and ModelComposite (b). “+”, one or more elements; “*”, zero or more elements; “?”, zero or
one element.

C.A. Midingoyi et al.

Environmental Modelling and Software 142 (2021) 105055

4

a widely used declarative metalanguage for describing or structuring
data in a portable format with some descriptive elements. XML format is
used in several PBM platforms for template parametrization and model
simulation configuration (e.g. APSIM, BioMA, RECORD, Simplace, Sir-
iusQuality). This reinforces our choice on this format since the trans-
formation between different XML documents or in any language is
relatively straightforward, allows using XML as a bridge between het-
erogeneous structures and it facilitates collaborative development.
Moreover, the use of XML and a formal description of model specifica-
tions and their associated metadata facilitate machine readability and
model exchange. In the following sections, we describe the concepts of
Crop2ML model specifications.

2.1.1. Description
The core description of a Crop2ML model contains the name of the

model, an identifier that ensures the provenance of the model and a
version number (Fig. 3). The identifier of the model is specified to keep
the property of the component. Since PBM are dynamic models, the time
step is an important factor that is specified to allow a multi temporal-
scale composition. In addition, other elements are described to pro-
vide rich metadata, including author names and affiliations, citable and
findable references (e.g. doi) and a brief description of the model. The
description also includes usage licenses compatible with the model
dependencies.

2.1.2. Inputs – outputs
In Crop2ML, a component takes parameter and variable values as

inputs and produces variable values as outputs. A variable is a quantity
which is given by the context of the experiment (input data) or calcu-
lated by the model (output data), while the value of a parameter is an
input that can be specified by the modeler within a defined interval.
Variables and parameters are distinguished with input type attributes and
are categorized with variable category and parameter category attributes,
respectively (Table 1).

Crop2ML currently supports four basic types: integer, double, strings
and logical. It also supports two collection types: lists and arrays, which
contain a sequence of elements of basic types. They are explicitly
specified in a datatype attribute, similar to the VarInfo type (Donatelli
and Rizzoli, 2008). It also provides a common representation of date/-
time. The domain of validity of each variable is specified by min and max
attributes. A measurement unit can also be associated to the variables
and parameters. Fig. 4 gives an example of inputs and outputs
specifications.

2.1.3. Initialization
State variables of Crop2ML ModelUnits and ModelComposites are

initialized at the start of a simulation and are specified with an Initiali-
zation element. This element is optional, and the default values of state
variables are used if it is omitted. Initialization may also be a function
that assigns initial values to state variables. In this case, the Initialization
element contains the path to the source code of the initialization
function.

2.1.4. Algorithm
Algorithm elements link the model specifications with the model

algorithm (Fig. 5). A model algorithm describes the behavior of a
component in terms of a sequence of inputs, successive rules or actions,
conditions and a flow of instructions from inputs to outputs including
mathematical expressions. A model algorithm can be implemented in
different programming languages. However, Crop2ML proposes to
encode the model algorithm in a shared language, CyML (Midingoyi
et al., 2020). The CyML source code is the common representation for
model algorithm shared by the supported languages and platforms (see
Section 2.2.).

Fig. 3. Example of a Crop2ML ModelUnit core description.

Table 1
Category, definition, and example of variables and parameters in Crop2ML.

Input
Type

Category Definition Example

Variable State Characterizes the behavior
of a component

Leaf area index, weight
of a plant part, canopy
temperature

Rate Defines the change of one
state variable

Transpiration rate, leaf
growth rate

Auxiliary Intermediate variable
computed by an auxiliary
function

Dry matter partitioning,
shoot number

Exogenous Driven variables that do not
depend on other variables
of the system or component

Mean air temperature,
wind speed

Parameter Constant Absolute constant Boltzmann constant
Soil Soil parameter N mineralization

constant, maximum
rootable soil depth

Species Crop parameter with fixed
value for a species

Maximum respiration
rate

Genotypic Crop parameter that can
take different values for
different genotypes
(cultivars)

Phyllochron, grain
filling duration

C.A. Midingoyi et al.

Environmental Modelling and Software 142 (2021) 105055

5

2.1.5. Function
A function is a utility routine that can be called from the model Al-

gorithm or from other functions. It reduces the code length and improves
the readability of the encoded algorithm. If a model needs an external
function, this function must be declared in the model specification by
referencing the path where the function is implemented. A function can
also be used for model adaptations such as temporal aggregation or
integration, unit conversion to link model components without changing
their algorithms. Crop2ML provides a shared library of mathematical
functions in different languages such as standard functions, interpola-
tion, or upper and lower bound functions. Modelers can use these
functions in their own algorithm, implemented in the CyML language.

2.1.6. Parameter sets and test sets
A Crop2ML model specification includes one or more sets of model

parameterizations used for different unit tests (Fig. 6). A parameteri-
zation is a set of values assigned to an input parameter of a model. It is
described by a name and a description. A unit test in Crop2ML is
described in the Testsets element and allows comparing estimated and
expected outputs values. Several unit tests can be specified. They are
described by their name, their description and the name of parameters set
associated to them. Each test provides a list of values assigned to each
variable and the expected values of the model outputs. A numerical
precision could be associated with the output of the test to check its
validity.

2.1.7. Model links
Model links are specified in a ModelComposite and depict how Mod-

elUnits or ModelComposites are interconnected. A ModelComposite is a
port graph (Andrei and Kirchner, 2009) that defines a dataflow where
nodes are ModelUnits, and ports are inputs and outputs of the ModelUnits.
Edges are oriented links connecting output ports of a source ModelUnit to
the input ports of a target ModelUnit (Fig. 7). Three types of links must be
specified: InternalLink is the connection between an input of one
sub-model and the output of another sub-model, InputLink is the
connection between an input port of a sub-model and an input port of
the composite model, and OutputLink is the connection between a
ModelUnit or ModelComposite output port, that can be either a ModelUnit
or ModelComposite, and a ModelComposite output port. These connec-
tions show the hierarchical structure of a ModelComposite. This modeling
approach enhances reusability and has been used with success (Wyatt,
1990).

2.2. CyML: the common modelling language of biophysical processes in
crop models

We defined a set of common features resulting from the intersection
of the programming languages supported by PBM platforms to propose a
shared modelling language. A design choice was to define a subset of an
existing language that can provide these common features. We needed a
widely used high-level language with a low learning curve so that
modelers with basic programming skills could efficiently use it. The
transformation of a language with dynamic typing can make code

Fig. 4. Example of input and output specifications of a Crop2ML model.

Fig. 5. Example of a link to an Algorithm file.

Fig. 6. Example of parameterization and unit tests in Crop2ML.

C.A. Midingoyi et al.

Environmental Modelling and Software 142 (2021) 105055

6

transformation into programming languages with static typing ambig-
uous. Therefore, we choose Cython, a high-level language that combines
the expressive power of Python language with explicit type declaration
of C language (Behnel et al., 2011). It is compiled directly in efficient C
code, which improves runtime speed and makes it possible to interact
with C, C++ and Fortran source code. However, not all Cython syntax
can be directly transformed in all target languages. For instance, the
yield statement and anonymous functions are not supported by Fortran.
Therefore, we defined CyML (Cython Meta Language), a sub-set of
Cython to address the implementation of the model Algorithm (Mid-
ingoyi et al., 2020).

We use CyML as a pivot language between various platform lan-
guages, which can be mapped to their syntax and semantics. The
structure and syntax of CyML, as well as its transformation system to
various languages and platforms is detailed in Midingoyi et al. (2020). In
brief, CyML supports datatypes defined in the model specification and
provides standard mathematical functions and operators. In addition to
local variable declaration and assignment statements, control structures
are used in the flow of instructions described by the encoded algorithms.
These include conditional statements (if, elif and else) to check if a
condition is satisfied before addressing part of an Algorithm, sequential

statement (for loop) with an incremental index on a data collection, and
a repetitive statement (while) used to repeat part of an algorithm while a
condition is satisfied. These structures can be nested. To support
modular designs and the reuse of ModelUnits and functions, CyML pro-
vides import mechanisms, which assumes that imported ModelUnits or
functions are referenced.

Crop2ML framework provides a source-to-source transformation
system (CyMLT) which converts CyML source code into procedural
(Fortran, Python, C++), object-oriented (Java, C#, C++, Python) and
scripting or functional (R, Python) languages (Midingoyi et al., 2020).
CyMLT implementation relies on the transformation of the abstract
syntax tree (AST) generated from the syntax analysis of the CyML code.
The AST is transformed to a self-contained representation of the source
code called Abstract Semantic Graph, which is independent of the source
language. CyMLT proposes a unique approach to transform the Abstract
Semantic Graph into readable source code in many different languages.
The generated code is independent from the transformation system and
can be run outside the Crop2ML framework. The transformation system
integrates model documentation based on the model specification into
generated code.

2.3. Crop2ML model package

In the context of large projects and collaborative work, it is useful to
define some requirements or standards to facilitate common exchange.
Crop2ML provides a logical, standardized but flexible support to facili-
tate model sharing between modeling platforms through the definition
of a directory structure (Fig. 8). This template includes a folder that
contains model description and associated algorithms, a repository of
source code for each language and modeling platforms. It also includes a
folder containing input data for a ModelComposite simulation, and a
folder containing the unit tests. To save time and avoid omission of
mandatory files or folders during package creation, we created a cook-
iecutter (Roy, 2017) template that automatically generates Crop2ML
package templates (https://crop2ml.readthedocs.io/en/latest/user/pac
kage.html). It increases model reusability by automatically generating
a project that follows shared guidelines. Any ModelUnit or Mod-
elComposite can be extracted as a stand-alone model from an existing
package, tested, reused, or integrated in other ModelComposite or
package. The notion of package-dependency increases the modularity of
Crop2ML and avoids model duplicity.

2.4. Crop2ML model lifecycle management

Crop2ML aims at collaborative model development that supports the
entire model lifecycle, including model creation, editing, verification,
validation, transformation, composition, and documentation. Therefore,
we developed tools and services to support all the steps of a Crop2ML
model lifecycle.

2.4.1. Model analysis
Crop2ML models conform to a specific Document Type Definition

(DTD) that describes Crop2ML concepts. Model analysis verifies if the
model specifications are a well-formed XML document validated by
Crop2ML DTD. The analysis of a ModelComposite consists of checking
model composability through port datatypes and units. Most XML edi-
tors can check the validity of an XML document against a DTD but the
Crop2ML software environment (see Section 3.2) ensures this.

2.4.2. Model validation
Crop2ML model components can be validated by executing unit

tests. It consists of using the parameter and variable values from the
model specification to produce unit tests in different languages. Unit
tests are generated in Jupyter notebook format, a document format for
publishing source codes and reproducible computational workflows that
could be executed in the appropriate kernel in Crop2ML software

Fig. 7. Graph of a ModelComposite. Three ModelUnits (M1 to M3) are con-
nected to form a first level of composition, which is linked to a fourth Mod-
elUnit (M4). Link1 is an InputLink, Link2 is an InternalLink, and Link3 is an
OutputLink. OutputLink is specified to clearly define the outputs of the Mod-
elComposite, which necessarily include all state variables. Each model
component has input ports In1, In2, …, and output ports Out1, Out2, …, where
1, 2, …, are internal (local) port numbers.

C.A. Midingoyi et al.

https://crop2ml.readthedocs.io/en/latest/user/package.html
https://crop2ml.readthedocs.io/en/latest/user/package.html

Environmental Modelling and Software 142 (2021) 105055

7

environment. This format is useful for code and documentation pub-
lishing and real-time collaboration when running on a remote server
(Kluyver et al., 2016). Unit tests may also be associated with a model
publication.

2.4.3. Model transformation
The success of Crop2ML model reuse through a white box approach

comes from its ability to generate model components that conform to
platform requirements. The transformation of a model component from
a platform to another one goes through Crop2ML model representation.
It relies on a system of transformation to and from Crop2ML and the
platforms.

For some PBM platforms, meta-information of model components are
described inside their implementation as documentation. For other
platforms meta-information are encoded in a textual or visual pro-
gramming language. CyMLT generates from Crop2ML model either
appropriate documentation or variables and parameters specifications
based on the artifacts of the target platforms. In addition, CyMLT gen-
erates model component algorithms in various languages. Given a model
component provided by a platform, meta-information are extracted by
identifying Crop2ML concepts inside the component to generate
Crop2ML model meta-information. Moreover, algorithms in CyML are
produced to obtain a complete Crop2ML model.

2.4.4. Model documentation
Sharing model knowledge requires detailed information on the

model. Crop2ML generates model documentation from the model
specification. From the relationships between the ModelUnits of a Mod-
elComposite, the diagram flow of the ModelComposite is generated. It may
constitute part of the model documentation and gives a first description
of the model component. This allows groups of modelers to understand
the model structure and evaluate the component.

3. Crop2ML software environment and tools

3.1. PyCrop2ML: a Python library for Crop2ML

Pycrop2ML is an open, modular, and extensible library developed in
Python that implements all the steps of Crop2ML model lifecycle. It is
designed to support the current Crop2ML model specifications but can
easily be adapted to support future versions. Pycrop2ML can be inte-
grated into other software projects as a plug-in. It allows:

• Verifying a Crop2ML model: This is ensured through a model parser
based on the Crop2ML DTD.

• Transforming a Crop2ML ModelUnit to source code: PyCrop2ML in-
tegrates CyMLT that generates model components that conform to
PBM platform requirements.

• Transforming a CyML source code to various languages: Regardless
of Crop2ML model specifications, any CyML source code can also be
transformed into the target languages. This source code can be used
as auxiliary functions for Crop2ML model development.

• Transforming source code to Jupyter notebook format: Each Mod-
elUnit source code generated can be translated as a cell of Jupyter
notebook, as well as, each unit test, allowing its execution in
Crop2ML JupyterLab environment.

• Transforming a Crop2ML ModelComposite: A Crop2ML Mod-
elComposite provided as a directed graph can be transformed to
source code as a sequential order of the submodels.

• Visualizing a ModelComposite: Pycrop2ML provides a function to
visualize a ModelComposite with the links between ModelUnits
(Fig. 9).

PyCrop2ML is written in Python and can be executed via a command-
line interface, inputting either a Crop2ML package or CyML source code,
as well as the target language or platform for transformation. Users with
no knowledge of the Python language can easily run PyCrop2ML via the
command line. The PyCrop2ML library incorporates three crop model
components as model examples that can be used to test the different
functionalities.

Fig. 8. Tree view of the structure of a Crop2ML model component package.

C.A. Midingoyi et al.

Environmental Modelling and Software 142 (2021) 105055

8

3.2. CropMStudio: A JupyterLab environment for Crop2ML model life
cycle management

Crop2ML model specifications can be created or edited using any
XML editor. However, to fulfil our objective of collaborative model
development accessible to modelers with no specific programming
skills, we developed a user-friendly interface based on the PyCrop2ML

package to manage the lifecycle of Crop2ML model components
(Fig. 10). Since Crop2ML models are transformed in different languages,
it is useful to execute the unit tests in a single environment. Our solution,
named CropMStudio, uses the JupyterLab environment (https://jupyte
rlab.readthedocs.io), an open-source web application that allows
working with code in different languages through different language
backends kernels. We installed Python, Java, C#, C++, R and Fortran

Fig. 9. Visualization of energy balance ModelComposite provided from SiriusQuality wheat model developed with the BioMA platform. Ellipses are ModelUnits and
arrows represent the link between two ModelUnits.

Fig. 10. Schematic representation of the Crop2ML framework showing Crop2ML model lifecycle from the creation of a package to model transformation.

C.A. Midingoyi et al.

https://jupyterlab.readthedocs.io
https://jupyterlab.readthedocs.io

Environmental Modelling and Software 142 (2021) 105055

9

kernels to execute ModelUnit tests. The current version of CropMStudio
can be accessed through a web browser and run locally like a desktop
application. Another motivation to use JupyterLab is to make publica-
tion results reproducible in a shared environment based on the capacity
to produce interactive and readable code documents (Kluyver et al.,
2016).

4. Interoperability between various simulation platforms

The interoperability between simulation platforms is based on two
transformation processes (import and export) via Crop2ML. The import
process consists of transforming any platform model component to
Crop2ML model. The export process consists of transforming Crop2ML
models to any platform. Detailed descriptions of the import/export
mechanisms in five widely used platforms with different architectures
(BioMA, DSSAT, Record, OpenAlea, SIMPLACE) are provided in Sup-
plementary data (Appendix C). Table 2 summarizes the interoperability
of model components between these platforms. Platforms are based on
various programming languages, which requires the definition of
transformation rules between CyML and various languages including C#
(BioMA), Java (Simplace), C++ (Record), Python (OpenAlea) and
Fortran (DSSAT) in both directions. We identified the levels of granu-
larity of modeling processes that correspond to Crop2ML concepts such
as ModelUnit and ModelComposite in each platform. We also considered
how documentation or model specifications are described in these
platforms.

The export process, from Crop2ML to platforms, is automatically
done in BioMA, OpenAlea and Simplace. The modularity principle in
BioMA matches Crop2ML, which allows associating simple and com-
posite BioMA strategies with Crop2ML ModelUnit and ModelComposite,
respectively. Moreover, all the Crop2ML elements are well translated
into the VarInfo type attributes (Donatelli and Rizzoli, 2008), and
Crop2ML model algorithms are transformed to a method of a strategy
class that takes generated domain classes as inputs. OpenAlea relies on
two families of approaches: component-based architecture and scientific
workflows. Thus, Crop2ML exports ModelUnits as OpenAlea components
and ModelComposite as OpenAlea workflows. ModelComposite can thus
be visualized and edited using VisuAlea, the visual programming envi-
ronment in OpenAlea. Widgets of ModelUnit are automatically generated
based on the type of inputs that is mapped to an OpenAlea interface.
Simplace is based on the concept of software units, called SimCompo-
nents as the smallest building blocks that map with ModelUnits. Mod-
elComposite are converted into a combination of SimComponents
(SimComponentGroup). Variables and parameters descriptions are
automatically included in the SimComponents descriptive part.

In DSSAT and Record the export process is many automatic but some
aspects need to be done manually. In DSSAT, Crop2ML transformation
system generates a submodule in Fortran 90 for each ModelUnit. It also
generates a sequence of submodules calls for composite models. One
issue that makes this transformation not completely automatic is that
Crop2ML does not manage the handling of input and output files.
Therefore, it requires to manually add the input and output methods into

the generated submodules. The concepts of atomic and coupled models
in Record are mapped with those of Crop2ML. Thus, atomic model
classes are generated in C++ to correspond to ModelUnits. However, the
configuration and simulation file (VPZ) representing the ModelComposite
is manually completed with further information such as the description
of simulation result files.

The import process (from simulation platforms to Crop2ML) is only
partially automatic. Platform tools produce automatically the meta-
information in Crop2ML format but algorithms are manually con-
verted into the CyML language that leads to a semi-automatic trans-
formation. A complete automatic transformation would require the
implementation of source-to-source transformation from platforms’
language into CyML. In BioMA, VarInfo attributes are extracted from
BioMA strategies to produce Crop2ML model meta-information. The
process of automatically retrieving the estimate method to produce
model Algorithm in CyML is not implemented yet. The description of
component in OpenAlea is very generic compared to Crop2ML concepts.
Although OpenAlea is mainly built for Functional Structural Plant
Modeling (FSPM) application, there is no plant domain specific
description associated with inputs and outputs such as units, categories
of variables and parameters. Thus, the generation of model description
in Crop2ML is partial. It requires further description of components that
can be provided in documentation or by extending OpenAlea concepts.
Like BioMA, the SimComponent specific descriptors in Simplace allows
generating ModelUnits meta-information. The process method (algo-
rithm) is currently translated manually in CyML. Links between the
different SimComponents (Unit) stored in the SimComponentGroup
(Composition) are automatically exported to the Crop2ML structure.
However, there is a loss of information since when a ModelUnit is
activated or ignored it is not transferred to the Crop2ML structure. In
DSSAT, unlike in the other platforms, the description of physiological
processes is provided as documentation in submodules and it is not fully
complete with respect to Crop2ML specifications. Inputs and outputs
variables and their descriptions, units can be clearly identified, based on
systematic platform guidelines. DSSAT submodules contain specific
platform variables such as control variables that need to be removed to
produce CyML model algorithms. In Record, as in DSSAT, there is no
explicit specification of a model. The documentation of a model within
its associated C++ class is used to generate partial ModelUnit meta-
information. The parsing of the VPZ file, that contains the structure of
composite models in Record, is used to generate a ModelComposite.
However, it is not possible to represent retroaction loops in Crop2ML as
it is done in Record with coupled models.

In order to illustrate Crop2ML concepts and transformation results, a
phenology and an energy balance models are used. Phenology, the
timing of crop development is the heart of most crop growth models and
is an essential component of most crop modeling platforms. The energy
balance model involves interconnected components that allows esti-
mating canopy temperature, evapotranspiration, and heat transfer be-
tween the canopy and the air. These processes are implemented as
BioMA standalone components (Manceau and Martre, 2018) of the
wheat PBM SiriusQuality (He et al., 2012; Martre et al., 2006). The two

Table 2
Import and Export processes between Crop2ML and PBM platforms. A, automatic; P, partially automatic; M, manual.

PBM
Platforms

From Crop2ML to PBM platforms From PBM platforms to Crop2ML

A P M To be completed A P M To be automatized

BioMA Source transformation from C# to CyML
DSSAT Integration of I/O Source transformation from Fortran to CyML

Remove I/O
More variable description

Record Complete VPZ file Source transformation from C++ to CyML
More variable description

OpenAlea Source transformation from Python to CyML
More variable description

SIMPLACE Source transformation from SIMLPACE Java to CyML

C.A. Midingoyi et al.

EnvironmentalModellingandSoftware142(2021)105055

10

Table 3
Declaration of the inputs and Algorithm of a Crop2ML ModelUnit of the Penman-Monteith evapotranspiration model and the equivalent source code generated by CyMLT for Record, BioMA, and DSSAT. The declaration of
a single variable is given as an example.

Framework or
platform/language

Variable declaration Algorithm

Crop2ML/CyML

Record/C++

BioMA/C#

DSSAT/Fortran

(continued on next page)

C.A
. M

idingoyi et al.

Environmental Modelling and Software 142 (2021) 105055

11

components were converted into Crop2ML packages, and then auto-
matically translated into different languages and model components
that conform to different PBM platforms. These packages are presented
in Appendixes A and B. In Table 3 we illustrate how to represent a
parameter and an Algorithm in a Crop2ML ModelUnit and its translation
with CyMLT in Record, BioMA, and DSSAT. The implementations of the
model differ between the platforms. For instance, DSSAT defines a
subroutine with all the variables as argument, Record defines a class
method (compute) with the variables as attributes of the class and uses
specific operator “()” to manage temporal variables, while BioMA de-
fines a class method (CalculateModel) that takes as argument data
structures implementing each category of variables (state, rate, auxil-
iary, exogenous). The aim of model transformation is to provide to the
platforms alternative model components that could easily replace their
corresponding components to analyze the effects of new hypotheses into
their modeling solutions.

The sequence of ModelUnits that compose a Crop2ML Mod-
elComposite is formally modeled as a directed acyclic graph. This means
that there is no feedback loop or retroaction at a given time step, instead
they are usually represented by a cycle in the ModelComposite. Alter-
natively, a state variable can be defined explicitly as two variables with
respect to the current and the previous time. Thus, a composite model
may take as input a state variable at previous time and a state variable at
current time as output, making implicitly a loop with respect to time
advance. Another way to represent feedback inside a time step is to
associate an explicit Algorithm to the ModelComposite that defines how
to run it. However, this feature is not supported by two simulation
platforms (OpenAlea and RECORD).

5. Discussion

The Crop2ML framework enables a user to exchange and reuse bio-
physical components between various PBM platforms through shared
declarative specifications. The use of a minimal language to describe the
model Algorithm once and the transformation system facilitates reuse of
models’ components. ModelUnits and ModelComposite can be accessed
and composed following a white box approach. Therefore, the Crop2ML
approach greatly increases the ability of modelers to share their algo-
rithms. The protocol will allow modelers to borrow components easily
and will facilitate their intercomparison and improvement in different
PBM platforms.

5.1. How does Crop2ML address model reuse compared to other
initiatives?

Some initiatives addressed model reuse by providing multi-scale and
multi-language integrative frameworks such as Crops in silico (Mar-
shall-Colon et al., 2017) the Open Modeling Foundation OpenMI (Bua-
hin and Horsburgh, 2018). These frameworks can compose and simulate
heterogeneous models provided by different frameworks through a
communication interface. The model components are often wrapped
and are represented as black-box components. All state variables are not
always exposed as model outputs, which may limit their integration in
an existing modeling solution. Therefore, these frameworks enhance
model reuse in their own environment but they do not address reus-
ability with other PBM platforms. Many existing PBM platforms do not
support the coupling of models written in multiple languages (e.g.
BioMA, APSIM next generation).

Donatelli and Rizzoli (2008) proposed a design pattern for
platform-independent model components to enhance modularity and to
facilitate model reuse in several PBM platforms via simple wrappers.
However, this approach fixes the structure of the components. The lack
of specification or meta-information makes the reuse of model compo-
nents between platforms difficult. Even in component-based systems,
explicit information about the component itself and its inputs and out-
puts (types, units and boundary conditions) are required to ensure a Ta

bl
e

3
(c

on
tin

ue
d)

Fr
am

ew
or

k
or

pl

at
fo

rm
/l

an
gu

ag
e

Va
ri

ab
le

 d
ec

la
ra

tio
n

A
lg

or
ith

m

C.A. Midingoyi et al.

Environmental Modelling and Software 142 (2021) 105055

12

syntactic composability and to meet the specificities of the platforms.
Moreover, the knowledge of the structure underlying the source code of
a component is also required to systematically extract model informa-
tion (variables and algorithms) for their transformation and integration
in different platforms. We thus argue that model component reuse is
improved if it is supported by model specification. Crop2ML defines an
abstract representation of model design shared by PBM platforms
through some shared concepts enriching or extending those proposed by
Athanasiadis et al. (2011) with other attributes and a formal and shared
description of unit tests. We included unit tests in Crop2ML specifica-
tions to ensure model transformation validation and some imperative
constructs for model dynamics.

Several initiatives have used declarative modeling to describe model
specifications and address model reuse issues. The approach proposed
by Villa et al. (2006) is similar to ours but it is limited to models where
the dynamics of the modeled processes is represented by simple math-
ematical expressions without control structures, which does not match
crop modeling context. Hucka et al. (2003) used MathML (Ausbrooks
et al., 2003) to express interactions between variables through mathe-
matical formalisms well defined in the systems biology community. This
approach is similar to that of Rizzoli et al. (2008) and is useful when
processes are governed by differential equations. However, in the PBM
context, simulation platforms use algorithms to describe processes
rather than mathematical formalisms with differential equations.
Moreover, in PBM, variables that drive the system are temporal series
that change the behavior of the system at discrete time. This does not
require finding a general solution of recurrent equations used in crop
models but rather estimating at each time step the state variables of the
system.

Automated model transformation is a core aspect of model-driven
development (Cuadrado and Molina, 2007). It uses Model-Driven En-
gineering (MDE) principles based on metamodeling concepts. Crop2ML
is in line with MDE. It defines structured concepts representing its
metamodel, with which all Crop2ML models are conform, and a model
transformation to generate PBM platforms’ components. Model Driven
Architecture (Brown, 2004) is a framework of MDE that provides several
standard languages (e.g., ATL, QVT, ETL, Henshin, VIATRA, and Strat-
ego) for model transformation (Jouault and Kurtev, 2006; Kurtev et al.,
2006). Crop2ML is based on a transformation process through a set of
refinement of models and code with some extensible rules defined as
templates in Python. Most MDE approaches allow model to model or
model to code transformation where a model represents the specifica-
tion in our case. However, the use of transformation language standards
was inappropriate in our context to unify transformation process

towards many languages with different paradigms (Bucchiarone et al.,
2020). Crop2ML produces code in a target language but also adapts the
code to fit with PBM platform specificities. To our knowledge, model
transformation languages in MDE do not support code generation in
multiple languages with extended features in the same environment.

5.2. Connecting Crop2ML to PBM platforms

Given that Crop2ML datatypes do not handle complex data struc-
tures other than arrays and lists, some compromises or transformation
should be made to the import-export process on the platform side with
respect to handling other data structures used in platforms. As an
example, BioMA provides the Dictionary data type that is a set of keys
associated with values to represent either input or output variables. This
data type is not handled by Crop2ML, and by most PBM platforms. As an
alternative, Dictionaries can be expressed in Crop2ML as two list data-
type variables that represent keys and values of the dictionary.

The simulation Algorithm defining the feedback loop is explicitly
described as control flow in some platforms (e.g. BioMA) but this is not
the case in other platforms (e.g. Record, where the VPZ file representing
the simulation model file is handled by the simulation engine VLE).
Different simulation engines are based on different models of compu-
tation used by the platforms such as dataflow (e.g. OpenAlea), DEVS
simulation (e.g. Record), control flow (e.g. BioMA, DSSAT, and Sim-
place). These models of computation are used to coordinate the execu-
tion of the model. The current version of Crop2ML framework does not
take into account the specificities of simulation engines and addresses
components which can be sequentially composed.

The Crop2ML transformation system is designed to support the
specificities of the target PBM platforms. However, the semantic of a
Crop2ML model is based on shared concepts to describe at a high level a
biophysical process by a discrete-time model. There is no semantic
reason to support the description of each instance of the concepts. For
example, since we have not defined a convention to name process var-
iables, the integration of a Crop2ML component into a PBM modeling
solution requires adapting the name of its variables. In the future, we
could annotate Crop2ML models to add semantic information to make
semantic links between any Crop2ML model variables or parameters
with those of model components of PBM platforms. This will also allow a
semantic composability of Crop2ML models instead of a syntactic
composability that analyzes whether the pair of variables to be linked
are compatible. However, this would require the crop modeling com-
munity to agree on shared semantics and ontologies of crop model
variables and parameter representations. Until now this has been a real

Fig. 11. Schema illustrating CyML transformation extensibility to support bidirectional source transformation.

C.A. Midingoyi et al.

Environmental Modelling and Software 142 (2021) 105055

13

challenge as the crop modeling community has not be too keen on
adapting standards (White et al., 2013). In addition, to facilitate the
exchange and reuse of model components, semantic descriptions of
model variables and parameters would facilitate the linking of crop
models to plant phenomics data (Neveu et al., 2018).

We were able to achieve fully-automatic export of Crop2ML model to
several PBM platforms. The import process into Crop2ML is more mixed
regarding the overall differences between PBM platforms. It is much
easier to start with concepts shared and reused by PBM platforms than to
start from divergent views of model representations to achieve a
particular result. Some PBM platforms need to extend their concepts for
model specification or to provide a rich model documentation in order to
produce complete Crop2ML model specifications. This reveals the need
of a good level of abstraction to represent a model in various PBM
platforms. The higher the level of abstraction, the further the description
moves away from the platforms and the less easy it is to understand. On
the other hand, if the level of abstraction is too low, it is not always
possible to represent all features of the models present in the platforms.

5.3. Future developments

A common model repository infrastructure is essential for efficient
model exchange (Glont et al., 2018; Lloyd et al., 2008). Currently,
Crop2ML model components are stored in Github repositories. We aim
to provide a Crop2ML model repository to store models in a shared
format to make them easily accessible and reusable by the plant and crop
modeling community. This repository should aim at hosting alternative
biophysical processes. It will help modelers to operate on multiple
model components, compare processes, or evaluate the impact of the
integration of alternative models of biophysical processes in crop
models. The success of the Crop2ML repository requires that the com-
munity gives access to their models by feeding the repository, which will
be curated by the AMEI consortium to avoid error propagation.

Crop2ML has some limitations, which can be addressed in the next
versions, either by extending the model specifications with shared
concepts or by adapting the target PBM platforms to Crop2ML specifi-
cation and language. It is an ongoing, long-term activity, to satisfy
platform requirements and facilitate Crop2ML model life-cycle man-
agement to make Crop2ML a standard for the plant and crop modeling
community.

The transformation of a model component of a PBM platform into a
Crop2ML package requires rewriting the model algorithms in the CyML
language. This limit is currently being addressed by extending the CyML
transpiler to a bidirectional transpiler. Thereby, PBM platforms could
provide model algorithms in the language they use and the extended
CyMLT will transform them in CyML and target languages used by other
PBM platforms (Fig. 11). This is a two-step process. First, the model
algorithms in the language of the source PBM platform will be parsed
and an AST will be generated. Second, the rules for transforming this
AST into the CyML AST will be applied. The second step will reuse the
CyML transformation tool developed by Midingoyi et al. (2020) to
produce model algorithms compatible with other languages and PBM
platforms.

Other future developments of Crop2ML include:

● Enhance Crop2ML model repositories with model annotation to link
publications to models for reproducibility;

● Add unit checks and conversions in Crop2ML to improve model
validity;

● Define a methodology to link Crop2ML with plant structure repre-
sentation for multiscale viewing and analysis;

● Define and implement an ontology of crop model variable and pa-
rameters to allow better Crop2ML model interpretation and improve
transformation between PBM platforms and the integration of model
component in complex modeling solutions.

● Extend Crop2MLab prototype by including bidirectional trans-
formation and the creation of a web interface on a remote server in
order to give users the possibility to handle Crop2ML model lifecycle
without local installation.

6. Conclusion

At the interface between modeling and software engineering, this
paper addresses plant and crop model component reuse by proposing the
Crop2ML framework. Despite all the differences between PBM plat-
forms, some common features can be identified that enabled model
representation regardless of the platforms’ specificities. Crop2ML pro-
vides structured concepts to support the definition of ModelUnit and
ModelComposite and allows their transformation to make them
compatible with PBM platforms at implementation level. Therefore,
Crop2ML defines a new unified crop model representation that considers
the abstraction of PBM component features in several PBM platforms.
Moreover, Crop2ML uses a domain specific language to describe bio-
physical processes and auxiliary functions to represent model dynamics
based on a subset of the Cython language, which can then be automat-
ically transformed into different target languages. Crop2ML proposes an
open framework to manage all the steps of model lifecycle.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

C.M. was supported through a PhD scholarship from the French
National Research Agency under the Investments for the Future Pro-
gram, referred as ANR-16-CONV-0004 and INRAE Divisions Agro-
EcoSystem and NUM. P.M. acknowledges the support of INRAE Division
AgroEcoSystem through the Modélisation du fonctionnemnet des Peuple-
ments Cultivés (MFPC) network. The authors thank Dr. Loic Manceau
(INRA, UMR LEPSE) for discussions and its help to translate the wheat
phenology BioMA component of SiriusQuality in Crop2ML.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.envsoft.2021.105055.

References

Andrei, O., Kirchner, H., 2009. A port graph calculus for autonomic computing and
invariant verification. TERMGRAPH 2009, 5th international workshop on computing
with terms and graphs, satellite event of ETAPS 2009. https://hal.inria.fr/inria
-00418560.

Asseng, S., Ewert, F., Rosenzweig, C., Jones, J.W., Hatfield, J.L., Ruane, A.C., Boote, K.J.,
Thorburn, P.J., Rötter, R.P., Cammarano, D., Brisson, N., Basso, B., Martre, P.,
Aggarwal, P.K., Angulo, C., Bertuzzi, P., Biernath, C., Challinor, A.J., Doltra, J.,
Wolf, J., 2013. Uncertainty in simulating wheat yields under climate change. Nat.
Clim. Change 3 (9), 827–832. https://doi.org/10.1038/nclimate1916.

Athanasiadis, I.N., Rizzoli, A.E., Donatelli, M., Carlini, L., 2011. Enriching environmental
software model interfaces through ontology-based tools. Int. J. Appl. Syst. Stud. 4
(1–2), 94–105. https://doi.org/10.1504/IJASS.2011.042205.

Athanasiadis, I.N., Villa, F., 2013. A roadmap to domain specific programming languages
for environmental modeling: key requirements and concepts. DSM 2013 - Proc. 2013
ACM Workshop on Domain-Specific Model. 27–32. https://doi.org/10.1145/
2541928.2541934.

Ausbrooks, R., Buswell, S., Carlisle, D., Dalmas, S., Devitt, S., Diaz, A., Frou-mentin, M.,
Hunter, R., Ion, P., Kohlhase, M., Miner, R., Poppelier, N., Smith, B., Soiffer, N.,
Sutor, R., Watt, S., 2003. Mathematical Markup Language (MathML) version 2 . 0 (
second edition). http://www.w3.org/TR/MathML2/.

Basso, B., Cammarano, D., Carfagna, E., 2013. Review of crop yield forecasting methods
and early warning systems. The first meeting of the scientific advisory committee of
the global strategy to improve agricultural and rural statistics, pp. 1–56. https://doi.
org/10.1017/CBO9781107415324.004.

C.A. Midingoyi et al.

https://doi.org/10.1016/j.envsoft.2021.105055
https://doi.org/10.1016/j.envsoft.2021.105055
https://hal.inria.fr/inria-00418560
https://hal.inria.fr/inria-00418560
https://doi.org/10.1038/nclimate1916
https://doi.org/10.1504/IJASS.2011.042205
https://doi.org/10.1145/2541928.2541934
https://doi.org/10.1145/2541928.2541934
http://www.w3.org/TR/MathML2/
https://doi.org/10.1017/CBO9781107415324.004
https://doi.org/10.1017/CBO9781107415324.004

Environmental Modelling and Software 142 (2021) 105055

14

Behnel, S., Bradshaw, R., Citro, C., Dalcin, L., Seljebotn, D.S., Smith, K., 2011. Cython:
the best of both worlds. Comput. Sci. Eng. 13 (2), 31–39. https://doi.org/10.1109/
MCSE.2010.118.

Bergez, J.E., Chabrier, P., Gary, C., Jeuffroy, M.H., Makowski, D., Quesnel, G., Ramat, E.,
Raynal, H., Rousse, N., Wallach, D., Debaeke, P., Durand, P., Duru, M., Dury, J.,
Faverdin, P., Gascuel-Odoux, C., Garcia, F., 2013. An open platform to build,
evaluate and simulate integrated models of farming and agro-ecosystems. Environ.
Model. Software 39, 39–49. https://doi.org/10.1016/j.envsoft.2012.03.011.

Bray, T., Paoli, J., Sperberg-McQueen, C., Maler, E., Yergeau, F., 2008. Extensible
Markup Language (XML) 1.0, fifth ed. http://www.w3.org/TR/REC-xml/.

Brisson, N., Launay, M., Mary, B., Beaudoin, N., 2010. Conceptual Basis, Formalisations
and Parameterization of the Stics Crop Model. Editons Quae. http://www.quae.com
/en/r1291-conceptual-basis-formalisations-and-parameterization-of-the-stics-cro
p-model.html.

Brown, A.W., 2004. Model driven architecture: principles and practice. Software Syst.
Model 314–327. https://doi.org/10.1007/s10270-004-0061-2.

Buahin, C.A., Horsburgh, J.S., 2018. Advancing the open modeling interface (OpenMI)
for integrated water resources modeling. Environ. Model. Software 108 (April),
133–153. https://doi.org/10.1016/j.envsoft.2018.07.015.

Bucchiarone, A., Cabot, J., Paige, R.F., Pierantonio, A., 2020. Grand challenges in model-
driven engineering: an analysis of the state of the research. Software Syst. Model 19
(1), 5–13. https://doi.org/10.1007/s10270-019-00773-6.

Cohen-Boulakia, S., Belhajjame, K., Collin, O., Chopard, J., Froidevaux, C., Gaignard, A.,
Hinsen, K., Larmande, P., Bras, Y. Le, Lemoine, F., Mareuil, F., Ménager, H.,
Pradal, C., Blanchet, C., 2017. Scientific workflows for computational
reproducibility in the life sciences: status, challenges and opportunities. Future
Generat. Comput. Syst. 75, 284–298. https://doi.org/10.1016/j.future.2017.01.012.

Cuadrado, J.S., Molina, J.G., 2007. Building domain-specific languages for model-driven
development. IEEE Software 24 (5), 48–55. https://doi.org/10.1109/MS.2007.135.

Cuellar, A.A., Lloyd, C.M., Nielsen, P.F., Bullivant, D.P., Nickerson, D.P., Hunter, P.J.,
2003. An overview of CellML 1.1, a biological model description language.
Simulation 79 (12), 740–747. https://doi.org/10.1177/0037549703040939.

Donatelli, M., Bregaglio, S., Confalonieri, R., De Mascellis, R., Acutis, M., 2014. A generic
framework for evaluating hybrid models by reuse and composition - a case study on
soil temperature simulation. Environ. Model. Software 62, 478–486. https://doi.org/
10.1016/j.envsoft.2014.04.011.

Donatelli, M., Rizzoli, A.E., 2008. A design for framework-independent model
components of biophysical systems. 4th biennial meeting of international congress
on environmental modelling and software: integrating sciences and information
technology for environmental assessment and decision making. IEMSs 2008 2 (July),
727–734. http://www.scopus.com/inward/record.url?eid=2-s2.0-7034956362
5&partnerID=40&md5=251da64e55d9bed564ab136bf25897d7.

Donatelli, M., Russell, G., Rizzoli, A.E., Acutis, M., Adam, M., Athanasiadis, I.N.,
Balderacchi, M., Bechini, L., Belhouchette, H., Bellocchi, G., Bergez, J.-E., Botta, M.,
Braudeau, E., Bregaglio, S., Carlini, L., Casellas, E., Celette, F., Ceotto, E., Charron-
Moirez, M.H., Zerourou, A., 2010. A component-based framework for simulating
agricultural production and externalities. In: Environmental and Agricultural
Modeling. Springer Netherlands, pp. 63–108. https://doi.org/10.1007/978-90-481-
3619-3_4.

Fernique, P., Pradal, C., 2018. Auto WIG: automatic generation of python bindings for C
++ libraries. PeerJ Comput. Sci. (4), e149. https://doi.org/10.7717/peerj-cs.149,
2018.

Gaiser, T., Perkons, U., Küpper, P.M., Kautz, T., Uteau-Puschmann, D., Ewert, F.,
Enders, A., Krauss, G., 2013. Modeling biopore effects on root growth and biomass
production on soils with pronounced sub-soil clay accumulation. Ecol. Model. 256,
6–15. https://doi.org/10.1016/j.ecolmodel.2013.02.016.

Glont, M., Nguyen, T.V.N., Graesslin, M., Hälke, R., Ali, R., Schramm, J., Wimalaratne, S.
M., Kothamachu, V.B., Rodriguez, N., Swat, M.J., Eils, J., Eils, R., Laibe, C., Malik-
Sheriff, R.S., Chelliah, V., Le Novère, N., Hermjakob, H., 2018. BioModels:
expanding horizons to include more modelling approaches and formats. Nucleic
Acids Res. 46 (D1), D1248–D1253. https://doi.org/10.1093/nar/gkx1023.

He, J., Le Gouis, J., Stratonovitch, P., Allard, V., Gaju, O., Heumez, E., Orford, S.,
Griffiths, S., Snape, J.W., Foulkes, M.J., Semenov, M.A., Martre, P., 2012. Simulation
of environmental and genotypic variations of final leaf number and anthesis date for
wheat. Eur. J. Agron. 42, 22–33. https://doi.org/10.1016/j.eja.2011.11.002.

Hinsen, K., 2016. Scientific notations for the digital era. Phys. Soc. 1–27.
Holzworth, D.P., Huth, N.I., Fainges, J., Brown, H., Zurcher, E., Cichota, R., Verrall, S.,

Herrmann, N.I., Zheng, B., Snow, V., 2018. APSIM Next Generation: overcoming
challenges in modernising a farming systems model. Environ. Model. Software 103,
43–51. https://doi.org/10.1016/j.envsoft.2018.02.002.

Holzworth, D.P., Snow, V., Janssen, S., Athanasiadis, I.N., Donatelli, M.,
Hoogenboom, G., White, J.W., Thorburn, P., 2014. Agricultural production systems
modelling and software: current status and future prospects. Environ. Model.
Software 72, 276–286. https://doi.org/10.1016/j.envsoft.2014.12.013.

Hoogenboom, G., Porter, C.H., Boote, K.J., Shelia, V., Wilkens, P.W., Singh, U., White, J.
W., Asseng, S., Lizaso, J.I., Moreno, L.P., Pavan, W., Ogoshi, R., Hunt, L.A., Tsuji, G.
Y., Jones, J.W., 2019. The DSSAT crop modeling ecosystem. In: Boote, K.J. (Ed.),
Advances in Crop Modeling for a Sustainable Agriculture. Burleigh Dodds Science
Publishing, Cambridge, United Kingdom, pp. 173–216. https://doi.org/10.19103/
AS.2019.0061.10.

Hucka, M., Bergmann, F., Hoops, S., Keating, S., Sahle, S., Schaff, J., Smith, L.,
Wilkinson, D., 2010. The Systems Biology Markup Language (SBML): Language
Specification for Level 3 Version 1 Core. the WorldWide Web. Available via.
http://sbml.org/Documents/Specifications.

Hucka, M., Finney, A., Sauro, H.M., Bolouri, H., Doyle, J.C., Kitano, H., Arkin, A.P.,
Bornstein, B.J., Bray, D., Cornish-Bowden, A., Cuellar, A.A., Dronov, S., Gilles, E.D.,
Ginkel, M., Gor, V., Goryanin, I.I., Hedley, W.J., Hodgman, T.C., Hofmeyr, J.H.,
Wang, J., 2003. The systems biology markup language (SBML): a medium for
representation and exchange of biochemical network models. Bioinformatics 19 (4),
524–531. https://doi.org/10.1093/bioinformatics/btg015.

Jones, J.W., Antle, J.M., Basso, B., Boote, K.J., Conant, R.T., Foster, I., Godfray, H.C.J.,
Herrero, M., Howitt, R.E., Janssen, S., Keating, B.A., Munoz-Carpena, R., Porter, C.
H., Rosenzweig, C., Wheeler, T.R., 2017. Brief history of agricultural systems
modeling. Agric. Syst. 155 (June), 240–254. https://doi.org/10.1016/j.
agsy.2016.05.014.

Jones, J.W., Hoogenboom, G., Porter, C.H., Boote, K.J., Batchelor, W.D., Hunt, L.A.,
Wilkens, P.W., Singh, U., Gijsman, A.J., Ritchie, J.T., 2003. The DSSAT cropping
system model. Eur. J. Agron. 18 https://doi.org/10.1016/S1161-0301(02)00107-7.
Issues 3–4).

Jones, J.W., Keating, B.A., Porter, C.H., 2001. Approaches to modular model
development. Agric. Syst. 70 (2–3), 421–443. https://doi.org/10.1016/S0308-521X
(01)00054-3.

Jouault, F., Kurtev, I., 2006. Transforming models with ATL. In: Satellite Events at the
MoDELS 2005 Conference, vol. 3844. Issue OCTOBER, pp. 128–138. https://doi.org/
10.1007/11663430_14.

Kluyver, T., Ragan-kelley, B., Pérez, F., Granger, B., Bussonnier, M., Frederic, J.,
Kelley, K., Hamrick, J., Grout, J., Corlay, S., Ivanov, P., Avila, D., Abdalla, S.,
Willing, C., 2016. Jupyter Notebooks—A Publishing Format for Reproducible
Computational Workflows. Positioning and Power in. Academic Publishing: Players,
Agents and Agendas, pp. 87–90. https://doi.org/10.3233/978-1-61499-649-1-87.

Kurtev, I., Bézivin, J., Jouault, F., Valduriez, P., 2006. Model-based DSL Frameworks.
Companion to the 21st ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages, and Applications. OOPSLA ’06, p. 602. https://doi.org/
10.1145/1176617.1176632, 2006.

Lamprecht, A.-L., Garcia, L., Kuzak, M., Martinez, C., Arcila, R., Martin Del Pico, E.,
Dominguez Del Angel, V., van de Sandt, S., Ison, J., Martinez, P.A., McQuilton, P.,
Valencia, A., Harrow, J., Psomopoulos, F., Gelpi, J.L., Chue Hong, N., Goble, C.,
Capella-Gutierrez, S., 2019. Towards FAIR principles for research software. Data Sci.
3 (1), 37–59. https://doi.org/10.3233/ds-190026.

Le Franc, Y., Davison, A.P., Gleeson, P., Imam, F.T., Kriener, B., Larson, S.D., Ray, S.,
Schwabe, L., Hill, S., De Schutter, E., 2012. Computational Neuroscience Ontology: a
new tool to provide semantic meaning to your models. BMC Neurosci. 13 (Suppl. 1),
P149. https://doi.org/10.1186/1471-2202-13-S1-P149.

Lloyd, C.M., Lawson, J.R., Hunter, P.J., Nielsen, P.F., 2008. The CellML model
repository. Bioinformatics 24 (18), 2122–2123. https://doi.org/10.1093/
bioinformatics/btn390.

Manceau, L., Martre, P., 2018. SiriusQuality-BioMa-phenology-component. https://doi.
org/10.5281/ZENODO.2478791.

Marshall-Colon, A., Long, S.P., Allen, D.K., Allen, G., Beard, D.A., Benes, B., Von
Caemmerer, S., Christensen, A.J., Cox, D.J., Hart, J.C., Hirst, P.M., Kannan, K.,
Katz, D.S., Lynch, J.P., Millar, A.J., Panneerselvam, B., Price, N.D., Prusinkiewicz, P.,
Raila, D., Zhu, X.G., 2017. Crops in silico: generating virtual crops using an
integrative and multi-scale modeling platform. Front. Plant Sci. 8, 1–7. https://doi.
org/10.3389/fpls.2017.00786.

Martre, P., Jamieson, P.D., Semenov, M.A., Zyskowski, R.F., Porter, J.R., Triboi, E., 2006.
Modelling protein content and composition in relation to crop nitrogen dynamics for
wheat. Eur. J. Agron. 25 (2), 138–154. https://doi.org/10.1016/j.eja.2006.04.007.

Midingoyi, C.A., Pradal, C., Athanasiadis, I.N., Donatelli, M., Enders, A., Fumagalli, D.,
Garcia, F., Holzworth, D.P., Hoogenboom, G., Porter, C., Raynal, H., Thorburn, P.,
Martre, P., 2020. Reuse of process-based models: automatic transformation into
many programming languages and simulation platforms. In: Silico Plants. https://
doi.org/10.1093/insilicoplants/diaa007.

Muetzelfeldt, R., Massheder, J., 2003. The Simile visual modelling environment. Eur. J.
Agron. 18 (3–4), 345–358. https://doi.org/10.1016/S1161-0301(02)00112-0.

Muller, B., Martre, P., 2019. Plant and crop simulation models: powerful tools to link
physiology, genetics, and phenomics. J. Exp. Bot. 70 (9), 2339–2344. https://doi.
org/10.1093/jxb/erz175.

Neveu, P., Tireau, A., Hilgert, N., Nègre, V., Mineau-Cesari, J., Brichet, N., Chapuis, R.,
Sanchez, I., Pommier, C., Charnomordic, B., Tardieu, F., Cabrera-Bosquet, L., 2018.
Dealing with multi-source and multi-scale information in plant phenomics: the
ontology-driven Phenotyping Hybrid Information System. New Phytol. 221 (1),
588–601. https://doi.org/10.1111/nph.15385.

Pradal, C., Dufour-Kowalski, S., Boudon, F., Fournier, C., Godin, C., 2008. OpenAlea: a
visual programming and component-based software platform for plant modelling.
Funct. Plant Biol. 35 (10), 751–760. https://doi.org/10.1071/FP08084.

Pradal, C., Fournier, C., Valduriez, P., Cohen-Boulakia, S., 2015. OpenAlea: scientific
workflows combining data analysis and simulation. In: Proceedings of the 27th
International Conference on Scientific and Statistical Database Management (SSDBM’
15). Association for Computing Machinery, New York, USA, pp. 1–6. https://doi.
org/10.1145/2791347.2791365.

C.A. Midingoyi et al.

https://doi.org/10.1109/MCSE.2010.118
https://doi.org/10.1109/MCSE.2010.118
https://doi.org/10.1016/j.envsoft.2012.03.011
http://www.w3.org/TR/REC-xml/
http://www.quae.com/en/r1291-conceptual-basis-formalisations-and-parameterization-of-the-stics-crop-model.html
http://www.quae.com/en/r1291-conceptual-basis-formalisations-and-parameterization-of-the-stics-crop-model.html
http://www.quae.com/en/r1291-conceptual-basis-formalisations-and-parameterization-of-the-stics-crop-model.html
https://doi.org/10.1007/s10270-004-0061-2
https://doi.org/10.1016/j.envsoft.2018.07.015
https://doi.org/10.1007/s10270-019-00773-6
https://doi.org/10.1016/j.future.2017.01.012
https://doi.org/10.1109/MS.2007.135
https://doi.org/10.1177/0037549703040939
https://doi.org/10.1016/j.envsoft.2014.04.011
https://doi.org/10.1016/j.envsoft.2014.04.011
http://www.scopus.com/inward/record.url?eid=2-s2.0-70349563625&partnerID=40&md5=251da64e55d9bed564ab136bf25897d7
http://www.scopus.com/inward/record.url?eid=2-s2.0-70349563625&partnerID=40&md5=251da64e55d9bed564ab136bf25897d7
https://doi.org/10.1007/978-90-481-3619-3_4
https://doi.org/10.1007/978-90-481-3619-3_4
https://doi.org/10.7717/peerj-cs.149
https://doi.org/10.1016/j.ecolmodel.2013.02.016
https://doi.org/10.1093/nar/gkx1023
https://doi.org/10.1016/j.eja.2011.11.002
http://refhub.elsevier.com/S1364-8152(21)00098-0/sref24
https://doi.org/10.1016/j.envsoft.2018.02.002
https://doi.org/10.1016/j.envsoft.2014.12.013
https://doi.org/10.19103/AS.2019.0061.10
https://doi.org/10.19103/AS.2019.0061.10
http://sbml.org/Documents/Specifications
https://doi.org/10.1093/bioinformatics/btg015
https://doi.org/10.1016/j.agsy.2016.05.014
https://doi.org/10.1016/j.agsy.2016.05.014
https://doi.org/10.1016/S1161-0301(02)00107-7
https://doi.org/10.1016/S0308-521X(01)00054-3
https://doi.org/10.1016/S0308-521X(01)00054-3
https://doi.org/10.1007/11663430_14
https://doi.org/10.1007/11663430_14
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.1145/1176617.1176632
https://doi.org/10.1145/1176617.1176632
https://doi.org/10.3233/ds-190026
https://doi.org/10.1186/1471-2202-13-S1-P149
https://doi.org/10.1093/bioinformatics/btn390
https://doi.org/10.1093/bioinformatics/btn390
https://doi.org/10.5281/ZENODO.2478791
https://doi.org/10.5281/ZENODO.2478791
https://doi.org/10.3389/fpls.2017.00786
https://doi.org/10.3389/fpls.2017.00786
https://doi.org/10.1016/j.eja.2006.04.007
https://doi.org/10.1093/insilicoplants/diaa007
https://doi.org/10.1093/insilicoplants/diaa007
https://doi.org/10.1016/S1161-0301(02)00112-0
https://doi.org/10.1093/jxb/erz175
https://doi.org/10.1093/jxb/erz175
https://doi.org/10.1111/nph.15385
https://doi.org/10.1071/FP08084
https://doi.org/10.1145/2791347.2791365
https://doi.org/10.1145/2791347.2791365

Environmental Modelling and Software 142 (2021) 105055

15

Pradal, C., Varoquaux, G., Langtangen, H.P., 2013. Publishing scientific software
matters. J. Comput. Sci. 4 (5), 311–312. https://doi.org/10.1016/j.
jocs.2013.08.001.

Refsgaard, J.C., van der Sluijs, J.P., Højberg, A.L., Vanrolleghem, P.A., 2007. Uncertainty
in the environmental modelling process - a framework and guidance. Environ.
Model. Software 22 (11), 1543–1556. https://doi.org/10.1016/j.
envsoft.2007.02.004.

Richmond, B.M., 1985. STELLA: Software for Bringing System Dynamics to the Other
98%. Proceedings of the 1985 International System Dynamics Conference,
pp. 706–718.

Rizzoli, A.E., Donatelli, M., Athanasiadis, I.N., Villa, F., Huber, D., 2008. Semantic links
in integrated modelling frameworks. Math. Comput. Simulat. 78 (2–3), 412–423.
https://doi.org/10.1016/j.matcom.2008.01.017.

Rosenzweig, C., Jones, J.W., Hatfield, J.L., Ruane, A.C., Boote, K.J., Thorburn, P.,
Antle, J.M., Nelson, G.C., Porter, C., Janssen, S., Asseng, S., Basso, B., Ewert, F.,
Wallach, D., Baigorria, G., Winter, J.M., 2013. The agricultural model
intercomparison and improvement project (AgMIP): protocols and pilot studies.
Agric. For. Meteorol. 170, 166–182. https://doi.org/10.1016/j.
agrformet.2012.09.011.

Roy, A., 2017. Cookiecutter: better project templates — cookiecutter 1.7.2
documentation. https://cookiecutter.readthedocs.io/en/1.7.2/.

Villa, F., Donatelli, M., Rizzoli, A.E., Krause, P., Kralisch, S., Van Evert, F.K., 2006.
Declarative Modelling for Architecture Independence and Data/model Integration: A
Case Study. Voinov, A., Jakeman, A.J., Rizzoli, A.E. (Eds). Proceedings of the IEMSs

Third Biennial Meeting:“ Summit on Environmental Modelling and Software”.
International Environmental Modelling and Software Society, Burlington, USA,
pp. 1–6. http://www.iemss.org/iemss2006/sessions/all.html.

Walker, W.E., Harremoës, P., Rotmans, J., van der Sluijs, J.P., van Asselt, M.B.A.,
Janssen, P.P.M., Krayer von Kraus, M.P., 2003. Defining uncertainty: a conceptual
basis for uncertainty management in model-based decision-support. Integrated
Assess. 4, 5–17. https://doi.org/10.1076/iaij.4.1.5.16466.

Wang, E., Brown, H.E., Rebetzke, G.J., Zhao, Z., Zheng, B., Chapman, S.C., 2019.
Improving process-based crop models to better capture
genotype×environment×management interactions. J. Exp. Bot. 70 (9), 2389–2401.
https://doi.org/10.1093/jxb/erz092.

Wang, E., Martre, P., Zhao, Z., Ewert, F., Maiorano, A., Rötter, R.P., Kimball, B.A.,
Ottman, M.J., Wall, G.W., White, J.W., Reynolds, M.P., Alderman, P.D., Aggarwal, P.
K., Anothai, J., Basso, B., Biernath, C., Cammarano, D., Challinor, A.J., De
Sanctis, G., Asseng, S., 2017. The uncertainty of crop yield projections is reduced by
improved temperature response functions. Nat. Plants 3 (July). https://doi.org/
10.1038/nplants.2017.102.

White, J.W., Hunt, L.A., Boote, K.J., Jones, J.W., Koo, J., Kim, S., Porter, C.H.,
Wilkens, P.W., Hoogenboom, G., 2013. Integrated description of agricultural field
experiments and production: the ICASA Version 2.0 data standards. Comput.
Electron. Agric. 96, 1–12. https://doi.org/10.1016/j.compag.2013.04.003.

Wyatt, D.L., 1990. A framework for reusability using graph-based models. 1990 Winter
Simulat. Conf. Proc. 472–476. https://doi.org/10.1109/WSC.1990.129562.

C.A. Midingoyi et al.

https://doi.org/10.1016/j.jocs.2013.08.001
https://doi.org/10.1016/j.jocs.2013.08.001
https://doi.org/10.1016/j.envsoft.2007.02.004
https://doi.org/10.1016/j.envsoft.2007.02.004
http://refhub.elsevier.com/S1364-8152(21)00098-0/sref50
http://refhub.elsevier.com/S1364-8152(21)00098-0/sref50
http://refhub.elsevier.com/S1364-8152(21)00098-0/sref50
https://doi.org/10.1016/j.matcom.2008.01.017
https://doi.org/10.1016/j.agrformet.2012.09.011
https://doi.org/10.1016/j.agrformet.2012.09.011
https://cookiecutter.readthedocs.io/en/1.7.2/
http://www.iemss.org/iemss2006/sessions/all.html
https://doi.org/10.1076/iaij.4.1.5.16466
https://doi.org/10.1093/jxb/erz092
https://doi.org/10.1038/nplants.2017.102
https://doi.org/10.1038/nplants.2017.102
https://doi.org/10.1016/j.compag.2013.04.003
https://doi.org/10.1109/WSC.1990.129562

	Crop2ML: An open-source multi-language modeling framework for the exchange and reuse of crop model components
	1 Introduction
	2 Crop2ML: a centralized framework for crop model components development and sharing
	2.1 Design and concepts of Crop2ML model specification
	2.1.1 Description
	2.1.2 Inputs – outputs
	2.1.3 Initialization
	2.1.4 Algorithm
	2.1.5 Function
	2.1.6 Parameter sets and test sets
	2.1.7 Model links

	2.2 CyML: the common modelling language of biophysical processes in crop models
	2.3 Crop2ML model package
	2.4 Crop2ML model lifecycle management
	2.4.1 Model analysis
	2.4.2 Model validation
	2.4.3 Model transformation
	2.4.4 Model documentation

	3 Crop2ML software environment and tools
	3.1 PyCrop2ML: a Python library for Crop2ML
	3.2 CropMStudio: A JupyterLab environment for Crop2ML model life cycle management

	4 Interoperability between various simulation platforms
	5 Discussion
	5.1 How does Crop2ML address model reuse compared to other initiatives?
	5.2 Connecting Crop2ML to PBM platforms
	5.3 Future developments

	6 Conclusion
	Declaration of competing interest
	Acknowledgements
	Appendix A Supplementary data
	References

