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Abstract. The GeoLifeCLEF challenge aim to evaluate location-based
species recommendation algorithms through open and perennial datasets
in a reproducible way. It offers a ground for large-scale geographic species
prediction using cross-kingdom occurrences and spatialized environmen-
tal data. The main novelty of the 2019 campaign over the previous one
is the availability of new occurrence datasets: (i) automatically identified
plant occurrences coming from the popular Pl@ntnet platform and (ii)
animal occurrences coming from the GBIF platform. This paper presents
an overview of the resources and assessment of the GeoLifeCLEF 2019
task, synthesizes the approaches used by the participating groups and
analyzes the main evaluation results. We highlight new successful ap-
proaches relevant for community modeling like models learning to pre-
dict occurrences from many biological groups and methods weighting
occurrences based on species infrequency.
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1 Introduction

The automatic prediction of the species most likely to be observed at a given
location is an important issue for many areas such as biodiversity conservation,
land management or environmental education. First, it could improve species
identification processes and tools by reducing the list of candidate species observ-
able at a given site (whether automated, semi-automatic or based on traditional

Copyright c© 2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0). CLEF 2019, 9-12 Septem-
ber 2019, Lugano, Switzerland.



field guides or flora). More generally, it could facilitate biodiversity inventories
and compliance with regulatory obligations for the environmental integration of
development projects. Finally, it could be used for educational purposes through
biodiversity discovery applications offering functionalities such as contextualized
educational pathways.

In the context of LifeCLEF evaluation campaign 2019 [6], the objective of
the GeoLifeCLEF challenge is to evaluate the state of the art of species predic-
tion methods over the long term and with a view to reproducibility. To achieve
this, the challenge freely provides researchers with large-scale, documented and
accessible data sets over the long term. Concretely, the aim of the challenge is
to predict the list of species that are the most likely to be observed at a given
location. Therefore, we provide a large training set of species occurrences and a
set of environmental rasters that characterize the environment in a quantitative
and qualitative way at any position in the territory. Indeed, it is usually not
possible to learn a species distribution models directly from spatial positions
because of the limited number of occurrences and the sampling bias. What is
usually done in ecology is to predict the distribution of species based on a repre-
sentation in environmental space, typically a characteristic vector composed of
climatic variables (mean temperature at that location, precipitation, etc.) and
other variables such as soil type, land cover, distance to water, etc. GeoLife-
CLEF’s originality is to encourage the extension of this approach to learning a
more complex representation space that takes into account various input data
such as environmental descriptors, their spatial structure and the known biotic
context. Therefore, we provide tools to facilitate the extraction of environmental
tensors that can be easily used as input data to models such as convolutional
neural networks.

In 2019, the provided data was significantly enriched and several methodolog-
ical improvements have been made. In more details, the new features introduced
are as follows:

1. Pl@ntNet occurrences: to increase the amount of plant occurrences in the
training set, we completed the publicly available data from the GBIF6 with
user-generated observations of the Pl@ntNet mobile application [1]. These
data are clearly noisier and more biased than conventional occurrence data
but they can be filtered by the confidence level of the taxonomic automatic
classifier used in the app and they have the advantage of being produced in
huge quantities.

2. Occurrences of other kingdoms: to investigate how knowledge of the presence
of non-plants organisms can help predict the presence of plants species, we
provided a large training set of occurrences from other kingdoms coming
from the GBIF platform.

3. A better quality test set: to ensure the reliability of our evaluation, the
occurrence data of the test set were restricted to expert data with the highest
species identification certainty and high geographical accuracy (lower than 50
m). Last but not least, the test occurrences were sampled in order to avoid, as

6 https://www.gbif.org/
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much as possible, biases of spatial coverage and in the species representation.
By this way, it contributes to give relatively more importance to rare species
and scarce areas.

In the following sections, we describe in more details the data produced and
the evaluation methodology used. We then present the results of the evaluation
and the analysis of these results.

2 Dataset

2.1 Train occurrences

Pl@ntNet raw data. (PL complete) This data is directly pulled from [4]. Pl@ntNet7

is a smartphone app using machine learning to identify plant species from pic-
tures submitted by a broad public of users. For each submission, also called
a query, the Pl@ntNet algorithm answers a distribution of probability values
across the targeted taxonomic referential. If the users allows it, the query’s ge-
olocation is also stored. In the provided training data, we used all accurately
geolocated queries (with maximum 30 meters uncertainty) in France from the
beginning of 2017 to the end of October 2018. Each geolocated occurrence is
labelled with the species of higher identification probability. This dataset is thus
very heterogeneous in species identification quality, due to the high variability of
the image quality submitted by users. The confidence score is provided to Geo-
LifeCLEF participants as specific field in this dataset, who can use it to account
for identification uncertainty in their models. This data set contains 2,377,610
occurrences covering 3,906 plant species.

Pl@ntNet filtered data. (PL filtered) We proposed a filtered version of the
previous dataset based on species identification quality. We only kept the occur-
rences for which the first species probability value was above 0.98. This score
has been determined by expert to give a reasonable degree of identification con-
fidence. This set of 237,087 occurrences covers 1,364 species.

GeoLifeClef 2018. (GBIF) Train and test occurrences datasets from the pre-
vious year edition [5] were merged to feed the current challenge. Those plants
occurrences were extracted from the Global Biodiversity Information Facility 8.
This set of occurrences is around ten times smaller than the Pl@ntNet dataset,
as shown in Figure 1. Within this dataset, occurrences are often aggregated
on a same geographic point, which denotes uncertain or degraded geolocation.
However, the geolocation certainty field is often missing. It contains 281, 952
occurrences covering 3, 231 plant species.

7 https://plantnet.org
8 https://www.gbif.org/
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Occurrences of other kingdoms. (GBIF) This data source is made of species that
are not plants, but may interact somehow with plants (e.g. trophic, pollination,
symbiosis, use of plant as habitat or shelter), and are thus likely to carry in-
teresting correlations with plant species presences. None of those species are in
the list of species to predict in the test set (which are only plant species). Those
occurrences have also been extracted from the GBIF; based on the following fil-
ters: { Basis of record: Human, Location : include coordinates, Country or area
: France }. We extracted occurrences from 7 non-plant taxonomic groups:

– Chordata/ Aves (8,000,000).
– Chordata/ Mammalia (1,300,000)
– Chordata/ Amphibia (300,000)
– Chordata/ Reptilia (200,000)
– Arthropoda/ Insecta (3,250,000)
– Arthropoda/ Arachnida (70,000)
– Fungi/ Basidiomycota (50,000)

It contains 10,618,839 occurrences in total covering 23,893 taxa.

Taxonomic and geographic filters applied to all datasets. Because scientists do
not name species by the same way in all regions of the world, many official lists of
species names, called referentials, co-exist. There are no exact matching between
them (in particular because of the new scientific knowledge acquired during the
period between the creation of two separate lists) except those suggested by the
scientific latin names themselves. In our case, the distinct data sources don’t use
the same referentials. Furthermore, distinct species names might be considered
as redundant (synonyms) in some referentials. GBIF uses its own referential
made from several taxonomic referentials, and GBIF occurrences may not be
at the species taxonomic level, but at sub-species, or genus, etc. Pl@ntNet data
includes occurrences from several plants taxonomic referentials (like The Plant
List9, GRIN10, the French National plant list, etc.).
Thus, for attributing species identifiers in GeoLifeCLEF, it was important to
first match all occurrences names to a single taxonomic referential adapted for
the French Flora. We chose to use Taxref v12 11 referential. We only kept names
matching Taxref v12 according to an exact matching algorithm (R script pro-
vided on Github 12). Some true species might have been lost due to distinct
spelling between the GBIF taxonomy and Taxref.
We only kept points falling inside the French territory (Polygon from GADM13)
or inside a 30 meters buffer zone, to account for geolocation uncertainty. Finally,
occurrences were randomly shuffled to avoid any bias introduced by their order
of use.
9 http://www.theplantlist.org/

10 https://www.ars-grin.gov/
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Fig. 1. Number of occurrences per training dataset. Trusted occurrences were deter-
mined from Pl@ntNet species identification engine certainty score.



2.2 Environmental data

Geographic rasters. The geographic and environmental data proposed to par-
ticipants are a compilation of geographic rasters. The variables represented are
often used for the purpose of species distribution modelling, especially for plants.
The nature of values stored in the rasters are quantitative (bioclimatic, topo-
logical, hydrographical and evapo-transpiration variables), ordinal (pedological
variables) or categorical (land cover). The rasters are extracted from the data
repository of Botella [3], where readers can find a detailed description.

Fig. 2. Patch extracted at the city of Brest, France.



Tensors extraction. To facilitate the learning of representations taking into ac-
count the spatial structure of the environment, we provided a Python toolbox14

allowing to extract local environmental tensors from any position in the rasters.
By default, it extracts for each raster a 64x64 pixels patch centered on the target
position and aggregate the patches from all rasters in the form of a tensor of size
nx64x64 where n is the number rasters.

2.3 Test data

We have chosen an independent and unpublished source dataset of occurrences
for the test set. It is extracted from the SILENE database maintained by the
Conservatoire Botanique Mediterranéen 15. Those observations come from vari-
ous providers including the conservatory himself, but also national parks, botan-
ical associations or impact study consultants. We removed species (i) that were
not present in the train set, (ii) vulnerable species according to the SINP referen-
tial “espèces sensibles” 16, (iii) and species that are at least vulnerable according
to the IUCN red list 17. This dataset has a high degree of identification certainty
because only botanical experts contribute to it. Its geolocation certainty is un-
der 50 meters. We used random weighted selection scheme to draw 25,000 test
occurrences among the 700,000 of the initial set noted S. We compute, for each
occurrence si in S a weight wi:

wi = 1/(ni × ri)

Where ri is the number of species in the neighborhood of si defined by a
circle of radius d. ni is the total number of occurrences in the neighborhood. We
define the spatial scale d = 2 kilometers. With these weights and the following
algorithm, we guaranty that (i) test occurrences are uniformly distributed in the
geographic space at scale 2d, (ii) there is as many occurrences of each present
species on neighborhoods of radius 2d. We then draw the test occurrences from
S without replacement, through the following algorithm:

– Initialize the bag of test occurrences S′ := S and the test set T = ∅.
– Randomly draw an occurrence in S′, say i.
– Draw a scalar z ∼ U(0,max(w1, ..., w|S|)).
– If z < wi, remove i from S′ and add it to T , otherwise leave it in S′.
– Stop if |T | = 25000, otherwise we go back to step (1).

3 Task description

For every occurrence of the test set, the evaluated systems must return a list
of 50 species maximum, ranked without ex-aequo. The main evaluation metric

14 https://github.com/maximiliense/GLC19
15 http://flore.silene.eu/index.php?cont=accueil
16 http://www.naturefrance.fr/languedoc-roussillon/

referentiel-des-donnees-sensibles
17 https://uicn.fr/liste-rouge-flore/
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used is the top 30 accuracy (TOP30). We provide its expression hereafter:

TOP30 :
1

Q

Q∑
q=1

1rankq≤30

where Q is the total number of query occurrences xq in the test set and rankq
is the rank of the correct species y(xq) in the ranked list of species predicted by
the evaluated method for the occurrence xq.
A secondary metric is the Mean Reciprocal Rank (MRR), a statistic measure
for evaluating any process that produces a list of possible responses to a sample
of queries ordered by probability. The reciprocal rank of a query response is the
multiplicative inverse of the rank of the correct answer. We provide its expression
hereafter :

MRR :
1

Q

Q∑
q=1

1

rankq

The MRR was used as main metric during last year edition. We compute it
this year, in order to enable comparisons between two campaigns.

4 Participants and methods

61 participants registered to the challenge through the online platform, among
which 5 participants managed to submit runs in times. A total of 44 runs were
submitted. All participants runs methods are characterized by their types of
model architecture, the occurrences and input data they used in table 6. In the
following paragraph, we describe in more details the methodology of each team.

LIRMM, Inria, Univ. Paul Valery, Univ. Montpellier, France, 4 runs, [10] :
This team used a single deep convolutional neural network architecture derived
in four models. All models take as input the default environmental tensors ex-
tracted by the provided python toolbox (see section 2.1), with a one-hot encoding
transformation for each category of the land cover variables (clc), inducing 77
layers images in the input of the model. The chosen architecture was an Incep-
tion V3 ([13]). Models were trained as classifiers, using a softmax output and
a cross-entropy loss (also known as multinomial logistic regression). Model of
run 27006 was trained on all occurrences of PL complete and glc18 datasets,
while models 27004 used PL complete with identification score ≥ 0.7, and 27005
used PL complete with identification score ≥ 0.98 (filtered dataset). Further-
more, runs 27004 and 27005 were only trained on a subset of the occurrences:
a sample of around 30K occurrences was drawn according to the same selection
procedure as for the test set. Thus, all those models predicted only plant species.
On the contrary, model 27007 was trained on all occurrences datasets including
PL complete, glc18 and also noPlants. This one was trained to predict plant
species and many animal species.



SaraSi, EcoSols, UMR 1222 INRA - Montpellier SupAgro, France, 5 runs, [12]
: This team used mainly two types of models: a convolutional neural network
(CNN) based on the environmental tensors in the same spirit as LIRMM (27086,
27087, 27088) with a customized architecture, and a deep neural network using
only a vector of co-occurrences of non-plants taxa as input (27089, 27082). The
CNN model architecture separates the feature extraction depending on the type
of variables that is deal with. Indeed, it apply distinct convolutional layers to
the three categories of environmental patches (continuous, ordinal and categor-
ical). The extracted features are concatenated and used as input in a series of
fully-connected layers. A noticeable technique of ”categories embedding” was
used for the categorical and ordinal patches. It transforms the one-hot encoded
patches in a lower number of continuous valued matrices. Also, they addressed
the class imbalance of the training set by optimizing a weighted cross-entropy
loss so that occurrences of more abundant species were less numerous. They
trained this model on the PL complete dataset (27086) and on a reduced ver-
sion of this dataset to test set species (27088). the run 27087 was like 27086 but
trained longer. For the other approach they implemented a customized version
of the Continuous Bag of Words model [8]. The input is a set of identifiers of the
non-plant ”super-taxa” occurring in the neighborhood. An embedding vector as-
sociated to the set of ”super-taxa” is learned. A ”super-taxa” is an aggregation
of many species assumed to share a same type of interaction with plants. They
were determined through experts knowledge.

SSN CSE, SSN College of Engineering of Chennai, and VIT University of Vel-
lore, India, 12 run, [7] : This team tackles the challenge with classical machine
learning techniques. They relied on three datasets : (i) spatial position of the
occurrences only, (ii) spatial position and punctual environmental vector at the
position of the occurrence, (iii) spatial position and vector of the average value
of the environmental variables within a 16x16 pixels square centered on the oc-
currence. As a baseline, the authors first propose a probabilistic model where
the probability of a species depends on its frequency in the whole training set
(Const. prior). In addition, the authors relied on three categories of models.
They first used random forest with spatial coordinates only as input (27102),
and boosted trees (XGBoost: 26997, 26996, 27O13, 27012, 26988) and artificial
neural network (27069, 27070, 27064, 27067) for using either spatial positions,
environmental vectors or both. For one neural network, the authors split the fea-
tures in 5 groups and trained a neural network per group for which predictions
are then combined to form a single model.

Atodiresein, Faculty of Computer Science, “Alexandru Ioan Cuza” University,
Romania, 20 runs [2] : This team based their runs on standard machine learn-
ing algorithms: nearest neighbors (K-NN), random forests (Rand. For.), boosted
trees (XGBoost) and deep neural networks (ANN). Those algorithms were ap-
plied to either the PL complete or PL trusted datasets. They used either the



spatial coordinates or the environmental punctual values of a selection of 29
environmental variables, or the concatenation of coordinates and variables. All
combinations of algorithms, occurrences data and input data were evaluated on
a validation set and the best of them were submitted. They also carried ensemble
predictions from those models (runs 26969, 26970, 26958, 27062, 26960, 26971,
26961, 26964, 26968). A partial explanation of the low performances of their runs
is that they only answered a short list of species (maximum 5) for each test oc-
currences, which lowers down performances a lot, especially for the top30 metric.

Lot of Lof, Inra, France, 3 runs, [9] : This team used occurrences density estima-
tion based on log-linear spatial in-homogeneous Poisson point processes (PPP).
They used a restricted set of environmental variables to model the distribution
of occurrences based on expert knowledge: etp, alti, chbio 5, chbio 12,

awc top, bs top, slope and aggregated clc in 5 land covers categories. They
built their models with the 141 test species having the most occurrences in the
PL trusted dataset. Run 27124 is the standard PPP, while runs 27123 and 27063
apply different corrections for spatial sampling bias.

5 Results and discussion

The TOP30 and MRR evaluation scores achieved by all submitted runs are
provided in Figures 3 and 4 (numerical values of the TOP30 are also replicated
in the third column of Table 6). As a complementary analysis, Figure 5 displays
the average TOP30 accuracy obtained for each species in the test set as a function
of the number of occurrences of this species in the test set.

These results contributes to drive the following findings:

The occurrences of the other kingdoms significantly improve plants
prediction. This can be observed from the comparison of run 27007 and run
27006 of the LIRMM team which are all things equal except the use of the oc-
currences of other kingdoms. The TOP30 increases from 0.136 to 0.177, which
represents an improvement of 30%. The use of the occurrences of the other king-
doms is therefore the main cause of the best performances obtained by this team
with regard to the SaraSi team. From the ecological point of view, this suggests
that the biotic interactions (competition, predation, facilitation) between plant
species and other biological groups play a very important role in determining
the distribution of the species. From a deep learning point of view, it means
that the convolutional neural network is able to transfer a consistent knowledge
from the domain of the other kingdoms to the plant domain. An architecture
that aim at predicting so many species through mutual neurons (as run 27007)
might be a more efficient design for learning those relationships than using the
co-occurrences as input data (as did runs 27089, 27082). It would be interesting
to investigate this by comparing the latter strategy with a model taking both
environmental patches and co-occurrences as input.



Fig. 3. Average Top30 accuracy per run and participant. It was computed over the
25,000 test occurrences. This was the official ranking metric for the task.

Fig. 4. Mean Reciprocal Rank per run and participant. It was computed over the
25,000 test occurrences.



Weighting the loss by species is better for predicting rare species.
The CNN models learnt by the SaraSi team were based on a weighted cross-
entropy loss penalizing the classes with more samples as a way to compensate
class imbalance. Interestingly, it can be seen in Figure 5 that this significantly
increased the ability of the model 27086 to predict the species having few oc-
currences compared to the winner CNN (run 27007) from LIRMM. Run 27086
is better than 27007 for more than 80% of the species. LIRMM team gave equal
weights to all occurrences in the loss for training model 27007. It also shows how
the most represented species hide the performances on the majority of species,
which rarely occur. Giving more balanced weights across species is certainly im-
portant to achieve more robust predictions because the observation preferences
across species vary a lot from one biodiversity dataset to another, as it is the
case here between Pl@ntNet, the GBIF and SILENE.

The more complex the model, the better the prediction. The analysis
of the column ”model” of Table 6 suggests that, at least models using environ-
mental inputs, can be ranked according to their performance as: (i) Convolu-
tional Neural Network (CNN), (ii) Boosted trees (XGboost), (iii) Deep Neural
Network (ANN), (iv) Poisson point processes, (v) K-Nearest Neighbors. This
clearly shows a gradient from the models that integrate the most complex in-
put data (CNN having the most complex with many channels of environmental
images) and the most flexible architectures (CNN, XGBoost and ANN can fit
very complex functions of their input data), to the models that are the most
constrained by their input data (environmental vectors only) and with simple
architectures (log-linear model of PPP, no optimized parameters for K-NN). This
shows that the size of the available datasets and the complexity of the problem
give a real advantage to complex statistical learning methods. More specifically,
once again CNN results far exceeded those of the other methods which reinforces
the results obtained in the last edition of the challenge. The CNN are likely to
extract complex features of spatio-environmental patterns in their highest level
neurons which are more suited to describe species habitats than environmental
variables designed by experts. They may also captures spatial configurations of
habitats that favor certain dispersion mechanisms, e.g. source-think coloniza-
tion, or detect signatures of particular trophic assemblages.

The training of CNN can fail. Although the best models were based
on CNNs, not all CNNs obtained so good results. Indeed, some runs based on
CNNs were even worst than the prior ranking of species according to their global
abundance (see 27004 ≤ 26821). Furthermore, non-submitted CNN models men-
tioned in a participant working note did perform less in validation than simpler
approaches (see [7] 3.4). Model design (architecture, selection of environmental
channels, management of categorical variables), regularization (optimization al-
gorithm, use of dropout, learning rate and stopping rule policy), training data
(especially size, see runs 27004 and 27005) and occurrence weighting scheme de-



termine jointly the implementation success.

Fig. 5. Top30 accuracy averaged per species abundance class for the two best CNN
models. Species were ranked by decreasing number of occurrences in the test set and
then aggregated in 14 classes of abundances. For run 27086, each occurrence is weighted
inversely proportional to the abundance of its species in the loss function.

Results of the MRR show that performances were globally lower than last
year. Indeed, last year average MRR of the ten best runs was 0.039 while it is
0.024 this year. This large global performance gap is probably due to the diffi-
culty of the test set, given that last year dataset was included in the training
data. We note that the test set was not identically distributed, firstly because it
was located on the Mediterranean region only, but also because the occurrences
were sampled to avoid spatial and species biases. We know that all models pre-
dict less well rare species and under-sampled areas. Thus, this drop in overall
performance supports the idea that the new test set has succeeded in giving
greater importance to rare species and sub-sampled areas.
In absolute terms, the best run gives the good answer 20% of the times in its top-
30. Thus, roughly speaking, even the best model gives generally a large majority
of wrong species in its top-30 list. To give an order of comparison, the database
Sophy [11] contains more than 35,000 exhaustive plant species inventories on
plots generally not exceeding 400m2, and covers a wide range of environments
in France. According to it, the species diversity in such plots is 25 in average



and rarely exceeds 70. There is thus large room for improvement in automated
predictions.

6 Conclusion and perspectives

We now come back on the main outcomes of this task and discuss its perspec-
tives.
LIRMM best CNN successfully integrated many non-plants species occurrences
in their models predictions to better extract spatio-environmental patterns that
more robustly predict plants species. It suggests that the global biotic assemblage
highly determine the plant assemblage through underlying species interactions,
and the multi-species prediction proved again to be a good deep learning strategy
to account for it. This is the main new outcome of this year’s edition. However,
there should be significant room for improvement in the implementation of this
approach. Indeed, LIRMM indicated that the winning model training couldn’t be
finished for time constraints reasons. Furthermore, light and customized models
architectures accounting for the different variables natures seem more adapted
to the problem than heavily parameterized state-of-the-art image classification
architectures. Indeed, SaraSi customized CNN architecture has performed better
than the related LIRMM Inception V3 CNN with the same output. Merging the
strengths of both strategies promises good improvements in the future.
A rich source of information that remains unexploited for this task is the high
resolution satellite images data. For example, today, 50 cm resolution satellite
images are freely available for research all over the french territory through the
National Institute of Geography (IGN) 18. Including such images as input in the
current models would inform them about very local land cover type and thus
give much finer resolution prediction, if one can efficiently handle the size of this
data.
The philosophy of the evaluation was to favor models that are more robust to
biases in the training data, especially the imbalance of species representation
and the heterogeneous spatial coverage, both consequences of the reporting pro-
cess heterogeneity. We can say that it is a success concerning species imbalance
representation. Indeed, SaraSi achieved remarkably stable performances even for
rare species through a per class weighting scheme in the cost function. A next
step would be to account for spatial sampling heterogeneity, as we have seen
that all methods still struggle a lot with scarcely reported areas.
Regarding the evaluation process on this problem globally, we put an effort
this year in the quality of the occurrences identification, and corrected for the
species imbalance bias and heterogeneous spatial coverage (due to the reporting
heterogeneity). Our new evaluation strategy was quite discriminant across the
methods, and lowered globally the computed results. In absolute terms, we have
also seen that even the best model tends to rank a lot of relevant species (i.e.
probably absent from the surroundings) before the good one. The problem of
spatial prediction of plant species lists is objectively far from being solved. Still,

18 https://geoservices.ign.fr/documentation/geoservices/
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with the new areas of improvements that the task results pointed out, we are
optimistic about the future methodological advances on the problem of location
based species prediction.





Table 1. Results and summarized methodology description of all runs submitted to Ge-
oLifeCLEF 2019. Symbols and abbreviations: A+B means that variables/data B was
added to A. A\B means that variables/data B where removed from A. complete∩ test
means that only test species occurrences from the complete dataset were used. Products
(×) and exponent notations in column ”model archi.” decompose an ensemble methods
with its different models. Occurrences: complete=PL complete,filtered=PL filtered,
all plants=PL complete + PL filtered + glc18, all=PL complete + PL filtered +
glc18 + nonP lants. Covariates in model input: ”enviro. tensors”=environmental ten-
sors with spatial neighborhood”, ”enviro.”=punctual values of environmental variables,
”coord.”= spatial coordinates.
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