

Rubber tree ecophysiology and Climate Change

What do we know?

Philippe Thaler, Eric Gohet , Yann Nouvellon, Régis Lacote, Frédéric Gay and Frédéric Do

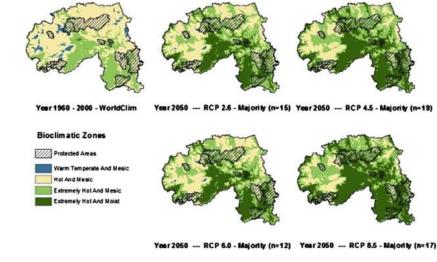
Rubber ecophysiology and future climate

- What will the climate be in the main rubber producing areas? Y/N
- What will be the effects of higher T° on C assimilation?
- What will be the effects of higher T° on tree growth?
- What will be the effects of higher T° on latex production?
- Adaptation of rubber trees to water stress?

Y/N

Ν

almost nothing



What will the climate be in the main rubber producing areas?

Probable Global Climate scenarios are rather well-known

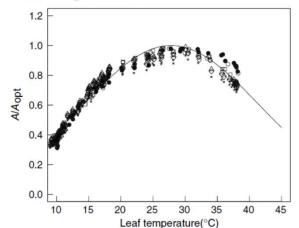
- But need to be downscalled to every local NR area
- Methodologies are available
- Good forecasts in some areas
- Need to be generalized or updated

Xishuangbanna - Bioclimatic Zones

Zomer et al. 2014 https://doi.org/10.1016/j.biocon.2013.11.028

Y/N

• Some knowledge at leaf scale (Kositsup et al 2010)


Trees (2009) 23:357-365 DOI 10.1007/s00468-008-0284-x

ORIGINAL PAPER

Photosynthetic capacity and temperature responses of photosynthesis of rubber trees (*Hevea brasiliensis* Müll. Arg.) acclimate to changes in ambient temperatures

Boonthida Kositsup · Pierre Montpied · Poonpipope Kasemsap · Philippe Thaler Thierry Améglio · Erwin Dreyer

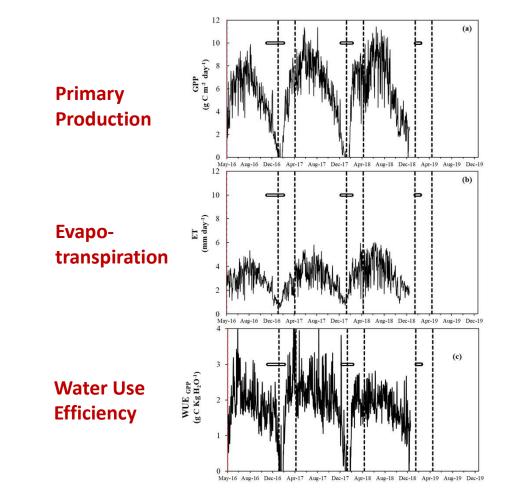
Parameter	Growth temperature (°C)	
	18	28
$V_{\rm cmax25} \ (\mu {\rm mol} \ {\rm m}^{-2} \ {\rm s}^{-1})$	26.1 ± 1.8^{a}	43.9 ± 2.9^{b}
$E_{\rm aV}$ (kJ mol ⁻¹)	$60.8\pm7.2^{\rm a}$	68.5 ± 6.2^{b}
$J_{\rm max25} \ ({\rm umol} \ {\rm m}^{-2} \ {\rm s}^{-1})$	$50.8 \pm 9.9^{\mathrm{a}}$	77.4 ± 11.2^{b}
$E_{\rm aJ}$ (kJ mol ⁻¹)	$39.2\pm18.5^{\rm a}$	50.6 ± 13.5^{b}
$J_{\text{max}25}/V_{\text{cmax}25}$	1.93 ± 0.005^{a}	1.79 ± 0.004^{b}
LMA (g m^{-2})	64.1 ± 1.4^{a}	52.1 ± 1.3^{b}
SPAD	$41.6\pm0.9^{\rm a}$	55.6 ± 0.9^{b}
N_m (%)	2.72 ± 0.05^a	4.08 ± 0.05^{b}
C (%)	47.4 ± 0.2^{a}	48.2 ± 0.2^{b}
$V_{\rm cmax25}/N_{\rm a}~(\mu {\rm mol}~{\rm g}^{-1}~{\rm s}^{-1})$	$14.8 \pm 0.3^{\rm a}$	21.2 ± 0.3^{b}
$J_{\text{max25}}/N_{\text{a}} \; (\mu \text{mol g}^{-1} \text{ s}^{-1})$	$28.9\pm0.9^{\rm a}$	$37.0\pm0.8^{\rm b}$

We can predict photosynthetic parameters at future temperatures

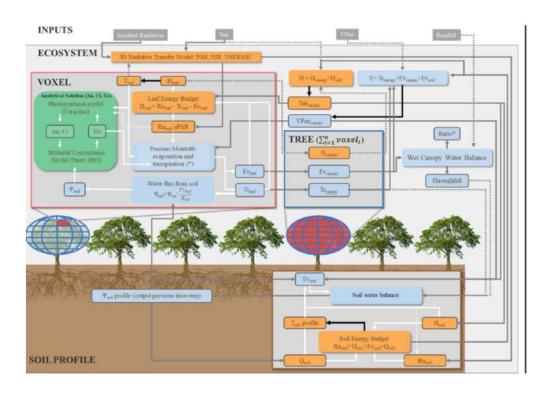
But a long way to predict

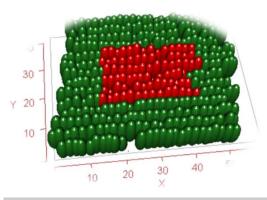
whole tree C assimilation and plantation primary production (GPP)!

PS parameters x stomatal conductance x whole tree canopy x phenology....



The way forward: upscalling flux measurements


Rubber Flux Tower at Chachoengsao http://asiaflux.net





The way forward: modelling

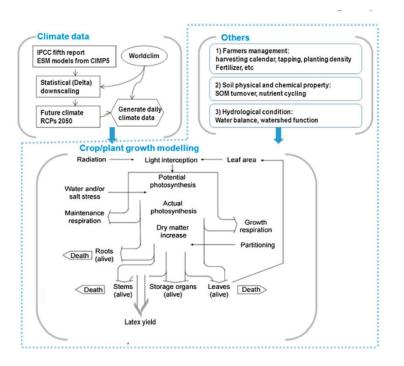
Example MAESPA Model

Simulation of water and CO₂ fluxes at tree and plot scale

The way forward: modelling

Forest Ecology and Management 439 (2019) 55-69

Climbing the mountain fast but smart: Modelling rubber tree growth and latex yield under climate change

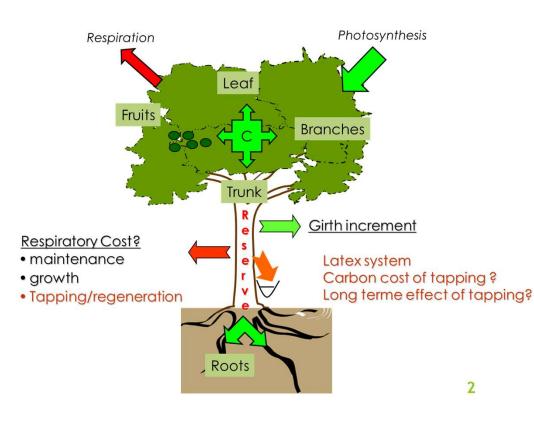


Xueqing Yang^{a,b,c}, Sergey Blagodatsky^{a,*}, Carsten Marohn^a, Hongxi Liu^a, Reza Golbon^a, Jianchu Xu^c, Georg Cadisch^a

^a Institute of Agricultural Sciences in the Tropics (Hans-Ruthenberg-Institute), University of Hohenheim, Sautgart, Germany ^b Key Laboratory of Economic Plants and Biotechnology, Kunning Institute of Botany, Chinese Academy of Sciences, Kunning, China ^c World Agroforestry Centre (ICRAF), China & East Asta Office c.o. Kunning Institute of Botany, Kunning, China

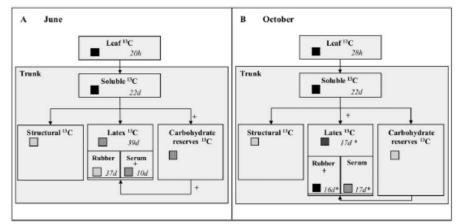
Presented by S Blagodatsky in Session 2

Example LUCIA Model



What about growth and latex production?

Biomass will be directly linked to C assimilation but growth /yield partitioning depends on C allocation

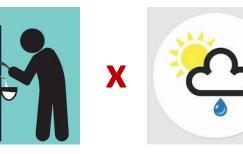

Journal of Experimental Botany, Vol. 71, No. 6 pp. 2028–2039, 2020 doi:10.1093/jxb/erz551

RESEARCH PAPER

*In situ*¹³CO₂ abelling of rubber trees reveals a seasonal shift in the contribution of the carbon sources involved in latex regeneration

Ornuma Duangngam^{1,2}, Dorine Desalme^{3,4,10}, Philippe Thaler^{4,5}, Poonpipope Kasemsap^{2,*}, Jate Sathornkich², Duangrat Satakhun¹, Chompunut Chayawat¹, Nicolas Angeli³, Pisamai Chantuma⁶ and Daniel Epron^{3,7}

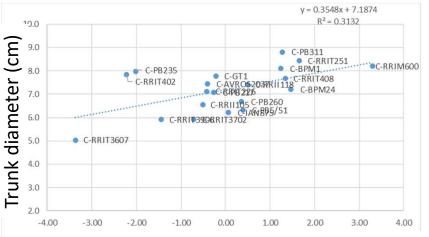
What about growth and latex production?



- Negative for latex flow?
- Day/night differences?

Greater diurnal temperature difference, an overlooked but important climatic driver of rubber yield Yu Haiying et al. 2014. INDUSTRIAL CROPS AND PRODUCTS 62: 14-21

A key research topic will be the interactions between climate change and low tapping frequencies Socio-economic x climate issue.

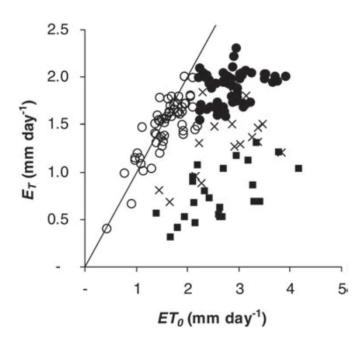


Adaptation of rubber trees to water stress?

- More knowledge from the numerous studies of adaptation to drier conditions in marginal areas, particularly in India and NE Thailand
- Recent findings show a promising clonal variability in response to water stress

Index of investment in canopy in rainy season

Institut de Recherche pour le Développement


"Growth and Hydraulic" (GRHYD) project: Bases of rubber clones adaptation to water constraints in immature period

Adaptation of rubber trees to water stress?

- Important to untangle soil drought from atmospheric drought
- Strong regulation of transpiration with highVPD, even if water is available in soil.

Strong over-estimation of water use in many studies and models.

From Isarangkool et al 2011 (mature trees RRIM600)

Relationship between tree transpiration and reference evapotranspiration (ET0) in a well-watered period (REW > 0.5) with ET0 \leq 2.2 mm day-1 (open circle), a well-watered period when ET0 was higher than >2.2 mm day-1 (closed circle), others drought periods (REW< 0.5).

Institut de Recherche pour le Développement F R A N C E

Conclusion

cirad

- Potential risk of adverse effects of CC on growth, survival and yield
- Intensive research efforts to be promoted

Improving the ecophysiologIcal functions in integrative models could be a relevant cooperative project for the network.

