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Extended abstract 

Large-scale land cover changes are occurring 
throughout tropical areas in order to respond to 
the increasing global demand in plant materials 
such as wood, oil, textiles, food products and 
natural rubber. In particular, the area of tropical 
tree plantations have strongly increased over 
the last decades, reaching about 20 million 
hectares for fast growing eucalypt plantations 
(Booth, 2013), or 14.3 million hectares for rubber 
tree plantations (IRSG 2018), most of them 
established in Southeast Asia. Such land use 
changes (LUC) have the potential to impact 
the local, regional and global climates due to 
modifications of the albedo (which affects the 
surface radiative budget), of surface roughness, 
and canopy stomatal and aerodynamic 
conductance (which affect the partitioning of 
available energy between latent and sensible 
heat fluxes), and of the carbon sources and 
sinks strengths (which affect the atmospheric 
CO

2
 concentrations). 

It is well known that the replacement of natural 
forests by tree plantations leads to large 
losses of biodiversity and release of CO

2
 to 

the atmosphere. In contrast, afforestation 
of croplands, grasslands and degraded 
shrublands generally results in increases in 

landscape carbon stocks, thus contributing to 
climate change mitigation. Furthermore, tree 
plantations can contribute to the reduction 
of fossil carbon emissions, when the wood 
from the plantations is used as a substitute 
of fossil combustible, e.g. by replacing the 
coke by charcoal in the steel industry (Fallot 
et al. 2009) or in power plants (Waewsak 
et al. 2020). Similarly, using natural rubber 
(renewable product) as a substitute to 
synthetic rubber (produced from fossil carbon) 
avoids fossil carbon dioxide emissions. 

In addition to the global warming attenuation 
through carbon sequestration and avoidance 
of fossil carbon dioxide emissions, tree 
plantations can mitigate warming through 
evaporative cooling (Peng et al. 2014). This 
is due to their high actual evapotranspiration 
(AET) in comparison to other land uses 
such as crops or grasslands. Although in 
boreal areas the evaporative cooling of tree 
plantations can be over-compensated by a 
warming resulting from low albedo, in tropical 
areas the cooling by AET generally largely 
dominates the warming effect of low albedo, 
thus resulting in a net cooling effect of tree 
plantations and natural forests (Bonan 2008, 
2016; Prevedello 2019). In this presentation 
we report data obtained in fast-growing 
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eucalypt plantations in south-eastern Brazil, 
and in rubber tree plantations in Thailand, and 
results from previous published studies that 
confirm the cooling trends of these tropical 
tree plantations. 

In Brazil, the mean AET measured by eddy 
covariance over a seven-year eucalypt 
rotation (~1400 mm yr-1) represented about 
90% of the annual rainfall, and the latent heat 
flux associated to this high AET represented 
about 88% of the available energy (net 
radiation), thus suggesting a high evaporative 
cooling. Furthermore, comparison of land 
surface temperatures (LST) derived from 
satellite images showed lower LST over 
this plantation and over nearby eucalypt 
and pine plantations than over grasslands, 
and soybean and sugar cane plantations, 
which is consistent with results reported in 
some previous studies (e.g. Jackson et al. 
2008). Among other factors, the high AET 
of these south-eastern eucalypt plantations 
was allowed by a good fertilization regime, 
which increases both tree growth and water 
use (Christina et al. 2018) and by the ability of 
eucalypt trees to rapidly develop a deep root 
system (>10 m deep two years after planting; 
Pinheiro et al. 2016; Germon et al. 2019) 
allowing them to get access to large amounts 
of soil water (Christina et al. 2017). 

In rubber tree plantations in Thailand we 
found AET of about 1150 mm yr-1, which falls in 
the lower range of values reported previously 
for rubber tree plantations in north-eastern 
Thailand and Cambodia (1210 and 1450 mm 
yr-1; Giambelluca et al. 2016), and south-
western China (Tan et al. 2011). As for eucalypt 
plantations, the high AET values measured 
in some rubber tree plantations growing 
on deep soils could partly result from deep 
rooting (Pierret et al. 2016; Giambelluca et al. 
2016). The mean proportion of net radiation 
used for evapotranspiration in the rubber 
plantations (0.73) was similar to that reported 
by Giambelluca et al. (2016) (0.72). These high 
values are similar to that reported for tropical 
rainforests (0.72; Fisher et al. 2009), thus 
suggesting that well-managed rubber tree 
plantations might behave similarly to tropical 
rainforests in term of evaporative cooling and 
moisture recycling to the atmosphere (Staal 
et al. 2018; Zemp et al. 2014). 

Further studies are required to better assess 
the biogeochemical and biophysical effects 
of rubber tree plantations on the local and 
regional climate, using field measurements, 
ecophysiological process-based models, and 
regional atmospheric models. Evaporative 
cooling, in particular, may contribute to both 
local warming mitigation (Ellison et al. 2017) and 
tree adaptation to increased air temperatures, 
by keeping leaves to physiologically safe 
temperatures, thus avoiding overheating and 
thermal damage. Evaporative cooling, however, 
is only possible when sufficient soil water is 
available, and might therefore not operate 
in marginal areas with low precipitation. 
Research is also needed to better assess 
the effects of sylvicultural practices on the 
feedbacks between rubber tree plantations 
and local climate. 

Keywords: albedo, evaporating cooling, 
evapotranspiration, carbon, water and 
energy cycles, biogeochemical and 
biophysical effects, climate change mitigation 
and adaptation, rubber tree plantations, 
eucalypt plantations
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