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Abstract: Genome-wide association study (GWAS) was performed for 16 agronomic traits including 

nitrogen use efficiency (NUE) and yield-related components using a panel of 190 mainly japonica rice 

varieties and a set of 38 390 single nucleotide polymorphism (SNP) markers. This panel was evaluated 

under rainfed upland conditions in Madagascar in two consecutive cropping seasons with two contrasted 

nitrogen input levels. Using another set of five grain traits, we identified previously known genes (GW5, 

GS3, Awn1 and Glabrous1), thus validating the pertinence and accuracy of our datasets for GWAS. A 

total of 369 significant associations were detected between SNPs and agronomic traits, gathered into 46 

distinct haplotype groups and 28 isolated markers. Few association signals were identified for the 

complex quantitative trait NUE, however, larger number of quantitative trait loci (QTLs) were detected for 

its component traits, with 10 and 2 association signals for nitrogen utilization efficiency and nitrogen 

uptake efficiency, respectively. Several detected association signals co-localized with genes involved in 

nitrogen transport or nitrogen remobilization within 100 kb. The present study thus confirmed the potential 

of GWAS to identify candidate genes and new loci associated with agronomic traits. However, because of 

the quantitative and complex nature of NUE-related traits, GWAS might have not captured a large 

number of QTLs with limited effects. 
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Increasing crop production to ensure food security for 

a global population that will continue to grow in the 

next four decades is a major challenge (Godfray et al, 

2010). Given the competition for land, alarming alteration 

of natural ecosystems and loss of biodiversity 

(Cardinale et al, 2012), we need to produce more from 

the same amount of (or even less) land, water and 

nutrients, i.e. improve crop productivity and resource 

use efficiency. Plant breeding is expected to contribute 

significantly to these challenges. The development of 

new high-throughput genotyping, phenotyping and 

breeding methods would help explore available genetic 

diversity and accelerate crop improvement (Tester and 

Langridge, 2010). These objectives apply particularly 
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to upland rice, a subsistence crop in the sub-Saharan 

Africa mostly cultivated in low-input cropping systems 

under high biotic and abiotic constraints.  

Nitrogen (N) is a key element of proteins and nucleic 

acids, and thus crucial for crop growth and development. 

Improvement of nitrogen use efficiency (NUE) is a 

concern in high input agriculture to reduce nitrogen 

loss, the associated environmental damage and economic 

losses (Raun and Johnson, 1999). Increasing crop 

yield and protein content is also important in low-input 

agriculture (Dawson et al, 2008). NUE is a complex 

quantitative trait involving N uptake, translocation, 

assimilation and remobilization, all interacting with 

environmental factors (Garnett et al, 2015). Many genes 

involved in NUE have already been characterised in 

rice (Li et al, 2017). For instance, nitrate transporter 

gene NRT1.1B, variation between the indica and japonica 

subspecies, is associated with enhanced nitrogen 

uptake and root-to-shoot transport. The transfer of the 

indica allele of NRT1.1B into a wide range of japonica 

backgrounds confirms the interest of this gene for crop 

breeding (Hu et al, 2015). More generally, for breeding 

purposes, there is a need to explore the allelic 

diversity that contributes to the phenotypic variability 

observed for NUE and its components within each rice 

subspecies. 

Genome-wide association study (GWAS) is a 

powerful way to mine potentially interesting alleles in 

collections of crop germplasm (Zhu et al, 2008). 

GWAS relys on linkage disequilibrium (LD) to detect 

associations between phenotypic variations and DNA 

sequence variations (single nucleotide polymorphisms, 

SNPs). The power and resolution of association mapping 

depend on the extent of LD in the target population. A 

self-pollinating species like rice, in which LD extends 

over more than 100 kb, is thus ideally suited for 

GWAS (Mather et al, 2007). The drawback is that the 

identification of causal polymorphisms for phenotypic 

variations is not straightforward and requires follow-up 

analyses to sort the candidate genes (Han and Huang, 

2013). Population structure and cryptic relatedness can 

result in false positive associations between markers and 

phenotypes because population admixture creates LD 

between unlinked loci. Methodological issues related 

to the implementation of GWAS are extensively 

presented and discussed in a dedicated book (Gondro 

et al, 2013). GWAS has been successfully used to 

dissect a very large diversity of complex qualitative 

and quantitative traits in rice (Zhang et al, 2016).  

Several linkage-based quantitative trait locus (QTL) 

mapping studies have been performed in multiple rice 

populations for NUE-related traits, but very few genes 

have been identified (Obara et al, 2001; Shan et al, 

2005; Cho et al, 2007; Senthilvel et al, 2008; Li et al, 

2010; Wei et al, 2011; Zhou et al, 2017). Liu et al 

(2016) focussed on plant height (PH), tiller number 

and grain length (GL) measured under low and standard 

N conditions. Tang et al (2019) succeeded in identifying 

seven NUE-related genes using GWAS, including a 

NAC42-activated nitrate transporter.  

Here, we presented GWAS-based QTL mapping for 

NUE and NUE-related traits performed on a 

worldwide diversity panel of 190 accessions mainly of 

tropical japonica origin using 38 390 SNPs. The 

diversity panel was phenotyped in a rainfed upland 

cropping system for 16 traits related to NUE and yield 

components under two contrasted levels of nitrogen 

input and over two consecutive cropping seasons.  

RESULTS 

Phenotypic variability for NUE and NUE-related 

agronomic traits 

The phenotypic variation has been studied for a total 

of 21 measured and calculated traits (Table S1). The 

analysis of variance across the two-year experiment 

showed a significant genotype effect for all traits 

(Table S2). A significant interaction was observed 

between year and genotype for all traits except grain N 

content (GNC) and grain pilosity (GP). A significant 

interaction was also observed between year and the N 

level for all traits except for GP and GL. Likewise, a 

significant interaction between genotype and N level 

was observed for most traits. Given these interactions, 

an analysis of variance was also performed for each 

year separately. Overall, nine association analyses per 

marker-trait combination were performed using 

average best linear unbiased predictor (BLUP) in LN 

(low nitrogen, 0 kg/hm
2
 N) and HN (high nitrogen, 

120 kg/hm
2
 N) conditions over the two years 

combined or for each year separately.  

Distance-based clustering of the 190 accessions of 

our panel is presented in a neighbour-joining tree (Fig. 

1). Genetic structure is mainly limited to indica- 

japonica differentiation, given the presence in the 

panel of a few accessions with indica background. The 

accessions originating from the same breeding programme 

tended to cluster together. Clustering of accessions 

may be due to kinship relationships between accessions 

that partly or completely share the same parents. 

Neighbour-joining tree constructed with data from the 

190 accessions of the panel and the accessions of the 
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3K project is presented in Fig. S1. The great majority 

of the accessions in the panel clustered into the 

japonica subspecies accessions of the 3K project, and 

most of them were the tropical and subtropical group 

of the japonica subspecies, while only one was related 

to the temperate japonica group. The subtropical 

group is composed mainly of upland rice varieties 

bred for the cold conditions of Madagascar highlands 

(Raboin et al, 2014). In our panel, 2 accessions were 

clearly related to the indica subspecies, and about 30 

accessions were in an intermediate position between 

indica and japonica subspecies (admixed).  

On average, across all chromosomes, LD reached 

half of its original value at around 300 kb, while it 

was less than 200 kb in a worldwide reference panel 

of tropical japonica accessions (Raboin et al, 2016). 

LD dropped to an r
2
 value of 0.2 in 1000 kb in our 

panel compared to 400 kb in the reference panel (Fig. 

2). Given this level of LD, and even if LD varies 

among genomic regions (Zhang et al, 2016), the 

marker density of one SNP (every 11 kb in our panel) 

should be suitable for the detection of most marker- 

trait associations using GWAS. The drawback of this 

large extent of LD may be a rather low resolution.  

GWAS validation using grain traits 

To assess the potential of GWAS to identify causative 

genes of measured phenotypic variation in our panel, 

we performed GWAS on some grain traits, with genes 

previously identified for awn length (AL), GP, GL 

and grain width (GW) (Fig. S2). No gene for grain 

thickness (GT) was identified. 

Concerning AL, we detected 63 SNPs extending 

from 14.16 to 18.94 Mb on chromosome (Chr.) 4 at 

P-value ≤ 10
-4

, surrounding the Awn1 gene (LOC_ 

Os04g28280), which controls awn elongation in rice 

(Luo et al, 2013). The distance between Awn1 and the 

most significant SNP (Chr4_17466245, P-value = 4.84 × 

10
-8

) was 733 kb (Fig. S2-A). 

Concerning GP, a region was identified on Chr. 5 

encompassing 44 significant SNPs at P-value ≤ 10
-4

 

over 600 kb. This region includes the Glabrous-1 gene 

(LOC_Os05g02730; Chr5_977812), 

involved in glabrousness of rice glumes 

(Angeles-Shim et al, 2012). The distance 

between Glabrous-1 and the most 

significant SNP (Chr5_ 1061537, P-value = 

3.23 × 10
-9

) was 83 kb (Fig. S2-B). 

Concerning GL, the region coincided 

Fig. 2. Comparison of linkage disequilibrium (LD) 

decay in panel of 190 accessions used in this study 

(in red) and the worldwide tropical japonica 

reference panel (in blue).  

The curves represent the average r² among the 12 

chromosomes over the whole length of the 

chromosome (main frame) or in 10 kb bins for LD 

decay plot over a maximum distance of 1000 kb 

(zoomed frame). Each circle corresponds to the 

average LD between marker pairs in 100 kb bins. 

Fig. 1. Neighbour joining tree of the 190 accessions 

based on 38 390 single nucleotide polymorphisms 

(SNPs).  
Accessions are coloured according to the breeding 

center from which they originate. FOFIFA 

(National Center for Applied Research on Rural 

Development)/CIRAD (French Agricultural Research 

Centre for International Development) in Madagascar 

(Orange); CIAT (International Center for Tropical 

Agriculture) in Colombia (Yellow); EMBRAPA 

(Brazilian Agricultural Research Corporation) in 

Brazil (Red); CIRAD in Brazil (Blue); CIRAD in 

Ivory coast (Light blue); Africa rice in Ivory coast 

(Green); Yunnan Academy of Agricultural Sciences 

in China (Violet). 
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with GS3 on Chr. 3 was detected (Fan et al, 2006). 

The most significant SNP (Chr3_16790082, P-value = 

7.76 × 10
-7

) was located 94 kb from GS3 (LOC_ 

Os03g29350; Chr3_16695922), explaining 13% of 

GL variation (Fig. S2-C).  

Concerning GW, a region on Chr. 5 displayed 

strong association signals around gene GW5 involved 

in grain size (Shomura et al, 2008). The most significant 

SNP (Chr5_5391748), detected at P-value of 3.29 × 

10
-7

, was located 26 kb from GW5 (LOC_Os05g09520; 

Chr5_5365520), and explaining 11.7% of GW variation. 

One of the significant SNP was localized within GW5, 

but it was not the most significant SNP (Fig. S2-D). 

Thus, we were able to detect marker-trait associations 

close to four previously characterized genes. However, 

depending on local LD in the vicinity of each gene, 

the distance between the peak association signals and 

the putative causative genes varied from 26 to 733 kb. 

This level of accuracy will make it difficult to 

unequivocally identify causative genes associated with 

the detected signals.  

GWAS on NUE and related agronomic traits 

Genome-wide Manhattan and QQ plots were presented 

for genotype BLUPs calculated over two years and in 

HN or LN conditions. A total of 369 SNPs were involved 

in significant associations (P-value ≤ 10
-4

) (Table 1). 

Among those SNPs, 180 were located on putative 

genes (MSU rice genome annotation project release 7, 

http://rice.plantbiology.msu.edu/cgi-bin/gbrowse/rice/).  

NUE, NUE components and N-related traits 

Four significant SNPs were detected for NUE 

corresponding to two haplotype groups and one 

isolated SNP on Chrs. 6, 7 and 11, explaining 9.5%, 

9.6% and 10.4% of phenotypic variations, respectively. 

Larger numbers of associations were detected for the 

two component traits, nitrogen uptake efficiency 

(NUPE; 5 significant SNPs) and nitrogen utilization 

efficiency (NUTE; 28 significant SNPs). The SNPs 

associated with NUPE belonged to two haplotype 

groups on Chrs. 5 and 6, explaining 8.1% and 9.3% of 

phenotypic variations, respectively. The SNPs associated 

with NUTE belonged to nine haplotype groups on 

Chrs. 1, 3, 6, 9, 10 and 11 and two isolated markers on 

Chrs. 4 and 9, explaining the phenotypic variations of 

8.0% and 11.5%. Many significant SNPs were also 

detected for the N-related traits, GNC, N harvest index 

(NHI) and total N uptake (TNUP). Twenty-six SNPs 

for GNC belonged to five haplotype groups and four 

isolated markers on Chrs. 1, 4, 5, 10, 11 and 12. 

Thirty-one SNPs for NHI belonged to nine haplotype 

groups and three isolated markers on Chrs. 1, 4, 5, 6, 9, 

11 and 12. Ten SNPs for TNUP belonged to three 

haplotype groups on Chrs. 1, 5 and 6. The number of 

significant SNPs was only two for straw N content 

(SNC), each on Chrs. 1 and 9. 

Grain yield related traits 

Association analysis was performed on four yield 

components, including number of panicles per m
2
 

(PANM2), number of spikelets per panicle (SPIPAN), 

percentage of filled grains (FG) and 1000-grain weight 

(TGW). For PANM2, 57 SNPs were significant at 

P-value ≤ 10
-4

.
 
These associations corresponded to 

three haplotype regions on Chrs. 2, 4 and 6, and two 

isolated SNPs on Chrs. 1 and 7. The haplotype region 

on Chr. 4 encompassed 53 SNPs and extended from 

31.05 to 33.31 Mb. The most significant SNP (Chr4_ 

31258594) explained 12% of PANM2 variation. For 

SPIPAN, three isolated significant SNPs were found 

on Chrs. 2, 4 and 12. For FG, 18 SNPs were detected 

on Chrs. 1, 2, 3, 4, 9 and 11, corresponding to 7 

haplotype groups and 2 isolated markers. For TGW, 

26 SNPs were found to be significantly associated. 

These associations corresponded to seven haplotype 

regions and one isolated SNPs on Chrs. 2, 3, 6, 10, 11 

and 12. Although a total of 104 SNP-trait associations 

were revealed by GWAS for the four yield components, 

only four SNPs were significantly associated with 

grain yield (GY) as such. These belonged to two 

haplotype groups on Chrs. 6 and 11, explaining up to 

9.9% and 11.6% of GY variation, respectively. Within 

these two haplotypes, only one SNP was associated 

with a yield component trait out of the total of 104 

such associations. Three grain size traits (GL, GW and 

GT) related to TGW were also studied. Overall, 65 

marker-trait associations were detected belonging to 

11 haplotype groups (Table 2).  

Association analysis was performed on three 

indicators of vegetative biomass, straw yield (SY), PH 

and harvest index (HI). Nine SNPs (four haplotype 

groups and one isolated marker) were significantly 

associated with SY, located on Chrs. 1, 2, 8 and 11. 

For PH, 24 significant SNPs (eight haplotype groups 

and one isolated marker) were detected on Chrs. 3, 4, 

5, 7 and 10. For HI, which measures the partition 

between vegetative and grain biomass, 49 significant 

association signals (12 haplotype groups and six 

isolated markers) were detected on Chrs. 1, 3, 4, 5, 6, 

7, 8, 9, 10 and 11.  

Days to flowering (DTF) was associated with 12 SNPs. 
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These associations corresponded to four haplotypes on 

Chrs. 1, 2 and 3 and one isolated marker on Chr. 3. The 

region on Chr. 3 revealed the strongest association signal 

in this study (P-value = 1.56 × 10
-9

 at Chr3_ 1424348) 

and corresponded to a major effect explaining up to 

21.9% of the phenotypic variation. 

Table 1. Results of genome-wide association analysis for SNPs from haplotypes close to relevant putative genes. 

Chr. SNP position Trait Max Min LOD R2 (%) Qmin Candidate gene within 100 kb 

1 594 602 GNC 179 11 4.22 9.0 0.68 OsNRT2.1 

1 594 602 GNC 179 11 4.22 9.0 0.68 OsNIP4.1 

1 2 961 416 FG, DTF, NHI, HI 172 18 4.97 10.3 0.03 OsCrRLK1L4 

1 2 972 214 NHI, DTF, HI 171 19 5.09 10.6 0.03 

1 2 972 304 DTF, NHI 178 12 4.77 8.8 0.13 

1 3 028 472 DTF, SY, NHI, HI 177 13 5.25 10.4 0.03 

1 3 031 975 NUTE, NHI, HI 178 12 5.51 11.0 0.03 

1 3 034 970 NUTE, NHI, HI 181 9 6.00 11.8 0.02 

1 4 825 760 NUTE, NHI, HI 181 9 7.26 14.9 0.00 

1 4 958 939 NHI 173 17 4.07 7.5 0.17 OsDOS 

1 7 309 207 SNC 104 86 4.09 8.7 0.55 OsTIP4;2 

1 29 135 405 GNC, NUTE 179 11 4.76 10.4 0.13 OsNRT2.3a 

1 29 212 814 GNC 177 13 4.01 8.5 0.13 CBSCLC2 

1 33 331 630 SY 155 35 4.23 8.8 0.47 OsGH3.1 

1 35 227 489 TNUP 141 49 4.03 8.2 0.73 OsAAT7 

2 2 843 055 DTF 136 54 4.19 9.0 0.28 lc2; OsVIL2 

2 24 480 078 TGW 155 35 4.17 7.3 0.19 OsMPS 

2 24 510 877 TGW 121 69 4.09 8.1 0.19 

3 1 352 456 DTF 157 33 8.15 19.9 0.00 DTH3 

3 1 356 326 DTF 164 26 8.12 19.9 0.00 

3 1 395 165 DTF, FG, NUTE 160 30 7.01 16.7 0.00 OsCrRLK1L6 

3 1 424 348 DTF 154 36 8.81 21.9 0.00 

3 3 425 919 PH 167 23 4.88 6.7 0.20 oscow1; nal7 

3 3 602 444 PH 175 15 4.27 5.7 0.20 

3 3 677 867 PH 174 16 4.23 5.6 0.23 

3 3 728 449 PH 175 15 4.27 5.7 0.20 OsDof12 

3 3 845 920 DTF 176 14 5.34 12.1 0.03 OsSUT1  

3 16 174 183 TGW, GL 135 55 5.46 11.8 0.03 GS3 

3 16 174 184 TGW, GL 135 55 5.46 11.8 0.03 

3 16 414 381 TGW 147 43 4.23 8.4 0.20 

3 16 790 082 TGW, GL 152 38 6.17 13.6 0.02 

4 31 050 939 PANM2 155 35 5.85 10.1 0.02 osks1  

4 31 070 568 PANM2 172 18 4.69 8.3 0.05 osks2 

4 31 243 064 PANM2 144 46 4.54 9.6 0.09 15 masked associations with PANM2 

4 31 250 082 PANM2 141 49 5.92 10.8 0.02 nal1, GPS, SPIKE, LSCHL4  

4 31 450 557 PANM2, PH 159 31 5.70 11.6 0.03 Six masked associations with PANM2 

5 3 506 138 GW 157 33 5.09 9.2 0.10 GS5 

5 5 309 762 GW 158 32 4.05 6.8 0.18 GW5 

5 5 361 979 GW 113 77 4.55 7.7 0.07 

5 5 362 675 GW 112 78 6.01 10.7 0.01 

5 5 362 698 GW 114 76 6.08 11.1 0.01 

5 5 365 520 GW 114 76 4.02 7.0 0.18 

5 5 391 748 GW 122 68 6.48 11.7 0.01 Five masked associations with PANM2 

6 21 981 979 TNUP 157 33 4.15 8.7 0.38 d35 

6 21 982 001 TNUP 157 33 4.15 8.7 0.38 

6 22 028 211 TNUP 161 29 4.10 8.5 0.38 

6 22 047 685 TNUP 161 29 4.10 8.5 0.38 

6 22 089 331 TNUP, NUPE 162 28 4.48 9.5 0.38 

9 1 504 274 GL 169 21 4.19 8.6 0.15  

9 1 504 282 GL 169 21 4.19 8.6 0.15  

9 1 824 735 NUTE 169 21 4.10 8.4 0.08 rFCA 

11 19 200 467 GY, NUE, NUTE, NHI, HI 180 10 5.53 11.6 0.03 tld1-D 

11 19 365 597 NUTE, NHI, HI 181  9 4.72 8.7 0.13 

12 9 914 173 NHI 126 64 4.46 8.3 0.14 rbcS, OsRBCS2 

12 10 531 085 NHI 126 64 4.84 9.2 0.13 

Chr., Chromosome; SNP, Single nucleotide polymorphism; GNC, Grain nitrogen content; FG, Filled grain; DTF, Days to flowering; NHI, Nitrogen 

harvest index; HI, Harvest index; SY, Straw yield; NUTE, Nitrogen utilization efficiency; SNC, Straw nitrogen content; TNUP, Total plant nitrogen 

uptake; TGW, 1000-grain weight; PH, Plant height; GL, Grain length; PANM2, Number of panicles per m2; GW, Grain width; NUPE, Nitrogen 

uptake efficiency; GY, Grain yield; NUE, Nitrogen use efficiency; Max, Number of occurrence of Major allele; Min, Number of occurrence of Minor 

allele; LOD, Logarithm of odds; R2, Coefficient of determination; Qmin,, Minimum Q-value. 
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SNP and haplotype shared by different traits 

The 369 significant associations reported above 

corresponded to 254 individual SNPs. Among the 254 

SNPs, 209 were associated with only one trait. The 

remaining 45 SNPs were associated with two to five 

traits (Table 2). Some of these SNPs shared by two 

traits, involved strongly correlated traits. This was the 

case, for instance, HI and NHI had 21 significant 

shared SNPs, belonged to six haplotype groups, and 

NUTE and HI (or NHI) had four shared haplotype 

groups (six significant SNPs). The correlation 

observed between HI and NHI, between NUTE and 

NHI, and between NUTE and HI was 0.90, 0.73 and 

0.79, respectively. Association signals for NUTE and 

FG coincided in four haplotype groups. Three 

haplotypes shared by NUTE and GNC (13 significant 

SNPs). We observed that among the 12 significant 

SNPs associated with DTF, six SNPs were also 

involved in associations with several other agronomic 

traits including HI, FG and NUTE. DTF and FG 

coincided in four haplotype groups but with opposite 

effects because late varieties (DTF) presented lower 

fertility (FG), and low FG resulted in lower NUTE. 

Only two haplotypes were associated with complex 

quantitative traits (GY and NUE), whereas a greater 

number of haplotypes were associated with their 

component traits. This highlighted the interest of 

decomposing complex traits into simpler and more 

heritable component traits. 

Three large haplotypes were deserved to be 

highlighted for their pleiotropic effects. One was 

located on Chr. 1 (2.92 to 4.96 Mb) and encompassed 

significant marker-trait associations detected for DTF, 

NHI, HI, FG, SY and NUTE. The second was located 

on Chr. 6 (21.46 to 27.02 Mb) and encompassed 

marker-trait associations detected for GY, NUE, HI, 

TNUP, NUPE and PANM2. The third one was located 

on Chr. 11 (19.20 to 22.30 Mb) and encompassed 

marker-trait associations detected for GY, NUE, 

NUTE, NHI, HI and GNC. Interestingly, the only four 

signals detected for GY were found in two of these 

pleiotropic haplotypes on Chrs. 6 and 11.  

DISCUSSION  

The primary objective of this study was to explore the 

genetic bases of NUE in upland rice using GWAS. 

The average extent of LD in our panel implied 

variable power of resolution for gene identification, as 

demonstrated by dissecting GWAS signals around 

GW5, GS3, Glabrous-1 and Awn1. Using a temperate 

japonica panel of comparable size (176 accessions) 

and of slightly lower level of LD (445 kb with r
2
 ≥ 

2.0), Yano et al (2016) identified new genes influencing 

agronomic traits, but Gordon and Finch (2005) used a 

Table 2. Results of counting significant SNPs or haplotypes shared by traits. 

Parameter Haplotype GY PANM2 SPIPAN FG TGW DTF GL GW GT PH SY HI NUE NUPE NUTE SNC GNC TNUP NHI 

SNP   57 3 18 26 12 28 27 10 24 9 49 4 5 28 2 26 10 31 

GY             1 3  1    1 

PANM2 3 1         3          

SPIPAN 3  1                  

FG 7  2 1   2      1   1    1 

TGW 7   1    3             

DTF 4    4       1 4   1    5 

GL 4     2               

GW 6   1  1    1           

GT 2        1            

PH 8  1  2  1  1 1           

SY 4    2  1  1    1       1 

HI 12 2 1  2 1 2    3 1  1 1 6    21 

NUE 2 2 1          2   1    1 

NUPE 2 1 1          1 1     5  

NUTE 10 2 1  4  3 1    1 4 2 1   13  6 

SNC 1    1                

GNC 5 1         1  1 1 1 3     

TNUP 3 1 1         1 1 1 2 1  1   

NHI 9 1   2  2    2 1 6 1  4  1   

SNP, Single nucleotide polymorphism; GY, Grain yield; PANM2, Number of panicles per m2; SPIPAN, Number of spikelets per panicle; FG, Filled 

grain; TGW, 1000-grain weight; DTF, Days to flowering; GL, Grain length; GW, Grain width; GT, Grain thickness; PH, Plant height; SY, Straw yield; 

HI, Harvest index; NUE, Nitrogen use efficiency; NUPE, Nitrogen uptake efficiency; NUTE, Nitrogen utilization efficiency; SNC, Straw nitrogen 

content; GNC, Grain nitrogen content; TNUP, Total plant nitrogen uptake; NHI, Nitrogen harvest index.  

Values above the diagonal are the number of SNPs shared by two traits; and values under the diagonal are the number of haplotypes shared by two traits. 
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higher marker density (over 400K SNP), which 

improved the power of GWAS. Given the extent of 

LD in our panel, we looked for the colocalization of 

the significant associations between SNP and NUE- 

related traits with candidate genes, considering an 

interval of 200 kb around each significant SNP (100 

kb downstream and 100 kb upstream). This is a rather 

stringent interval considering the average LD decay 

distance of around 300 kb measured in our panel. 

Colocalization of GWAS signals associated with 

NUE components and candidate genes 

Several SNPs significantly associated with NUE and 

NUE component traits colocalized with genes involved 

in N metabolism or in growth and development 

processes. For instance, the SNP Chr11_19365597, 

located on the pleiotropic segment of Chr. 11, is located 

7 kb downstream of the rubisco chain precursor LOC_ 

Os11g32770. The SNP Chr12_9914173, associated 

with NHI, is located 166 kb upstream of rbcS (LOC_ 

Os12g17600), a gene involved in rubisco synthesis 

(Ogawa et al, 2011). Rubisco is an enzyme involved in 

key physiological trade-offs between N remobilization 

and yield increase during leaf senescence. Rubisco, 

together with other proteins linked with photosynthesis, 

is a main source of N from leaves during the 

remobilization process and accounts for 50% of the 

total soluble protein content in the leaves of C3 plants 

(Masclaux et al, 2010). Chr1_4958939 associated with 

NHI was located only 10 kb downstream of OsDOS 

(LOC_Os01g09620) involved in N remobilization, 

delaying leaf senescence in rice (Kong et al, 2006). 

Chr1_594602 associated with GNC was located 39 kb 

upstream of OsNRT2.1 (LOC_Os01g02170), a high 

affinity nitrate transporter (Yan et al, 2011). Increased 

expression of OsNRT2.1 improves NUE in rice (Chen 

et al, 2016). Chr1_29135405 and Chr1_29212814 

associated with GNC and NUTE were located 

respectively 53 kb upstream and 23 kb downstream 

from OsNRT2.3 (LOC_Os01g50820) (Tang et al, 

2012). Overexpression of OsNRT2.3b has been shown 

to improve rice yield and NUE (Fan et al, 2016). 

Chr1_594602 associated with GNC and Chr1_7309207 

associated with SNC were located 51 kb upstream and 

6 kb downstream of two aquaporin genes, OsNIP4.1 

and OsTIP4;2, respectively. Aquaporins are involved in 

waterflow and ammonium uptake (Gao et al, 2018). 

Chr1_29212814 associated with GNC was located 4 

kb upstream of a chloride channel family gene (CBSCLC2) 

involved in nitrate transport into vacuoles (Zifarelli 

and Pusch, 2010). Lastly, Chr1_35227489 associated 

with TNUP was located 95 kb upstream of OsAAT7, a 

gene involved in amino acid transport (Lu et al, 2012).  

Two SNPs, associated with NUE and NUE components, 

were colocalized with genes involved in growth and 

development. Chr6_22028211, which was located on 

the above described pleotropic-effect segment of Chr. 6 

and associated with TNUP, was located 7 kb downstream 

of the d35 gene (LOC_Os06g37300) corresponding to 

a gibberellin biosynthesis enzyme, in which a defect 

leads to a semi-dwarf stature (Itoh et al, 2004). 

Chr11_19200467 associated with NUE and NUTE 

was located 16 kb downstream of tld1-D (LOC_ 

Os11g32510), a gene involved in auxin synthesis 

whose mutation increases the number of tillers and 

leads to dwarfism (Zhang et al, 2009). Both d35 and 

tld1-D genes have pleiotropic effects on plant morphology 

and productivity. 

Colocalization of GWAS signals associated with 

yield components and candidate genes 

Several SNPs were significantly associated with GY 

components colocalized with genes that were involved 

in growth and development processes or in grain 

characteristics. For instance, the haplotype on Chr. 4 

spanning more than 2 Mb encompassed 53 significant 

associations for PANM2, including the pleiotropic 

gene, Nal1, involved in leaf width and length, PH and 

the number of tillers (Jiang et al, 2015). The number 

of tillers in the nal1 mutant of Nipponbare was 240% 

higher than that in wild type. The most significant 

SNP of this haplotype (Chr4_31243064) was located 

57 kb from this gene. In line with the putative 

pleiotropic effect of Nal1, the haplotype also encompasses 

seven marker-trait associations for PH. Concerning 

grain characteristics, in addition to the colocalization 

of the GWAS signals associated with grain size, as 

GS3 and GW5, three other occurrences of colocalization 

were identified. Chr2_24510877 associated with TGW 

was located 71 kb upstream of OsMPS (LOC_ 

Os02g40530) involved in reproductive development, 

and that may, among other effects, induce variations 

in grain size and grain weight (Schmidt et al, 2013). 

Chr3_13604676 associated with GT was located in 

LOC_Os03g23960, which codes for a protein of the 

IQ calmodulin-binding motif family like GW5 

(although it presents limited sequence homology with 

GW5). Chr5_3506138 associated with GW was located 

67 kb downstream of GS5, a gene that regulates grain 

size (LOC_Os05g06660) (Li et al, 2011). 
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Colocalization of GWAS signals associated with 

flowering date and candidate genes 

DTF plays a determining role in adaptation to a 

specific cropping system, especially in the harsh climatic 

conditions that prevail in the medium elevation area of 

Madagascar. We identified four haplotype groups 

associated with DTF on Chrs. 1, 2 and 3. One haplotype 

on Chr. 3 explained up to 22% of the phenotypic variation. 

The first SNP in this haplotype, Chr3_1352456, was 

located 82 kb from DTH3 (LOC_Os03g03070), a gene 

involved in heading date (Lee et al, 2004). The second 

SNP (Chr3_1395165) of the same haplotype was located 

only 6 kb from the candidate gene TKL_IRAK_ 

CrRLK1L-1.6 (LOC_Os03g03280). Interestingly, the 

haplotype on Chr. 1 associated with DTF also colocalized 

with a member of TKL_IRAK family, CrRLK1L-1.4 

(LOC_Os01g06280). The colocalization involved five 

SNPs between Chr1_2958149 and Chr1_3028472, the 

closest one being located 13 kb from the gene. The 

receptor kinase CrRLK1L gene (Catharanthus roseus 

receptor like kinase) has been shown to be involved in 

many biological processes. In Arabidopsis, CURVY1, 

a gene belonging to the CrRLK1L family, is involved 

in flowering time (Gachomo et al, 2014). In Oryza 

sativa, using a phylogenomic approach, Nguyen et al 

(2015) identified 16 homologs of CrRLK1L presenting 

Gigantea-mediated circadian regulation of their 

expression. These authors proposed a functional model 

for the role of OsCrRLK1L2 in the regulation of the 

flowering time signaling pathway or circadian 

rhythms. Two other SNPs associated with DTF were 

located close to candidate genes involved in flowering 

control: Chr2_2843055 at 38 kb from OsVIL2 (LOC_ 

Os02g05840) (Yang et al, 2013) and Chr3_3845920 at 

47 kb from OsSUT1 (LOC_Os03g07480) (Ishimaru et al, 

2001) or 107 kb from OsDof12 (LOC_Os03g07360) 

(Li et al, 2009).  

We detected 369 SNPs belonging to 46 distinct 

haplotype groups and 28 associated-SNPs (P-value ≤ 

10
-4

) with GY, NUE and their component traits. 

However, few associations were detected for GY and 

NUE. Overall, a small number of haplotypes/QTLs 

with small effects were detected considering the large 

number of traits. In addition, associations with a rather 

large effect (up to 21.9%) were detected for the less 

complex trait DTF. This finding confirms the complex 

quantitative nature of GY and NUE traits, involving 

very large number of QTL with small effects that 

could be captured only in GWAS experiments based 

on a very large number of accessions. Such experiments 

are difficult to achieve in a medium size breeding 

programme. Beyond the feasibility issue, the large 

number of QTLs involved would limit the effectiveness 

of the conventional marker-assisted selection for NUE. 

In this context, genomic selection should be considered 

for breeding rice varieties with improved NUE because 

it embraces all marker information and may thus 

better capture variations caused by small effect QTLs.  

METHODS 

Rice materials 

The diversity panel was composed of 190 rice accessions, most 

of which belonged to the tropical japonica genetic group (Fig. 

1) and originated from different breeding programmes: CIAT 

(International Center for Tropical Agriculture) in Colombia, 

IAC (Instituto Agronômico de Campinas) and EMBRAPA 

(Empresa Brasileira de Pesquisa Agropecuária) in Brazil, 

FOFIFA (FOimbempirenena momba ny FIkarohana ampiharina 

amin’ny Fampandrosoana ny eny Ambanivohitra; http://www. 

fofifa.mg/)/CIRAD (French Agricultural Research Centre for 

International Development; https://www. cirad.fr/) in 

Madagascar, CIRAD in Brazil and Africa Rice (Table S3). It 

represented the working collection of the upland rice breeding 

programme conducted in Madagascar by FOFIFA and CIRAD. 

As such, all accessions have been screened for adaptation to 

rainfed upland (i.e. aerobic) cropping in the Mid- West region 

of Madagascar.  

Field experiments and phenotyping  

Experimental design and crop management 

The field trials were conducted at Ivory in the Mid-West region 

of Madagascar (19º33′27′′ S, 46º24′43′′ E, 960 m) over two 

cropping seasons (2014–2015 and 2015–2016), hereafter 

referred to as year-1 and year-2. In each year, the experimental 

design was a split-block built on an alpha lattice with two 

replications (Fig. S3). Each replication contained 14 blocks. 

Each block comprised 16 accession plots including 14 tested 

accessions and two control accessions. Each block was split 

into two sub-blocks in order to evaluate two levels of mineral 

nitrogen fertilization: LN (0 kg/hm2 N) and HN (120 kg/hm2 N). 

Thus, the plot for each accession was split into two adjacent 

subplots, one under LN and the other under HN. In year-1, the 

size of each subplot was 1.8 m × 2.4 m (108 hills or holes made 

for sowing seeds) for the first replication and 1.4 m × 2.0 m (70 

hills) for the second replication. In year-2, the size of each 

subplot was 1.8 m × 1.6 m (72 hills) in the first replication and 

1.2 m × 1.6 m (48 hills) in the second replication.  

Field preparation started with ox plowing followed by hand 

surfacing of the soil. Four to six rice seeds were sown per hill 

with 20 cm × 20 cm spacing between the hills. Right before 

sowing, the same base dressing of cattle manure (5 000 kg/hm2), 

triple superphosphate (69 kg/hm2 P2O5), potassium sulfate 

(62.4 kg/hm2 K2O) and dolomite (500 kg/hm2) was applied to 

http://www/
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each hill in all the plots. In the HN plots, nitrogen was applied 

in the form of urea (46% N) at a rate of 120 kg/hm2 split into 

three equal applications at the emergence, tillering and booting 

stages. In order to protect the crop from white grubs (the larval 

stage of scarab beetles) that feed on rice roots and adult black 

beetles that feed on seedlings, rice seeds were treated with a 

systemic insecticide (35% imidacloprid + 10% thiram, at 2.5 

g/kg of seeds) before sowing. The rice crop was hand-weeded 

whenever needed. Fungicides were applied twice a week to 

protect the crop from rice blast disease starting from the 

appearance of the first blast lesions up to harvest, using by 

turns Carbendazime and Propineb. 

Measurement of phenotypic traits 

Twenty-one traits were measured in each elementary plot. DTF 

was recorded at the 50% flowering stage. At maturity, PH was 

measured on six hills (0.24 m2) located in the middle of each 

plot. Then, whole plants from the six hills were uprooted and 

their roots were cut off and discarded. Plant aboveground 

biomass was separated into straw and panicles. The panicles 

were counted and hand-threshed, and filled grains were 

separated from unfilled grains. The dry weights of filled grains 

and unfilled grains were determined after oven-dried at 60 ºC 

for 72 h. Filled grains were used to estimate GY. Two 

sub-samples of 200 filled grains and 200 unfilled grains were 

weighed to calculate the total number of filled and unfilled 

grains and TGW. PANM2, SPIPAN and FG were calculated. 

Straw samples were oven-dried at 60 ºC for 72 h and weighed 

to estimate SY. HI was then calculated from GY and SY. GNC 

and SNC were measured by near-infrared spectroscopy on 

dried samples (oven-dried at 60 ºC for 72 h), ground to 1 mm, 

using available calibration equations (Rakotoson et al, 2017). 

TNUP was calculated as (GY × GNC / 100) + (SY × SNC / 100), 

and NHI as GY × GNC / (100 × TNUP). According to Moll et al 

(1982), NUE was estimated as GY / N supply, NUPE as TNUP / 

N supply, and NUTE as GY / TNUP. In the LN treatment, soil 

N supply was estimated as the maximum plant N uptake among 

all individual plots in a given block. In the HN treatment, soil 

N supply was calculated as the sum of soil N supply of the 

corresponding block in LN plus the amount of inorganic N 

applied. During the post-harvest period, five traits related to 

grain morphology were measured either quantitatively for GL, 

GW and GT or qualitatively, using a 1–9 scale, for GP (1, 

glabrous to 9, very hairy) and AL (1, absence of awn to 9, a 

very long awn). These traits were used to validate the association 

mapping approach in our panel through the localization of 

known genes for grain traits. 

Phenotypic data analysis  

Analysis of variance was conducted using a Mixed Model. 

Accession effect was separated in two components: a type of 

accession factor (with three levels: 1st control, 2nd control and 

tested accessions) and a genotype factor nested in the type of 

accession (with 196 tested accessions). Type factor was a fixed 

effect, and genotype factor was a random effect. Block effect 

was nested in year and replication. In fact, genotype, genotype × 

year, genotype × nitrogen, genotype × nitrogen × year, sub- 

blocks (ie: nitrogen × block) and whole-plot (ie: genotype × 

block) were considered as random effects in the model. We 

used the PROC Mixed procedure in the SAS/STAT statistical 

analysis package (version 9.4, SAS Institute Inc., Cary, NC, 

USA). BLUPs were calculated for each genotype and for each 

genotype × nitrogen interaction. Given the existence of a genotype × 

year interaction, data from each year were also analyzed 

separately, and BLUPs were calculated for each genotype and 

for each genotype × nitrogen interactions. All the BLUPs were 

used for the association analyses. Broad-sense heritability (H²) 

for all traits was calculated from the variance components 

obtained using the REML option in SAS PROC VARCOMP.  

Genotyping 

Seeds of each accession were cultivated at the Cirad 

Montpellier laboratory in CIRAD, France for DNA extraction 

and genotyping. Genomic DNA was extracted from the leaf 

tissue of a single plant of each accession using the MATAB 

method (Risterucci et al, 2000) and then diluted to 100 ng/µL. 

Each DNA sample was digested separately with the ApekI 

restriction enzyme. Each library was single-end sequenced in a 

single-flow cell channel (i.e., 96-plex sequencing) (Elshire et al, 

2011) using an Illumina, Inc. HiSeqTM 2000. Libraries 

sequence reads were aligned to the rice reference genome 

(Os-Nipponbare- Reference-IRGSP-1.0) (Kawahara et al, 2013) 

with Bowtie2 (default parameters). SNP calling was performed 

using the Tassel GBS pipeline v5.2.37 (default parameters) 

(Glaubitz et al, 2014). SNPs, with a call rate < 80%, a 

heterozygosity rate > 20% or a minor allele frequency (MAF) < 

2.5%, were all discarded. The remaining heterozygotes were 

converted into missing data. The missing data were imputed 

using Beagle v4.0 (Browning and Browning, 2007). After 

imputation, markers with a MAF < 4.2% (8 out of 190) were 

discarded. The final resulting matrix comprised 190 individuals 

and 38 390 SNP markers. 

Genetic structure and linkage disequilibrium analysis 

The genetic structure of the diversity panel was analyzed using 

the distance-based method proposed in DARwin 6.0.14 (https:// 

darwin.cirad.fr/). We calculated simple matching dissimilarities 

between all pairwise combinations of accessions. The matrix of 

pairwise dissimilarities was then used to build neighbour- 

joining trees. The analysis was first performed on the 190 accessions 

of the panel using all the 38 390 SNPs. Another analysis was 

performed by merging our panel of 190 accessions with the 

worldwide panel of the 3K Rice Genomes Project (Li et al, 2014) 

in order to position our diversity panel within the worldwide 

rice diversity. This analysis was performed using 27 326 SNPs 

shared by the 3K project data set and our own data set.  

We used Tassel 5.2.31 software (Trait Analysis by Association, 

Evolution and Linkage) to calculate pairwise LD of all markers 

for each chromosome. Local LD between SNPs within genomic 

regions containing candidate genes was visualized using the 
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LD heatmap R package (Shin et al, 2006). LD values were also 

used to define haplotypes. All adjacent SNPs in strong LD and 

significantly associated with the different traits studied were 

grouped into haplotypes.  

Association analysis 

We used the software TASSEL 5.2.31 to perform association 

analysis (Bradbury et al, 2007) using a Mixed Linear Model  

with control of population structure (Q) and kinship to avoid 

spurious associations (Yu et al, 2006; Zhang et al, 2010). The 

structure was taken into account through a principal component 

analysis of the genotypic data (Price et al, 2006) computed with 

Tassel. We retained the first five principal components to build 

the Q matrix. The kinship matrix was also computed with 

Tassel using the Centered-Identity by State method. The mixed 

model analysis was conducted with the optimum compression 

option and the P3D option to estimate the variance component. 

Association analyses were performed in each year and across 

the two years using average BLUP values of genotypes and 

BLUP values of genotypes under LN and HN conditions to 

account for interactions with the year and the N level (nine 

association analyses per marker-trait combination). The 

threshold for declaring an association significant and for further 

presentation and discussion of the results was set at P-value ≤ 

10-4. Marker-trait associations were retained when one at least 

of the nine association analyses had a P-value ≤ 10-4. The 

q-value estimating the false discovery rate was also computed 

using the q-value R package (Storey and Tibshirani, 2003). 
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