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Structured Abstract 

Background: Crop pests are among the greatest threats to food security, generating 
broad economic, social, and environmental impacts. The impacts of crop pests can 
be reduced by identifying the conditions that generate them early. These pests 
interact with their hosts and the environment through complex pathways, and it is 
increasingly common to find professionals from different areas (farmers, technicians, 
plant pathologists, computer scientists, economists, sociologists, etc.) gathering into 
projects that attempt to deal with that complexity most often involving several crop 
pests. A pest development forecasting can be made using prediction models and it is 
required for three reasons: economic impact, safety, and justification of control 
methods. Given this situation, it is necessary to build interdisciplinary work guides 
that allow the construction of models for the comprehensive management of pest 
development capable of overcoming the challenges imposed by the presence or 
absence of data. 

 

Aims: Propose a conceptual model for the detection of favorable conditions for coffee 
pests in a smart farming environment, based on the use of data value and variety, 
and expert knowledge. 

 

Methods: Starting from theoretical references on the realization of mappings and 
systematic reviews of the literature, the approach proposes a series of steps that lead 
to a State of Science as a knowledge base for modeling tasks. The modeling tasks are 
framed in knowledge-based modeling methodologies, as well as data-based modeling.  



  

 

Results: A conceptual model that guides activities for modeling and forecasting the 
development of diseases and pests in crops, where implementation details are subject 
to existing methodologies and frameworks. Forecasting solutions can be approached 
through models based on knowledge and data, according to the requirements and 
available elements of the person or group of people who will carry out the modeling 
based on the proposed processes. Additionally, a phase for the exploration of the 
complementarity between the generated models is proposed. The conceptual model 
is applied for the development of coffee diseases and pests as a specific case study. 

 

Conclusions: Our approach presents a comprehensive conceptual model that guides 
a robust crop pest modeling process, from obtaining knowledge of the crop pest to 
be modeled, to the modeling alternatives according to the available resources 
necessary for modeling such as data and knowledge. For example, a common problem 
is the amount of data with which the models are trained. If the data is not enough, 
a modeling alternative that does not require data is needed. Several approaches about 
crop pest modeling assume knowledge of the problem that is already present, without 
considering steps to obtain and refine it, and others carry out the modeling process 
empirically without following a methodology. Although this does not mean that the 
results are less reliable, the use of methodologies is recommended to achieve an 
orderly, reliable and well-presented process. 

 

Keywords: Conceptual model, Crop Pest, Data-based Modeling, Knowledge-based 
Modeling, Forecasting. 

 



 
 

 
 
 

Resumen Estructurado 

Antecedentes: Las enfermedades y plagas que atacan los cultivos se encuentran 
entre las mayores amenazas para la seguridad alimentaria y generan altos impactos 
económicos, sociales y ambientales. Estos impactos se pueden reducir identificando 
de manera temprana las condiciones que generan las enfermedades y plagas. Las 
enfermedades y plagas interactúan con sus hospederos y el medio ambiente de formas 
complejas y es cada vez más común encontrar profesionales de diferentes áreas 
(agricultores, técnicos, fitopatólogos, informáticos, economistas, sociólogos, etc.) 
uniendo esfuerzos en proyectos que intentan abordar dicha complejidad. Es posible 
realizar un pronóstico del desarrollo de enfermedades y plagas utilizando modelos de 
predicción y, más aún, esto es requierido por tres razones: impacto económico, 
seguridad y justificación de métodos de control. Ante esta situación, es necesario 
construir guías de trabajo interdisciplinario para la generación de modelos a ser 
usados en el manejo integral del desarrollo de enfermedades y plagas, capaces de 
superar los desafíos que impone la presencia o ausencia de datos. 

 

Objetivos: Proponer un modelo conceptual para la detección de condiciones 
favorables de enfermedades y plagas de cultivos en un entorno agrícola inteligente, 
basado en el uso del valor y variedad de los datos y el conocimiento experto. 

 

Métodos: A partir de referencias teóricas sobre la realización de mapeos y revisiones 
sistemáticas de la literatura, el enfoque propone una serie de pasos que conducen a 
un Estado de la Ciencia como base de conocimiento para las tareas de modelado. Las 



  

tareas de modelado se encuentran enmarcadas en metodologías de modelado basado 
en conocimiento, así como modelado basado en datos.  

 

Resultados: Un modelo conceptual que guía las actividades para el modelado y 
pronóstico del desarrollo de enfermedades y plagas en cultivos, donde los detalles de 
implementación están sujetos a las metodologías y marcos existentes. Las soluciones 
de pronóstico se pueden abordar a través de modelos basados en conocimiento y 
datos, de acuerdo con los requisitos y elementos disponibles de la persona o grupo de 
personas que realizarán el modelado basado en los procesos propuestos. 
Adicionalmente, una fase de exploración de la complementariedad entre modelos 
generados es propuesta. El modelo conceptual se aplica para el desarrollo de 
enfermedades y plagas del café como caso de estudio específico. 

 

Conclusiones: Nuestro enfoque presenta un modelo conceptual que guía un proceso 
robusto de modelado de plagas de cultivos, desde la obtención del conocimiento de 
la enfermedad o plaga de cultivo a modelar, hasta las alternativas de modelado de 
acuerdo con los recursos disponibles. Por ejemplo, un problema común es la cantidad 
de datos con los que se entrenan los modelos. Si los datos no son suficientes, se 
necesita una alternativa de modelado que no requiera datos. Varios enfoques sobre 
el modelado de plagas de cultivos asumen el conocimiento del problema que ya está 
presente, sin considerar los pasos para obtenerlo y refinarlo, y otros realizan el proceso 
de modelado de manera empírica sin seguir una metodología. Si bien esto no significa 
que los resultados sean menos confiables, se recomienda el uso de metodologías para 
lograr un proceso ordenado, confiable y bien presentado. 

 

Palabras Clave: Modelo Conceptual, Enfermedades y Plagas de cultivos, Modelado 
basado en Datos, Modelado basado en Conocimiento, Pronóstico. 
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Chapter 1  
 

Introduction 

1.1. Context 
 

According to the Food and Agriculture Organization (FAO), crop pests are among the 
greatest threats to food security, generating broad economic, social, and environmental 
impacts [1]. For Integrated Pest Management, the term Pest refers to any living being 
(diseases caused by pathogens, fungal, virus, or insects, nematodes, etc.) that cause 
damage to crop plants [2]. Different initiatives are being developed to study, analyze, 
and suggest strategies to reduce the impact of pests on different crops, promoting food 
security [3], [4]. Examples of this are the “Pests and Diseases: Risk Analysis and Control” 
research unit of The French Agricultural Research Center for International 
Development (CIRAD)1, the “Crop Protection” program of The International Center for 
Tropical Agriculture (CIAT)2 and the “Integrated Production and Pest Management 
Program in Africa” project of the FAO3. These pests interact with their hosts and the 
environment through complex pathways, and it is increasingly common to find 
professionals from different areas (farmers, technicians, plant pathologists, computer 
scientists, economists, sociologists, etc.) gathering into projects that attempt to deal 
with that complexity. This complexity increases when multiple pests are analyzed at 
the same time. If the professionals’ profiles are diverse, the challenge is to achieve a 

 
1 https://www.cirad.fr/en/our-research/research-units/pests-and-diseases-risk-analysis-and-control 
2 https://ciat.cgiar.org/what-we-do/crop-protection/ 
3 http://www.fao.org/agriculture/ippm/ippm-home/en/ 
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mutual understanding of the agroecosystem and coordination of activities within the 
work team. 
 
The strategies carried out in the mentioned initiatives can be of vertical integration: 
Integrated pest management, which combines biological, organic, genetic, cultural and 
physical control methods; or horizontal integration: Injury profiles, which are a vector 
of the main damages to which a crop is exposed according to the production situation 
(crop management, environment and socioeconomic conditions) in which it is found [5]. 
A fundamental step in these strategies is pest monitoring, which provides information 
for early warning systems and pest forecasting [6]. A pest development forecasting is 
required for three reasons: economic impact, safety, and justification of control methods 
[7]. It allows effective pest control and minimizes crop losses for farmers. 
 
In the model generation, three contrasted situations can be highlighted. In the first 
situation, few data exist on the pathosystem but knowledge is available, this allows the 
creation of mechanistic but qualitative models without the possibility of using data for 
model evaluation and validation. In the second situation a large amount of data is 
available but exhaustive knowledge on the pathosystem is lacking which can be cope 
by exhaustive data processing through the induction of models based on the available 
data. In the third situation, both sufficient knowledge and data are available, which 
allows validating knowledge-based models using the data, as well as improving the 
analysis process of data-based models from expert knowledge.  
 
The conditions defining pests growth, host susceptibility to these pests and interactions 
with environmental factors operate at different temporal and spatial scales which 
complicates the system [8]. Knowledge about these conditions is often found in academic 
publications, as well as in grey literature, but not often directly available for farmers, 
the first actor implementing strategies for pests management.  And generally, the ability 
to implement data capture and processing systems are not yet available to the entire 
agricultural sector. Additionally, farmers' technical and digital capabilities are low, 
because either they cannot afford new technologies, or telecommunication 
infrastructures in rural areas are scarce or reduced, or precise policies on data sharing 
are lacking [9]. Farmers' conditions and training are very different between countries 
and regions. Adopting some of these technologies requires easy access to information 
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and friendly tools to get deeper understanding of their system to better manage crop 
pests [10].  
 
Given this situation, it is necessary to build interdisciplinary work guides that allow the 
construction of models for the comprehensive management of pest development capable 
of overcoming the challenges imposed by the presence or absence of data. Stengerg [11] 
exposes the need for a conceptual framework that takes advantage of modern science 
to approach Integrated Pest Management and thus optimize plant protection solutions. 
Conceptual Framework and Conceptual Model (CM) are concepts that have many 
similarities. According to Dori [12], a CM allows expressing what a system does, how 
and why it does it and what it needs in order to do it; which only differs from a 
Framework in the fact that the conceptual model does not provide specific guidance for 
its final implementation [13]. 
 
In this thesis a CM for crop pest development modeling and forecasting is proposed, 
where the details of implementation are subject to existing methodologies and 
frameworks. The forecasting solutions can be addressed through knowledge-based and 
data-based modeling, according to the requirements and available elements of the user 
or group of users who will carry out their research based on the proposed processes. 
Specifically, the proposal is applied for coffee pest development. 

 

1.2. Motivation 
 
The Smart Farming expands the concept of precision agriculture, which is based on the 
monitoring of information in the crop environment. Smart Farming seeks to improve 
existing tasks for data-driven decision making and management based on context, 
situation and location awareness [14], [15]. The emergence of new technologies for the 
monitoring of a great variety of conditions and properties in crops has allowed a 
transition from precision agriculture to intelligent agriculture, where the large amount 
of information obtained is used from its analysis and interpretation. In this sense, the 
tasks of administration, decision-making and management of sudden events, like pests, 
are improved from the analysis of a large amount of data that characterizes the 
environment around the crops (weather, physical properties, management, etc.) and the 
use of expert knowledge. In particular, for the coffee sector, there are several diseases 
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such as Coffee Leaf Rust (CLR), American Leaf Spot of Coffee, Brown Eye Spot; and 
also, insects such as Coffee Berry Borer (CBB), which greatly affect the quality, 
quantity and costs of the production for the farmer. Due to this, some researchers in 
the coffee sector [16]–[22] have focused their efforts on determining over time the 
relationships between weather conditions and the management of crops, with the 
episodes of the aforementioned phenomena. There are initiatives focused on intensively 
analyzing a large amount of data that characterizes the environment around crops, as 
well as approaches that take advantage of expert knowledge to build mechanistic models 
and hierarchical decision structures based on the mechanisms that determine the 
development of each pest. The purpose of this modeling tasks is to generate the 
necessary resources for a timely response and contingency measures against pests that 
affect coffee trees, generating great losses for coffee farmer and decreasing the quality 
of the crops.  
 

1.3. Research question 
 

Considering the previous aspects, in a smart farming scenario, where coffee production 
organizations lack a technological system for identifying favorable conditions for the 
occurrence of pests in coffee, this doctoral thesis raises the following research question:  
 

- How to carry out a modeling process to identify the weather and agronomic 
practices that determine the development of pests in coffee crops? 
 

1.4. Research aim and objectives 
 
The aim of this research is to propose a conceptual model for the detection of favorable 
conditions for coffee pests in the three data availability scenarios that can be presented 
in a smart farming environment. This was achieved through: 
 

1. Propose a guide to detect favorable conditions for coffee diseases and pests based 
on the use of data and expert knowledge. 
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2. Propose or adapt modeling techniques based on data and expert knowledge in 
the application domain (coffee pests). 

3. Experimentally evaluate the proposed guide for the detection of favorable 
conditions for coffee pests. 

 

1.5. Contributions 
 
The contributions of this Ph.D. thesis are aligned with the objectives 1 to 3 mentioned 
above: 

• An adaptation of different methodologies for the review and mapping of 
literature, as well as to carry out modeling tasks induced from data and built 
from expert knowledge, so that these contribute to solutions for crop pest 
development forecasting. 

• A conceptual model to provide the researches a guidance to address forecasting 
solutions through knowledge-based and data-based modeling.  

• An application of the conceptual model proposed for coffee pests, validated from 
real data. 

 

1.6. Outline 
 
This research is composed of seven chapters which are described below. 
 

• Chapter 2. State of the Art. Presents an overview of related work and 
concepts around conceptual models building, data-based modeling and 
knowledge-based modeling. Additionally, the gaps and research opportunities are 
exposed. 
 

• Chapter 3. Conceptual model for pest development modeling 
(CoMPeM). Exposes the different processes and macroprocesses that make up 
the conceptual model. For each element, the methodologies and theoretical bases 
that compose it are addressed. Additionally, the CoMPeM execution flow is 
explained. 
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• Chapter 4. Case of Study: Coffee Crop Pests. Describes the case study in 

which CoMPeM will be applied, specifying the pest that will be addressed, the 
study area and the data and knowledge sources. 

 
• Chapter 5. CoMPeM application for Coffee Leaf Rust. Presents the 

application of CoMPeM for Coffee Leaf Rust. In this case, modeling is 
approached from both data and knowledge. 

 
• Chapter 6. CoMPeM application for Coffee Berry Borer. Presents the 

application of CoMPeM for Coffee Berry Borer. In this case, only knowledge-
based modeling is addressed. 

 
• Chapter 7. Discussion and Conclusions. Details the discussion about the 

results obtained, the conclusions and future work. 
 

1.7. Publications 
 
The papers built from this Ph.D. thesis were: 
 
1.7.1. Accepted papers 
 

• Lasso, E., Corrales, D. C., Avelino, J., de Melo Virginio Filho, E., & Corrales, J. 
C. (2020). Discovering weather periods and crop properties favorable for coffee 
rust incidence from feature selection approaches. Computers and Electronics in 
Agriculture, 176, 105640. ISSN: 0168-1699. 

• Lasso, E., & Corrales, J. C. (2017, November). Towards an alert system for coffee 
diseases and pests in a smart farming approach based on semi-supervised learning 
and graph similarity. In International Conference of ICT for Adapting 
Agriculture to Climate Change (pp. 111-123). Springer, Cham. ISSN: 2194-5357. 

 
1.7.2. Papers in review 
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• Lasso, E., Motisi, N., Avelino, J., Corrales, J. C. FramePests: A comprehensive 
framework for crop pests modeling and forecasting. Submitted to IEEE Access. 
ISSN: 2169-3536. 

• Lasso, E., Tarquis, A., de Melo Virginio Filho, E., & Corrales, J. Analysis of the 
relationship of climate with Coffee Leaf Rust through time series cross recurrence 
and visibility graphs. ISSN: 1684-9981. 

 
1.7.3. Other publications 
 

• Gomez, J. E., Corrales, D. C., Lasso, E., Iglesias, J. A., & Corrales, J. C. (2018, 
October). Volcanic Anomalies Detection Through Recursive Density Estimation. 
In Mexican International Conference on Artificial Intelligence (pp. 299-314). 
Springer, Cham. ISSN: 0302-9743. 

• Rincon-Patino, J., Lasso, E., & Corrales, J. C. (2018). Estimating avocado sales 
using machine learning algorithms and weather data. Sustainability, 10(10), 
3498. EISSN: 2071-1050. 

• Corrales, D. C., Lasso, E., Casas, A. F., Ledezma, A., & Corrales, J. C. (2018). 
Estimation of coffee rust infection and growth through two-level classifier 
ensembles based on expert knowledge. International Journal of Business 
Intelligence and Data Mining, 13(4), 369-387. ISSN: 1743-8187. 

• Corrales, D. C., Lasso, E., Ledezma, A., & Corrales, J. C. (2018). Feature 
selection for classification tasks: Expert knowledge or traditional methods?. 
Journal of Intelligent & Fuzzy Systems, 34(5), 2825-2835. ISSN: 1064-1246. 

• Lozada, G., Valencia, G., Lasso, E., & Corrales, J. C. (2017, November). Coffee 
Rust Detection Based on a Graph Similarity Approach. In International 
Conference of ICT for Adapting Agriculture to Climate Change (pp. 82-96). 
Springer, Cham. ISSN: 2194-5357. 

• Lasso, E., Valencia, O., Corrales, D. C., López, I. D., Figueroa, A., & Corrales, 
J. C. (2017, November). A cloud-based platform for decision making support in 
Colombian agriculture: a study case in coffee rust. In International Conference 
of ICT for Adapting Agriculture to Climate Change (pp. 182-196). Springer, 
Cham. ISSN: 2194-5357. 

• Lasso, E., Valencia, Ó., & Corrales, J. C. (2017, July). Decision support system 
for coffee rust control based on expert knowledge and value-added services. In 
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International Conference on Computational Science and Its Applications (pp. 70-
83). Springer, Cham. ISSN: 0302-9743. 

• Valencia, O. R., Lasso, E., & Corrales, J. C. (2017, November). Improving Early 
Warning Systems for Agriculture Based on Web Service Adaptation. In 
International Conference of ICT for Adapting Agriculture to Climate Change 
(pp. 139-154). Springer, Cham. ISSN: 2194-5357. 

• Lasso, E., & Corrales, J. C. (2016). Sistema experto para enfermedades en 
cultivos basado en emparejamiento de patrones en grafos: una propuesta. Revista 
Ingenierías, 15(29), 81-98. ISSN: 1692-3324. 

• Lasso, E., Thamada, T. T., Meira, C. A. A., & Corrales, J. C. (2017). Expert 
system for coffee rust detection based on supervised learning and graph pattern 
matching. International Journal of Metadata, Semantics and Ontologies, 12(1), 
19-27. ISSN: 1744-2621. 

• Castillo, E., Corrales, D. C., Lasso, E., Ledezma, A., & Corrales, J. C. (2017). 
Water quality detection based on a data mining process on the California 
estuary. International Journal of Business Intelligence and Data Mining, 12(4), 
406-424. ISSN: 1743-8187. 



 
 

 

Chapter 2  
 
State of the Art 

This chapter presents the theoretical bases to understand the subject of this thesis, 
considering the conceptual models, data-based and knowledge-based modeling, as the 
areas of interest. Next, the related works in the study areas are exposed. Finally, a 
discussion about the studies presented and how different approaches can be used to 
carry out the research aim of this work is presented. 
 

 

2.1. Background 
 
This section presents the theoretical bases and concepts related to the construction of 
conceptual models and the methodologies to carry out modeling both based on data 
and knowledge. 
 
2.1.1. Conceptual model 
 
A Conceptual Model (CM) is an abstract representation of a system based on its 
elements and relationships, simplifying reality [23], [24]. The CM allows to understand 
the process carried out for a successful output within a system, as well as to describe 
each step in the mentioned process. CM and Conceptual Framework (CF) are concepts 
that have many similarities.  
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The CF is a set of concepts related to each other, explaining a phenomenon to achieve 
an understanding of it [25]. Additionally, in the case of using factors or variables, the 
suggestion is to use the term model. According to Dori [12], CM allow expressing what 
a system does, how and why it does it and what it needs in order to do it; which only 
differs from a CF in the fact that the CM does not provide specific guidance for its final 
implementation [13]. In this way, all the steps for the construction of a CF can be 
considered in the generation of a CM. 
 
The suggested phases for the elaboration of a CF according to Jabareen [25] are (Figure 
1):  
 

1) Mapping the selected data sources: Carry out a multidisciplinary search of 
literature related to the phenomenon to be studied. The result is a set of 
documents (theoretical and technical papers, gray literature, etc.). 

2) Extensive reading and categorizing of the selected data: Reading the documents 
obtained and their categorization according to their importance and 
representation of essential concepts. The result is the categorization of the 
essential documents for the studied phenomenon.  

3) Identifying and naming concepts: Denomination of concepts found from the 
categorization. The result is the list of naming concepts. 

4) Deconstructing and categorizing the concepts: Analysis of the attributes, roles, 
assumptions, and characteristics of the concepts, to later group them into 
categories that summarize their similarities. The result is a table of concepts with 
the following columns: name, description, categorization according to their role, 
references for that concept. 

5) Integrating concepts: Grouping of similar concepts into a new concept. As a 
result, there is a reduced number in the list of concepts. 

6) Synthesis, resynthesis, and making it all make sense: Synthesize concepts and 
their relationships to structure and formalize it. The result is the conceptual 
framework. 

7) Validating the CF: Does the framework present a cognitive process that explains 
the phenomenon studied in related disciplines? The answer to this question, along 
with additional considerations, are the results of this phase. 

8) Rethinking the CF: Make revisions to the framework according to new insights, 
comments, literature, and user experience. 
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Figure 1. Process to build a Conceptual Framework (CF) proposed by Jabareen [25] 

 
In addition to the process based on the literature review mentioned above, a CF can 
also be developed and built from a qualitative analysis process [25]. 
 
2.1.2. Data-based modeling 
 
Learning and modeling from data is based on estimating dependencies of variables in a 
system from the data that represent that system [26]. The mathematical core of 
Knowledge Discovery in Databases (KDD) is Data Mining, composed of algorithms that 
explore the data and induce mathematical models from the patterns found. The model 
can be used to understand the phenomenon represented by the data, as well as to 
perform analysis and predictions to support decision making [27]. Furthermore, 
Informed Machine Learning [28] is a recent approach that proposes the integration of 
different knowledge representations in learning systems and modeling processes. Given 
the complexity of data mining, it is necessary to consider a series of steps, and their 
correspondence with each other, to achieve the best results.  
 
The Cross-Industry Standard Process for Data Mining (CRISP-DM) is a methodology 
and process model to carry out data mining works [29]. CRISP-DM is formed by six 
phases, their respective tasks and the relationship between them. The sequence of phases 
is flexible. The phases and their main tasks are (Figure 2): 
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Figure 2. Phases and tasks for CRISP-DM (CDM) 

 
1) Business understanding: Understand the objectives and requirements from a 

business perspective. The business corresponds to the problem that wants to be 
resolved or studied. Then, the knowledge obtained is expressed in a data mining 
problem, and an assessment of the situation is made. The main results are the 
objectives and criteria of success for business and data mining, and a preliminary 
plan to achieve those objectives. 

2) Data understanding: Starting with the first data collection, carry out activities 
to understand what the data represents, identify problems present in the data, 
discover the first insights according to the business objective into the data. The 
data exploration report is commonly approached through descriptive statistics. 
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Furthermore, verification of data quality (accuracy, completeness, consistency, 
timeliness, validity, uniqueness) must be carried out. 

3) Data preparation: Transformation of the dataset to make it suitable for modeling 
tasks. Among the activities is the definition of inclusion and exclusion criteria to 
be applied on the initial data collection in order to identify the segments of the 
dataset that do have a relationship with the problem addressed; structuring of 
the dataset features according to the understanding of the business; solving the 
quality problems found; and dataset dimensionality reduction (in large dimension 
sets). 

4) Modeling: Select and apply various modeling techniques from data. The defined 
data mining objective and the structure of the dataset limit the set of techniques 
that can be applied. Additionally, the algorithm parameters must be calibrated 
through performance metrics to obtain optimal results. In order to achieve this, 
a test plan must be drawn up and executed. 

5) Evaluation: Compare the performance metrics of the applied modeling 
techniques, review the process followed, the agreement with the business 
objectives, and whether all the business issues have been considered. If the results 
are negative, an iteration to a previous phase of the methodology is necessary. 

6) Deployment: Whether it is a prediction model or knowledge induced from the 
data, it must be organized and presented so that a user can use it, e.g., web 
services, libraries or software for prediction models; or plots, tables, and text 
reports for knowledge induced from the data. For this, a deployment and 
monitoring plan must be structured following the business objectives. Finally, 
the entire process is documented from the first phase to generate a final report.  

 
This methodology allows carrying out data mining tasks in an orderly manner and 
framed in specialized processes for each problem that needs to be solved, since it 
considers an understanding of the data domain and its structure, resulting in a model 
induced from the data. 
 
2.1.3. Knowledge-based modeling 

 
The knowledge-based modeling is based on the relationships between variables in a 
system that explain its behavior. These relationships can be inferred from expert and 
theoretical knowledge [30]. In this case, the success of the modeling depends on the 
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understanding of the modeled system, even more so if the expert knowledge of the 
problem is limited. The models allow an inspection of its operation by experts, given 
their flexible and detailed description or both the simulation entities and relationships 
[31], [32]. There are some requirements that the models should meet, such as: 
determination of peculiar characteristics of elements and relationships, generation and 
evaluation of decision paths in the model, evaluation of critical restrictions and 
description of the response generation process from the inputs of the model [31]. This 
is achieved from various forms of representation, such as association rules, fuzzy sets, 
mechanistic, hierarchical, among others. The chosen knowledge representation must 
have the ability to communicate facts about the modeled system and adjust according 
to its behavior [33]. 
 
A widely used approach is modeling based on qualitative aggregative hierarchical 
structures or Multi-Criteria Decision Making (MCDM). MCDM is an approach to 
represent the variables involved in a decision problem (or situation modeling) [34]. The 
process consists of the definition of problem, choice of criteria related to the problem, 
specification of alternatives, transformation of the criteria scales into commensurable 
units, assignment of weights to the criteria that reflect their relative importance, 
selection and application of a mathematical algorithm for classifying alternatives and 
choosing an alternative for the problem [35]. Hierarchical structures represent the 
knowledge and relationships of a model in an understandable way so that it can be 
validated by an expert. 
 
Aubertot and Robin [5] used the MCDM concept to develop a simulation model that 
represents the behavior of an agroecosystem and which quality of prediction can be 
assessed, called The Injury Profile Simulator (IPSIM) framework. IPSIM is used as a 
modeling framework to predict injury profiles in crops as a function of cropping practices 
and environment. The modeling task is made from expert knowledge (literature, 
technical reports, expert interview) expressed as a hierarchical multi-criteria decision 
structure. The model is a tree-based structure composed of attributes, aggregated 
attributes, and the output variable. The main strength is the horizontal and vertical 
integration for the Integrated Pest Management, allowing to represent the concepts and 
relationships of the different dimensions that comprise the development of a pest and 
environment variables. The IPSIM phases are (Figure 3): 
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1) Identifying the attributes: Collect the state of science available on the pest to be 
modeled. Identify the entry variables and concepts (these will be called basic 
attributes) related to the pest from the state of science and their properties.  

2) Structuring the attributes: Identify categories of basic attributes according their 
relationships, which will be the aggregated attributes. The categories are a 
reflection of the general properties of objective phenomena.  

3) Defining attribute scales: The output variable and the basic and aggregate 
attributes are represented by qualitative variables (ordinal or nominal). The scale 
of an attribute corresponds to the possible values it can take. These take only 
discrete symbol values, usually represented by words, e.g., "shaded crop, crop 
exposed to full sun" for nominal variables; "low, medium, high" for ordinal 
variables.  

4) Defining the aggregation tables: These tables express how the hierarchical multi-
criteria decision structure is formed. Each of the tables corresponds to an 
aggregation of basic and/or aggregated attributes based on "if-then" rules. The 
rules combine values of attribute scales to define the values in the scale of the 
new aggregated attribute, e.g., if attribute X has the value x1 and attribute Y 
has the value y1, then the value z1 is set for the new aggregated attribute Z. 
Additionally, as the distribution of the results of the aggregated attributes is not 
uniform, each attribute will have different weight representing their influence in 
the system. These weights derive naturally from expert knowledge. 

 

 
Figure 3. IPSIM phases 
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2.2. Related work 
 
In this section, the relevant literature around the topic areas applied to smart farming 
environments is presented. 
 
2.2.1. Conceptual model and framework in agriculture 
 
The use of conceptual models in agriculture has been promoted with the development 
of information technologies (Figure 4) and has been applied in Integrated Pest 
Management (IPM), cropping systems, resource management, smart farming, among 
others. 
 

 
Figure 4. Scientific production trend around the use of conceptual models and frameworks in 

agriculture. Results of the bibliographic search in Scopus.   

 
The approach of Rossi et al. [36] presents the processes for building mechanistic, 
weather-driven, and dynamic models for plant diseases. The phases are: define the model 
purpose, conceptualize the model, develop the mathematical framework, and evaluate 
the model. This study offers a set of well-defined phases to achieve a robust process of 
plant disease modeling. The models addressed are mechanistic, represented through 
concepts and their mathematical relationship. 
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In [37] a conceptual framework for plant pest risk assessment is presented. This 
approach is composed of two phases: the categorization of the pest according to the 
need for quarantine due to it and the pest risk assessment. The framework has the 
ability to produce quantitative estimates, regarding the entry, establishment, spread 
and impact of plant pests. The process starts with a problem formulation and planning; 
an endorsement using expert judgment; the risk assessment from a baseline, scenario 
and models based on expert knowledge; and finally, the communication and evaluation 
of the risks found. The process is considered iterative and can be strengthened from 
data obtained in the crops.  
 
In [11], a conceptual framework for the integration of several crop pest management 
elements and current trends in science is presented. This allows to improve the IPM 
solutions. The framework proposes diversity/biocontrol integration, study of plant 
resistance and improvement of plant breeding. The use of mathematical models is 
considered a promising technique to identify the optimal level of plant resistance. 
 
Crop pests are monitored in several countries from regional surveys. In [38] a framework 
is proposed to take advantage of the data obtained in these surveys, in order to generate 
analyzes and predictions of the pest dynamics from generalized linear mixed models 
(glmm). The steps of the framework include: generation of the glmm from the 
observations (monitored data); model fit; use of the fitted model to estimate the pest 
dynamics in a future time; and the calculation of confidence or credibility intervals of 
the predictions. The results can be used to manage risks due to pest and improve the 
response of extension services. 
 
An important element for the management of crop pests is their permanent monitoring. 
The pest monitoring is a key element of smart farming environments. The research 
presented in [39] proposes a framework for the detection of environmental conditions 
that favor the development of a pest using Internet-of-Things (IoT) and remote sensing 
with Unmanned Aerial Vehicles (UAVs). The framework is applied to the detection of 
favorable conditions for wheat powdery mildew. For IoT devices, the use of solar energy 
is improved, while for drones, processes that improve the use of wind to increase flight 
time are proposed. Additionally, the framework considers steps for the storage of the 
captured data in a cloud data center and its subsequent analysis. 
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The research presented by Tonnang et al. [40] presents a review on crop insect modeling 
methods. This review is differentiated according to the purpose of modeling: populations 
growth and dynamics, areas of pest invasion, relation with climate change and economic 
impact. Based on this review, the authors propose a framework for estimating losses 
and optimizing yields within crop production system, incorporating pest impacts into 
crop production. The framework process considers the estimation of the impact of the 
pest on the crop, possible control measures, decision making and possible delays in 
responding to the pest problem. 
 
In [41], the authors present a conceptual model of a Decision Support System for the 
choice of climate-smart agriculture (CSA) practices. The framework integrates 
quantitative, spatially-explicit information such as vulnerability indicators and CSA 
practices. Additionally, the opinion of stakeholders on CSA criteria are considered. The 
objective is to spatially identify the most vulnerable sites and decide the type of CSA 
practices that can be applied in these sites as part of the development of policies and 
planning tools. The framework is divided into three stages. The first is the structuring 
of the problem and involving stakeholders. The second stage consists of a multi-criteria 
decision-making modeling. Finally, a validation of conditions in the areas of 
vulnerability and decision making is carried out. Government strategies are transversal 
to all stages and that strategies are supported in smart farming.  
 
In the research presented in [42] a synthesis of the major steps for developing a crop 
pest model is proposed. From a review of different approaches to knowledge-based 
modeling (deterministic, stochastic, mechanistic and empirical representations), the 
main tasks of the modeling process are identified and synthesized in a conceptual model. 
The knowledge of the life cycle of the bioaggressor (causing the pest), as well as the 
knowledge of experts are considered as transversal elements. Based on the knowledge 
of the bioaggressor, a phase of identification of the effects of pest in the cropping system 
and quantification of its variability must be carried out. The next step is the definition 
of the model based on the available knowledge about the mechanisms of the pest. 
Finally, testing, optimization and decision-making scenarios finalize the conceptual 
model. 
 
2.2.2. Data-based crop pest modeling 
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Scientific production around the use of data-based modeling to solve crop pest 
development problems has been increasing in recent years, coinciding with the rise of 
smart farming, as can be seen in Figure 5. 
 

 
Figure 5. Scientific production trend around the use of data-based modeling for crop pest development. 

Results of the bibliographic search in Scopus.   

 
In [43], a comparison of classification algorithms for the prediction of crop diseases is 
presented. The applied case study corresponds to the prediction of loss due to grass 
grub insect. The approach considers the pre-processing stage of the dataset in order to 
check and improve the quality of the dataset. Additionally, a selection of the most 
important features in the data is considered. The modeling is carried out using different 
classification algorithms, as well as assembly methods that combine these algorithms, 
obtaining better results with Random Forest and Gaussian Naive Bayes classifiers. A 
similar study is presented in [44], where the compared data mining algorithms 
correspond to regression tasks (Multiple Regression, Artificial Neural Networks and 
Support Vector Machine) and the case study was the rice blast prediction. The datasets 
used correspond to five locations where smart farming is applied. The data was prepared 
to represent a cross-year evolution of the disease. The best predictors are extracted from 
cross validation, permuting the variables of the dataset. Best results are presented with 
the use of Support Vector Machine algorithm and the model is deployed in a web-based 
system. 
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The research presented in [45] makes use of logistic regression models induced from data 
for the prediction of fusarium head blight in wheat growing areas. The dataset used is 
composed of management, disease and weather variables. The target variable considered 
is the disease index (DI), represented from four different classes. The thresholds that 
defined the class boundaries were implemented according to expert knowledge and the 
European legislation for contaminants in foodstuff. 
 
The approach of Kukar et al. [46] explores the need to integrate support systems for 
decision-making in agriculture with data mining processes, in order to obtain models 
that help with crop management (among which are pests). The components of the 
proposed system are framed in one or more phases of CRISP-DM, demonstrating the 
transversality of this methodology. 
 
In [47], [48] a conceptual framework based on Big Data analysis in smart farming for 
the identification of diseases in crops is presented, taking rice blight as a case study. 
The analysis is based on the search for similarity between instances of the dataset. The 
presented tool makes recommendations for the solution to the disease, based on the 
similarity between the symptoms of a plant at a certain time and the records of 
symptoms presented in past episodes of the disease. 
 
An approach focused on the use of semi-supervised learning in data analysis is presented 
in [49], for detecting beetle pests in crops. The dataset used contains labeled and 
unlabeled instances, and corresponds to historical records of climate, crop growth 
characteristics, pest growth, among others. The authors generate an algorithm to 
process the tagged segment from association rules and the ISODATA method for the 
unlabeled segment. In this way, it is assumed that in a densely distributed region of the 
data, the models should obtain similar outputs. 
 
Merle et al. [50] propose a two-steps statistical analysis of data in order to detect the 
onset dates of Coffee Leaf Rust symptoms and signs in coffee leaves. The data is 
monitored in a smart farming experiment replicated at three sites. In each site the data 
contains information about microclimatic variables and the disease development 
obtained from computer vision tools. Additionally, an analysis of time windows (periods 
of time) is carried out, in order to find the period in which each variable has the greatest 
impact on the development of the disease. The explanation level of the variables is 
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assessed using the Akaike information criterion. Three generalized linear models are 
obtained for the estimation of new lesions, sporulation and infected area. 
 
In [51], the authors make use of machine learning algorithms to generate models that 
allow predicting the incidence of several coffee pest like coffee leaf rust, cercospora, 
miner, and coffee berry borer. The dataset contains weather variables and monitoring 
of each pest and the best performance is obtained with different algorithms according 
to the modeled pest. Some of the weather variables correspond to indicators related to 
the development of the pest, extracted from expert knowledge. 
 
The research work presented in [52] proposes the use of fuzzy decision trees in order to 
generate alerts for the appearance of coffee rust. The models obtained represent 
thresholds of different variables that intervene in this problem, both for situations of 
prevention and cure or treatment of the disease. In addition, the process is carried out 
from the analysis of a dataset of approximately 8 years of disease records. For its 
evaluation, the tool is compared with traditional decision trees, obtaining better 
performance values. With a similar purpose and under the same approach, the authors 
of [53] and [54] make use of 364 samples that contain information on temperature, 
precipitation and relative humidity, with the aim of training the decision tree induction 
algorithm, proposed by Han and Kamber [55]. The model provides support for 
understanding how the interaction between the variables analyzed leads to rust 
epidemics. After its execution, the model correctly classifies 78% of the training dataset, 
as well as its precision is estimated at 73% for the classification of new samples. 
 
In the research carried out by Corrales et al. [56], [57] the coffee rust modeling is 
approached from the construction of multiclassifiers and assembly methods, in order to 
reduce errors in the classification models. The method is based on two levels of 
classifiers, where these are chosen from the comparison of performance measures of 
algorithms such as Support Vector Machines, Neural Networks, Bayesian Networks, 
Decision Trees, among others. The tests carried out show that this approach presents 
better values of correlation coefficient, mean absolute error, and quadratic. 
 
Finally, Lasso et al. [58] propose the generation of a representation based on graphs of 
rust growth patterns, modeled according to the variables related to this disease and 
based on rules extracted from the induction of decision trees from data and the 
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knowledge of experts. The patterns obtained provide greater expressiveness and 
interpretation of the climatic phenomena that favor the development of the disease. 
The above study is taken as the basis for proposing the construction of an expert system 
that makes use of pattern matching in graphs in order to validate the rules and 
knowledge produced by experts. The objective of the expert system is to find the crops 
that present favorable conditions for a rust epidemic from data of coffee crops in a 
smart farming environment [59]. 
 
 
2.2.3. Knowledge-based crop pest modeling 
 
The Figure 6 shows the evolution of scientific production about the knowledge-based 
modeling of crop pest development used for forecasting. There is a trend towards 
increasing studies in this area. 
 

 
Figure 6. Scientific production trend around the use of knowledge-based crop pest development 

modeling. Results of the bibliographic search in Scopus.   

 
Colbach [42] presents an evaluation of different approaches to modeling based on 
knowledge on pests and to quantify the effects of cropping systems on pest dynamics. 
The approaches evaluated are: deterministic, stochastic, mechanistic and empirical 
representations. As a result, models based on a mechanistic representation of the 
cropping system versus environment interaction show a better quantification of the 
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effects of this interaction. The study exposes the need to use multi-criteria structures 
and the possibility of using the models for decision-making and identifying knowledge 
gaps. 
 
Robin et al. [60] show an IPSIM framework application to analyze and estimate the 
incidence of eyespot on wheat. The model is used to represent the annual variability of 
the disease, as well as the effects of cropping practices, so that it can generate simulation 
scenarios that allow decision-making. The entities and relationships of the model are 
defined from available knowledge in the scientific literature and expertise. The strength 
of the model lies in the possibility of designing and representing intrinsic relationships 
of cropping systems that simultaneously encompass the effect of different dimensions 
such as: weather, soil and crop properties. The model is tested by applying it to 
examples from a dataset containing 526 observations. 
 
A known old approach where knowledge-based modeling is applied was EPIPRE 
(EPIdemic PREvention) [61]. In this project simulation models built from expert 
knowledge and results of scientific experiments are used to simulate the development of 
pests in wheat and generate recommendations on their control. The mechanisms 
associated with the internal and external factors associated with the dynamics of the 
pest are integrated into the model. Additionally, data measured in the crops allow the 
calibration of the models. The steps followed for the simulation are: definition of 
objectives, definition of system limits, conceptualization of system elements, 
quantification of relationships, model verification, validation, sensitivity analysis and 
simplification. 
 
The research presented in [62] addresses the Verticillium wilt on potato from a 
knowledge-based prediction model. A group of experts identified eight major factors 
that affect disease development. The steps followed for the development of the models 
are: definition of factors, assignment of weights to the factors, structuring of the model, 
calibration of the model using historical databases and validation. To define the weights 
of each factor in the model, several previous studies and expertise were taken as a basis. 
The model predictions were integrated into a spatial decision support system, obtaining 
80% accuracy in the validation with data monitoring on field. 
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In [63], a web-based tool based on decision making models for assessing pest infestation 
risk is presented. The objective is to provide a tool that allows for healthier cropping 
practices and reduces the intensive use of pesticides. The model is based on expert 
knowledge and expertise, it is mechanistic and is represented using IF-THEN type rules. 
To acquire knowledge, the authors propose a meta model made up of a set of plant 
varieties and a set of pests (seven pests for grapes, and nine for olive crops). The decision 
schema allows the estimation of infestation risk for a given pest in a specific crop and 
makes decisions as to whether a crop is treated to control a given pest or not. The tool 
was evaluated by a group of experts using simulated scenarios. Similarly, Khan et al. 
[64] propose a web-based expert system based on IF-THEN type decision rules for the 
diagnosis of wheat pests. In this case the main characteristics of an expert system are 
implemented: user interface, explanation subsystem, inference engine, wheat knowledge 
base, knowledge acquisition tools and human expert. The web tool allows a user to enter 
the symptoms present in the plants and obtain a diagnostic support of the pest present. 
Another approach that implements the elements of a rule-based expert system is Agpest 
[65]. This system is aimed at supporting the diagnosis and management of rice and 
wheat pests. The explanation block and expert knowledge representation make use of 
the language recognition pattern implemented from a C Language Integrated 
Production System (CLIPS). In [66], a system based on association rules built from 
expert knowledge is proposed. The system aims to support the diagnosis of 14 diseases 
in Indian mango tree based on the symptoms of the plant. The approach considers the 
phases of collection, representation, storage, retrieval, processing and display of 
knowledge. The set of rules forms a decision structure that is traversed according to 
user responses about features that can be viewed in the mango tree. 
 
The research by Miller and Newell [67] proposes the use of Conceptual Collaborative 
Modeling (CCM) for the generation of models of the dynamics of redheaded cockchafers, 
a pasture pest that generates an economic impact in South East Australia. The models 
are mechanistic and represent how the pest population can evolve by itself and under 
some control mechanisms. In this case, the models have the objective of generating a 
common understanding of a systematic problem rather than generating predictions. 
This understanding can be used as a basis for pest forecasting as it provides a 
comprehensible knowledge representation for trans-disciplinary research. 
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A combination of agent-based model and multi-criteria decision making (MCDM) is 
proposed in [68]. The model is aimed at rice pest management from the creation of a 
rice pest index, showing a case study for brown plant hoppers. The agents considered 
for this investigation can be farmer, decision maker, rice, land use, rice pest, weather, 
among others. Expert knowledge is used both to modify attributes and decision rules of 
agents, as well as to define the MCDM criteria and their attributes. 
 
Another multi-criteria approach is presented in [69]. In this approach, local knowledge 
is combined with available scientific literature in order to characterize the resilience of 
cropping systems with respect to several pests and the environmental impact produced. 
From the available knowledge, the contributions of several elements such as population, 
life cycle, relationship with soil and prophylaxis on the infestation level of the pest are 
combined in a multi-criteria structure. The response of the model is the estimated value 
of resilience from none to high passing through two intermediate levels. The approach 
is applied to winter salad crops in France and the pests addressed are root-knot 
nematodes. 
 
The use of semantic languages and ontologies has also been considered in knowledge-
based pest modeling. AgriEnt [70], [71] is a knowledge-based web platform focused on 
providing support in decision-making related to the diagnosis and management of crop 
insect pest. Some existing domain ontologies are considered to propose a new one: 
AgriEnt-Ontology. This ontology represents the knowledge of agricultural entomology 
experts as well as scientific literature. AgriEnt-Ontology is validated by expert 
researchers from the Agrarian University of Ecuador. The use of semantic language 
allows logical reasoning based on the ontology itself, as well as user-defined rules. 
Furthermore, the proposed ontology can easily be used by other investigations given its 
standard semantic language. 
 

2.3. Contributions and shortcomings 
 
Next, the most relevant contributions and gaps in the related works are presented 
(Table 1). 
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Table 1. Contributions and gaps of related works 

Concept / 
studies 

Contributions Shortcomings 

Conceptual 
Model 
[11], [36]–
[42] 

The approaches propose a guide to 
carry out a modeling of the 
development of a crop pest, 
management possibilities, pest 
monitoring and impacts of pest on 
crops. 
 
Some of the approaches are general to 
be replicated in various crop pests, 
while others are tied to the use of a 
specific type of technology (such as 
UAVs). 
 
The approaches present flexibility for 
the use of various technologies related 
to smart farming. 

Among the analyzed approaches, only some 
addressed the study of crop pest 
development, while the others focused on its 
impacts, management and monitoring. 
Additionally, for the most part, the 
approaches assume knowledge of the problem 
that is already present, without considering 
steps to obtain and refine it. 

Data-based 
Modeling 
[43]–[59] 

The approaches make use of various 
techniques that allow generating 
models from data acquire in smart 
farming environments, demonstrating 
the transversality of this area. 
Furthermore, a comparative study of 
various machine learning techniques 
for generating models based on crop 
pest data is presented. 
 
The modeling techniques and the use 
of data allow an estimation of the 
precision that the model will have 
when making new predictions. 
Moreover, it is possible to know the 
best technique for each problem 
addressed by comparing the 
performance metrics of different 
models. 
 
In addition to the modeling process, 
some approaches consider other tasks 
with the data such as cleaning, quality 
checking and optimization. 

Several approaches carry out the modeling 
process empirically without following a 
methodology. Although this does not mean 
that the results are less reliable, the use of 
methodologies is recommended to achieve an 
orderly, reliable and well-presented process. 
 
A common problem is the amount of data 
with which the models are trained. This 
means that a modeling alternative is needed 
in the face of this lack. 

Knowledge-
based 
Modeling 

The studies present approaches for 
obtaining and representing knowledge 
in such a way that it can be used to 

As in the previous section, several 
approaches carry out the modeling process 
empirically without following a methodology. 
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[42], [60]–
[71] 

estimate the development, impact and 
ideal management of crop pest. 
 
There are various representation 
structures of the models that are used. 
Each one has a series of advantages, 
the common of which is that an expert 
can review and validate these models. 
 
Some approaches propose calibration 
of the models from crop monitoring 
data. 

Additionally, the approaches are mostly 
developed by expert researchers in the area 
with acquired knowledge related to the crop 
pest addressed. In the case of 
multidisciplinary teams or teams from other 
knowledge areas, the approaches can be 
difficult to follow. 

 
The review of the related works supports the identification of the contributions and 
gaps towards the proposal that this project wants to address. In this way, the review 
made it possible to identify the use of conceptual models and frameworks as tools to 
represent guides that help multidisciplinary researchers in studies that seek to model 
crop pest development. Furthermore, given that when starting a study or investigation, 
the absence of data about crops and pest, absence of knowledge of the pest, or starting 
from scratch may arise, a robust modeling processes that deals with any of these 
absences is necessary. The modeling approaches used in the related works have shown 
good results for crop pest development forecasting. Furthermore, existing methodologies 
to carry out each type of modeling can be taken as a starting point. However, for a 
group of researchers who want to start modeling work, there is no guide that considers 
all the elements to take into account to generate models from data or knowledge, 
depending on the conditions of the research to be carried out (presence or absence of 
data and formalized knowledge about pest) and taking into account the multiple entities 
and interactions that can affect the development of pest. Furthermore, a comparative 
and complementary study of models generated from knowledge versus those generated 
from data is necessary to know the scope of each one and how these could complement 
each other. The data and knowledge resources that smart farming provides can be used 
extensively by current modeling approaches. 
 
From the aforementioned, this work aims to generate an integration between the areas 
of knowledge addressed, proposing a Conceptual Model for crop pest development 
modeling and forecasting in smart farming environments. The conceptual model takes 
advantage of existing methodologies that facilitate the development of each process and 
provide it with robustness. The proposal takes into account that the forecasting 
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solutions can be addressed through knowledge-based and data-based modeling and how 
they can could complement each other. This is done according to the requirements and 
available elements of the user or group of users who will carry out the modeling tasks. 
Although the adoption of smart farming may be in the early stages for some regions, 
the conceptual model addresses alternatives in the absence of data. Finally, the proposal 
is validated taking coffee crop pests as a case study. 
 
 

2.4. Summary  
 
In this chapter, we explained the most relevant concepts to understand the thesis 
contributions. First, we described the Conceptual Model (CM) as a tool to express a 
system or process from the elements and relationships between them that compose it. 
Subsequently, we presented two modeling approaches: Data-based and Knowledge-
based. For each one of these concepts, we made a review of the current literature that 
applies the concepts around agriculture and smart farming, finding some contributions 
and gaps. This made it possible to demonstrate the need to build interdisciplinary work 
guides that allow the construction of models for the comprehensive management of pest 
development capable of overcoming the challenges imposed by the presence or absence 
of data and expert knowledge. 
 



 
 

 

Chapter 3  
 
Conceptual model for crop pest development 
modeling (CoMPeM) 

This chapter presents the elements, processes, and structure of the Conceptual Model 
for Crop Pest Development Modeling (CoMPeM). Flowcharts, following the standard 
of The American National Standards Institute (ANSI) [72], will be used for the 
representation of the process design scheme and its execution flow. 
 

3.1. Overview 
 
CoMPeM aims to provide a series of steps and processes that must be followed to carry 
out crop pest development modeling tasks, taking into account the characteristics of 
the team of researchers and resources availability. The macroprocesses of the conceptual 
model are shown in Figure 7. We propose a “phase zero” or start-up process, which 
consists of the Study of Pre-feasibility of the modeling solution to be achieved. The 
macroprocess Evolution of Pest Modeling (module SM) is in charge of exploring the 
studies that have addressed the pest’s development modeling in crops. This module is 
based on the Systematic Mapping proposed by Petersen et al. in [73]. Relevant concepts 
related to the Pest (module SR), deals with understanding the fundamental concepts 
around the development cycle of the Pest in crops, based on the Systematic Review 
proposed by Kitchenham and Charters in [74]. These two macroprocesses make up the 
State of Science. Knowledge-based modeling (module KM) specifies the process of 
building a model based on the knowledge obtained in the previous macroprocess. 
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The model is a decision structure that allows characterizing the pest, based on the 
agronomic practices and environmental conditions presented in the crop. A possible 
approach is modeling based on multi-criteria hierarchical structures. For this module 
we propose the use of the IPSIM framework [5]. Data-based modeling (module DM) 
presents a process of induction of machine learning models from a dataset that 
represents the conditions (management and environmental) of the crops in smart 
farming environments. This module is based on CRISP-DM (Cross Industry Standard 
Process for Data Mining) [29]. The Complementary Study (module CS) process seeks 
to analyze and extract the benefits and challenges of the two modeling approaches and 
how they could complement each other. 
 

 
Figure 7. Macroprocesses of the Conceptual Model for Crop Pest Development Forecasting 

 
The modules SM, SR, KM, DM and CS were framed in one or more phases of the 
Jabareen's guide to build a Conceptual Framework (CF) [25]. 
 
Table 2 summarizes how each methodology is framed in one or more phases of the 
Jabareen's guide to build a Conceptual Framework (CF) [25]. The Evolution of the Pest 
Modeling macro process is located in the phases CF1 to CF3. This one has carried out 
following the Systematic Mapping (SM) methodology starting in SM-1 and ending with 
the mapping obtained in SM-5. Similarly, the Relevant Concepts related to the Pest 
macroprocess is carried out following the Systematic Review (SR) methodology. It 
instantiates the phases 1 to 3 of CF carrying out processes SR-1 to SR-5. The four 
processes of Knowledge-based Modeling based (KM) instantiate phases 3 to 6 of CF. 
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Finally, the Data-based Modeling (DM) macroprocess instantiates the CF from CF3 to 
CF7. CS instantiate the CF7. 
 
Table 2. Correspondence between phases in the elaboration of a conceptual framework and the different 

methodologies used for the macroprocesses. 

Conceptual 
Framework (CF) 

Macroprocess / Theoretical reference 

Evolution of Pest 
Modeling 

Relevant Concepts 
related to the Pest 

Knowledge-based 
Modeling (KM) 

Data-based 
Modeling (DM) 

Systematic Mapping 
(SM) 

Systematic Review 
(SR) 

Injury Profile 
SImulator  

CRISP-DM  

CF1: Mapping the 
selected data sources 

SM-1: Definition of 
Research Questions 
SM-2: Conduct Search 
for Primary Studies 
SM-3: Screening of 
Papers for Inclusion 
and Exclusion 

SR-1: 
Identification of 
research 
SR-2: Selection of 
primary studies 

  

CF2: Extensive 
reading and 
categorizing of the 
selected data 

SM-4: Keywording of 
Abstracts 
SM-5: Data Extraction 
and Mapping of Studies 

SR-3: Study 
quality assessment 
SR-4: Data 
extraction & 
monitoring 

  

CF3: Identifying and 
naming concepts 

SM-4: Keywording of 
Abstracts 
SM-5: Data Extraction 
and Mapping of Studies 

SR-5: Data 
synthesis 

KM-1: 
Identifying the 
attributes 

DM-1: Business 
understanding 

CF4: Deconstructing 
and categorizing the 
concepts 

  KM-2: 
Structuring the 
attributes 
KM-3: Defining 
attribute scales 

DM-2: Data 
understanding  
DM-3: Data 
preparation 

CF5: Integrating 
concepts 

  KM-4: Defining 
the aggregating 
tables 

DM-3: Data 
preparation 

CF6: Synthesis, 
resynthesis, and 
making it all make 
sense 

  KM-4: Defining 
the aggregating 
tables 

DM-4: Modeling 
DM-5: 
Evaluation 
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CF7: Validating the 
conceptual framework 

   DM-5: 
Evaluation 
DM-6: 
Deployment 

* CF: Jabareen [25], SM: Petersen et al. [73], SM: Kitchenham and Charters [74], DM: Chapman et al. 
[29], KM: Aubertot and Robin [5]. 

 
 

3.2. Components 
 
3.2.1. Study of Pre-feasibility 
 
The Study of Pre-feasibility gives the start of the execution of CoMPeM. It is necessary 
since there are requirements for each model component's processes and the profiles of 
the people who will implement them (see Figure 8). 
 

 
Figure 8. Study of Pre-feasibility 

 
The components and activities are: 
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• Definition of the Modeling Objective: This activity defines the scope of modeling 
in terms of the crop pest to be addressed, the scale of the analysis, response 
variable, for what and for whom the modeling is carried out, among others.  

• Characterization of human competences (Process): This activity aims at 
identifying the available human talents to execute the modelling macroprocess. 

• Data Source Availability Assessment (Process): the information sources required 
for pest modeling are knowledge and data monitored in the crops. Knowledge 
may be that of an expert, or the result of technical studies done around the 
target pests. Although the available knowledge may be considered sufficient, the 
macroprocesses related to the State of Science should be carried to the end to 
refine the knowledge. The data come from either datasets obtained by the 
scientist conducting the study, data monitored in smart farming crops or from 
public databases that describe the effect of environmental variables on the 
pathosystem to be modeled. 

• Modeling Approach (Preparation): this preparation parameter sets the type of 
modeling that will be carried out: data-driven, knowledge-based, or both. If there 
are no databases describing the effect of variables on the pathosystem, the data-
based modeling cannot be performed, and only the knowledge-based modeling 
could be carried out.  

• Start State of Science (off-page connector): this connector represents the 
beginning of State of Science, as is related in Figure 9. 

 
 
3.2.2. Evolution of Pest Modeling through Systematic Mapping (SM) 
 
The Systematic Mapping (SM) has five phases and is located in the phases CF1 to CF3 
(Figure 9).  
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Figure 9. Macroprocess: Evolution of Pest Modeling through Systematic Mapping (SM) 

 
The definition of research questions (SM-1) establishes the research scope. The questions 
should be oriented to what has been the evolution around the studies that addressed 
the pest, the most used research topics (multidisciplinary), and the affiliations and 
authors that have carried out the most relevant studies. Some recommended questions 
are: 
 

• What has been the evolution of crop pest modeling? This question seeks to 
determine which aspects of the disease have been the most studied, such as 
genetic resistance, pest assessment (incidence, prevalence, severity), population 
size, losses caused etc., and which aspects are useful for modeling.  

• Which modeling techniques have been used for pest development forecasting? 
This question seeks to determine which techniques have been used over the years 
to model the pest, as well as current trends, and identify those with the best 
performance. 

• Who are the experts in pest modeling? This question seeks to determine which 
authors have most and relevant studies on the topic, in order to identify the 
expert's main contributions to the pest modeling, review his bibliographic 
production and co-authorship networks. The identified experts may have grey 
literature with interesting findings that may not be indexed in used academic 
search engines. 
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The search for primary studies (SM-2) uses the defined scope to create search strings. 
These strings are combinations of keywords of the scope, truncation symbols like +, 
and Boolean operators like AND, OR. Search strings are submitted in bibliographic 
sources systems. Since many results of experiments related to a pest are published in 
technical bulletins, gray literature should be considered.  
 
After the search, the papers’ initial set is filtered in the Screening of Papers for Inclusion 
and Exclusion process (SM-3). Although a filter from the most current research is often 
used, it is vital to consider pioneering research on pests often cited. Additionally, if the 
data-based modeling process is going to be addressed later, an inclusion criterion should 
be investigations that have used datasets that represent similar dimensions, e.g., genetic 
data about the pest, and those that addressed similar pest data, e.g., the severity of a 
disease. An exclusion criterion can be scientific publications with a proportion of few 
citations according to the number of years since it was published or if the paper was 
published in non-relevant journals or libraries. The publication filter must consider 
those that address pest development forecasting issues, such as modeling, estimation, 
expert systems, and decision support systems. 
 
Next, the keywording of the abstracts (SM-4) belonging to the papers resulting from 
the SM-3 is carried out. The purpose is to find keywords and concepts that reflect the 
contribution of the paper. In addition, the context of the keywords and concepts in all 
the papers allows grouping them and forming categories for the mapping. The concepts 
are then analyzed to develop a high-level understanding of the research and generate a 
classification scheme according to elements related to pest, such as climate, cropping 
practices, crop, and pest properties. 
 
Finally, the data from papers is extracted, and the mapping is generated (SM-5) from 
the groups of concepts found. The visualization of the mapping, representing the 
Evolution of Pest Modeling, corresponds to a comparison of elements such as publication 
frequencies, affiliations, years of publications, and main concepts.  
 
3.2.3. Relevant Concepts related to the Pest through Systematic Review (SR) 
 
The Systematic Review (SR) has five phases and is located in the phases CF1 to CF3 
(Figure 10). 
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Figure 10. Macroprocess: Relevant Concepts related to the Pest through Systematic Review (SR) 

 
The identification of research (SR-1) is based on the definition of research questions 
and the search’s documentation. This process can take the elements of previous work 
done in SM-1 and SM-2. The research questions at this point seek more specific 
information than in SM. Following the recommended questions for SM-1, the new 
questions would be: 
 

• What are the variables most related to the most studied aspect of pest? This 
question seeks to identify the variables that have been taken into account as 
predictors in the studies. 

• How were the techniques used for pest development forecasting implemented? 
This question seeks to identify the elements and processes to implement the 
techniques most used for pest development forecasting and the metrics for their 
evaluation. 

• What have been the main contributions of the identified expert in the pest? This 
question seeks to understand the expert’s main contributions, review his 
bibliographic production, and determine if it is possible to contact this person. 

 
The Selection of primary studies (SR-2) takes into account the studies that provide 
direct evidence about the work around the pest specified in the research questions. The 
idea in this step is to select works by the pest research domain addressed, e.g., pest 
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modeling and pest detection. Inclusion and exclusion criteria can be similar to those 
used in SM-3. At the end of this process, a set of relevant studies is obtained. 
 
A quality assessment of the relevant studies (SR-3) ensures a more reliable filter for 
better contributions to the pest study. The highlights in each study must be interpreted 
according to the metrics and procedures used to compare them. Additionally, the future 
works proposed in the studies can guide the contributions of current research on pest. 
While the comparison of the studies with quantitative results corresponds to an 
objective and direct comparison according to the measures used in each study, for those 
who present qualitative results, there are guidelines such as the one presented by 
Anderson [75]. The information is extracted and monitored (SR-4) through forms 
according to the elements analyzed in the studies. Additionally, the databases used in 
the studies, their properties, and access conditions should be identified. Public datasets 
related to the pest are potential resources to validate the current research results.  
 
As the last step, the results of the previous process are collected and summarized in a 
Data synthesis (SR-5). For data-based modeling, the concepts, categories, theoretical 
basis, and experts supporting the validation process were identified. On the other hand, 
for the data-based modeling, the most used techniques, how they are implemented, the 
predictors used, the possible optimizations of the modeling, and the principal authors 
about the concepts and pest modeling were identified. A document called the State of 
Science is generated and must contain all the relevant findings as the materials and 
methods and techniques used, principal authors, performance metrics, and highlights.  
 
3.2.4. Knowledge-based Modeling (KM) through IPSIM  
 
This module has four phases and instantiate phases 3 to 6 of CF (Figure 11).  
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Figure 11. Macroprocess: Knowledge-based modelling (KM) through Injury Profile Simulator (IPSIM) 

 
After the achievement of the State of Science, the first and second processes of the 
knowledge-based modeling (KM-1 and KM-2) collect the information obtained. The 
basic attributes correspond to main concepts and the aggregated attributes to the 
categories in the classification scheme identified in SM-4 and SR-4. Those attributes 
must be grouped into categories (aggregated attribute) according to the similarity of 
the phenomenon or property they describe. The scale of an attribute defines the possible 
values it can take, each value defined by a threshold, and should express the properties 
as a qualitative variable (nominal or ordinal) e.g., “dry, light rain, strong rain” for a 
rain attribute, or the impact in pest e.g., “favorable, moderately favorable, unfavorable”. 
The definition of attribute scales (KM-3) is done after understanding the properties of 
each basic and aggregated attribute.  
 
The hierarchical multi-criteria decision structure is formed by defining the aggregation 
tables (KM-4). The tables represent how the aggregated attributes are formed based on 
“if-then” rules. Each table represents a mapping of all of the combinations of attribute 
categories based on “if-then” rules. The rules are defined according to the effects and 
importance of an attribute over another one, e.g., if rain is high and the temperature is 
favorable to pest then weather (aggregated attribute) is favorable to pest. Finally, the 
main output is the response of the model and must correspond to the pest modeling 
need, e.g., characterization of the pest incidence growth (increase, decrease, no change), 
the pest infestation in percentage ranges (low, medium, high), etc. It corresponds to the 
successive aggregation of tables in hierarchical order. In a systems-based representation, 
basic attributes represent the user inputs, while aggregated attributes and aggregating 
tables represent the processes at stake, and the main output variable represent the 
variable to explain. 
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Since the IPSIM framework does not explicitly consider a validation phase applied to 
the created model, in which its performance is estimated from simulated events or 
historical data, this process is added to the end of the macroprocess (KM-5). The 
validation should comprise the following activities:  
 
• Define validation criteria: Focused on the expected results concerning the pest 

and how the model performance will be measured. Since classification models are 
generated from IPSIM framework and their output is a class (category, qualitative 
variable), the standard performance metrics for classification suggested are: 
accuracy, which represents the number of correct predictions of the model over 
the total input data; precision, which is the number of correct predictions of a 
class about everything that the model predicted would be of that class; recall, 
which is the number of correct predictions of a class on all the data that actually 
corresponded to that class; F1-score that represents the balance between precision 
and recall [76]; and Cohen’s weighted kappa [77]. 

• Prepare simulation cases from information: This can be done from historical data 
or hypothetical cases defined by an expert. The simulation cases are a series of 
instances that contain examples of the basic attributes of the model and the 
expected output observed in the smart farming crops or defined by an expert. 

• Apply the model to simulation cases, using the values of the basic attributes and 
comparing the output of the model with the actual expected output. 

• Collect validation results: Represent the results in terms of the defined validation 
criteria. 

 
After carrying out the model validation, if the results are not acceptable, an iteration 
to the KM-4 process is suggested to make adjustments to the aggregation tables or even 
the values for each scale of the basic attributes. 
 
3.2.5. Data-based Modeling (DM) through CRISP-DM 
 
The DM module is formed by six phases and we frame them in phases 3 to 4 of CF 
(Figure 12). 
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Figure 12. Macroprocess: Data-based Modeling (DM) through CRISP-DM 

 
This macroprocess begins with the Business Understanding (DM-1) process, which takes 
the produced State of Science. The business corresponds to the problem to be solved, 
in this case, the pest modeling. The pest knowledge corresponds to the main concepts 
and the categories in the classification schema identified in SM-4 and SR-4. Knowledge 
should be expressed in technical terms as a data mining objective, e.g., "Improve the 
detection of disease in the leaves" is converted to "Generate a computer vision model 
to detect disease infection areas from photos of the leaves." 
 
The Data understanding (DM-2) process begins collecting all available data sources for 
the pest, relevant for the business, firstly the variable to explain (target) and secondly 
the explanatory variables (predictors). The target variable can be either quantitative 
(numerical that can be discrete or continuous), then the task will be regression, or 
qualitative (nominal, ordinal), the task will be classification. Statistical methods can be 
applied for classification and regression. However, some tasks do not require the 
specification of a target variable, like clustering. This process can have iterations with 
Data preparation (DM-3) for each modification of the dataset or generation of a new 
one from the original datasets. The explanatory variables need deeper examination of 
the available dataset which has to be described through its properties, formats, and 
structure. One of the most common ways of describing features (variable or attribute) 
is from descriptive statistics according to the type of variable (quantitative or 
qualitative). By visualizing the characteristics of the datasets, some highlights can be 
obtained from comparisons of their features, e.g., high-temperature values related to 
the presence/absence of the pest in crops. The success of the following processes 
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depending mainly on the quality of the data used, anomalies in the dataset must be 
detected and resolved, either discarding faulty instances or processing them to correct 
their value. The most common data issues are: outliers (e.g., a value of a monitored 
variable by a sensor much larger or larger than most of the other values), noise (e.g., 
negative values for relative humidity), missing values (e.g., records with no temperature 
value due to a sensor fault), dimensionality (a large number of features in the dataset, 
where not all are related to the pest), heterogeneity (e.g., temperature from two weather 
stations in different measurement units).  
 
Data preparation (DM-3) addresses the transformation of the original datasets, and it 
begins with manual features inclusion or exclusion. The criteria must correspond to 
variables that affect the pest and its development from the State of Science. Next, data 
quality problems identified in DM-2 must be resolved. Different studies guide the data 
cleaning process for regression [78] and classification [79] tasks. In a smart farming 
environment, there may be different datasets describing different dimensions (weather, 
agricultural practices, pest development, yield, etc.) The available datasets must be 
merge, taking great care in the dimensions that each represents and its temporality. 
e.g., A March weather dataset cannot be merged with a September pest monitoring. As 
a result, the final dataset is obtained. 
 
With a clean and structured dataset, the Modeling (DM-4) process can be executed. 
The final dataset is used to train a machine learning model. Depending on the learning 
task, different algorithms can be used. Unsupervised Learning algorithms train a model 
with no target variable specification and are focused on recognizing patterns. Supervised 
Learning algorithms train a model according to labeled examples. The label, in this 
case, is the target variable. Semi-supervised learning is a technique that uses labeled as 
unlabeled data to train a model [80]. The recommended procedure is to apply several 
of these algorithms to the final dataset, calibrating its parameters to obtain optimal 
results. Cross-validation [12] is needed to determine each algorithm’s performance 
metrics, which also depend on the modeling task. The typical performance metrics used 
are accuracy, precision, recall, F1-score, Receiver operating characteristic curve (ROC) 
for classification, mean absolute error, and mean squared error for regression; correlation 
for statistical methods. A guide for choosing the algorithms to be tested for pest 
modeling is presented in [82]. The result is a set of models induced from the dataset 
through several algorithms and the performance metrics related to each one. 
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The Evaluation (DM-5) process compares the performance metrics of the applied 
algorithms to identify the best result and determines if the business and modeling 
objectives were achieved. In case the results are not acceptable, a new iteration from 
the DM-2 process is suggested.  
 
Finally, the model and knowledge extracted throughout the process are made available 
to users. The deployment (DM-6) strategy must respond to the case study and the end-
user who will benefit. For smart farming scenarios, the deployment of the model can be 
carried out using the new continuously monitored data. 
 
 
3.2.6. Complementary Study (CS) 
 
Finally, the Complementary Study is framed into the CF7. If the experiment’s 
conditions and materials allow us to carry out more than one model, these can be 
compared or complement each other. This comparison is not intended to distort one of 
the models, but to analyze and extract the benefits and challenges of the two modeling 
approaches: Knowledge-based (KM) and Data-based (DM) modelling and how they 
could complement each other. Likewise, the learning resulting from the generation of 
the models can be used in similar smart farming environments. 
 
Complementarity can be approached in two ways: the first, training a data-based model 
(when the data is available) with variables similar to that of the knowledge-based model. 
The data-based modeling process can provide elements to improve the knowledge-based 
model through the definition of scales (KM-3) and the relationship structure of the 
variables (KM-4). These elements can be: association rules, importance of variables, 
impact of the range of variables on predictions, among others. The other way, 
integrating knowledge obtained in the State of Science within the data-based modeling 
in the data preparation (DM-3) and modeling (DM-4) phases, as proposed by Informed 
Machine Learning [28]. 
 
The comparison of prediction models is generally in terms of their performance metrics. 
The metrics depend on the variable output, which determines the task carried out: 
classification (qualitative) or regression (quantitative). For quantitative models, the 



3.2. Components 
 
 

 

43 

desired performance is low bias and low prediction error. In the case of qualitative 
models, the desired performance is high accuracy, recall, sensitivity, specificity [76] and 
Cohen’s weighted kappa [77]. Another objective is to know if the difference between the 
outputs of the models is statistically significant [83]. In order to compare the models 
directly, the response of each can be transformed in terms of the other [84], [85], and 
test them using ANOVA and McNemar's metrics. 
 
Assuming that the models are validated with the same dataset: 
 

• For quantitative models, the variance (ANOVA) analysis is a test used to 
determine if there is a significant statistical difference between the means of two 
or more sets. The null hypothesis is that the models’ biases are not different 
among the set of predictions of each one. If the p-value is less than 0.05, the null 
hypothesis can be rejected.  

 
• For qualitative models, the McNemar’s test [86] can be used to determine if two 

methods (models) have the same accuracy. The test is based on the number of 
instances misclassified only by the first algorithm and the number of instances 
misclassified by the second. The null hypothesis is that the two methods have 
the same percentage of correctly classified instances. If the p-value is less than 
0.05, the null hypothesis can be rejected.  

 
When models from DM and KM are generated, an interesting comparative aspect is 
knowing the minimum amount of training data necessary for the DM model to be as 
good as the KM model. We propose a process to get an approximation to the minimum 
size that a dataset must have so that a DM model induced from it has a performance 
as good as that of the KM model, which is shown in Figure 13. 
 
From a training dataset, subsets of different sizes are randomly generated incrementally. 
In each iteration of the cycle in Figure 13 the size of the subset increases from 1 until 
it reaches the size of the training dataset. Next, the DM model is trained with the subset 
and its performance metrics are calculated using a test dataset. In this case, if the 
output of the DM model is different from that of the KM (for example a qualitative 
and a quantitative one), this output must be transformed to match. If the performance 
of DM model is less than that of KM model, then a file with the information of the 
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experiment (size of the subset and performance metrics) is updated and if the subset 
has the maximum size (equal to the training dataset) the process ends, otherwise it is 
increases by 1 the size of the subset to be generated for the next cycle. In case the 
performance of DM model reaches or exceeds that of the KM model, the size of the 
subset for which this happens is stored together with the performance of DM model and 
the process continues.  
 

 
Figure 13. Flowchart of the estimation of the minimum size of the training dataset to achieve accuracy 

similar to knowledge-based model 

 
However, if only one model is built, it can be compared with similar models identified 
in the Relevant Concepts related to the Pest through Systematic Review (SR) 
macroprocess, from the application of models on the same validation dataset or the 
comparison of performance metrics. 
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3.3. Execution flow synthesis 
 
From a general point of view, after the Study of Pre-feasibility, the execution flow of 
activities in the conceptual model instantiates each of the CF phases. Figure 14 shows 
the execution flow that links each of the macroprocesses presented.  
 

 
Figure 14. Execution flow of the Conceptual Model 

 
The off-page connector "Start State of Science" corresponds to the execution of 
the Evolution of Pest Modeling macroprocess through SM, followed by Relevant 
Concepts related to the Pest through SR. The on-page connector "Start Modeling" 
begins with knowledge-based and/or data-based modeling, depending on the Modeling 
Approach parameter.  
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3.4. Additional considerations 
 

• The dataset that will be used to generate the model must be made up of variables 
that can be easily measured in the agricultural field and do not require large 
investments that cannot be made by the coffee growers. The use of a model may 
be carried out if the user has the information of all the variables used to train it. 
Hence, the smart farming environment where a model will be applied must be 
similar to the one where the model was trained. e.g., If the model was trained 
with information from the Internet of Things (IoT) devices, then the user must 
have a similar infrastructure to obtain their data and then use the model. 

• A crop pest development forecasting is successful if its result allows actions to 
be carried out on time. The model is trained with data that represent the 
environmental, crop and pathogen conditions, in a time with sufficient 
anticipation so that the prediction allows accurate contingency actions.  

• The selection of features in a high dimensional dataset can be approached from 
traditional techniques or expert knowledge. A comparison of the two approaches 
allows determining the most appropriate for the specific situation. 

• Unexpected results or failures concerning modeling objectives are still results and 
must be reported. These constitute new knowledge to be addressed in new 
research or a criterion to discard the used approach. 

 

3.5. Summary 
 
This chapter presented the proposed conceptual model to carry out crop pest 
development modeling tasks in smart farming environments, called CoMPeM. This 
conceptual model considers the application of methodologies and theoretical references 
in its macro-processes. CoMPeM starts from a pre-feasibility study that assesses the 
initial situation and establishes some criteria for the next steps. The Evolution of Pest 
Modeling implements a method of building a classification schema and categorizing 
research reports and literature published. The Relevant Concepts related to the Pest 
macroprocess aims to identify gaps in current research and appropriately position new 
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research activities. The Knowledge-based modeling macroprocess presents the steps to 
generate a decision structure from expert knowledge that allows modeling crop pest 
development. The Data-based Modeling macroprocess is based on a methodology to 
carry out data mining tasks and allows to obtain an induced model from data. Finally, 
a complementary study leads to an estimation of the behavior of two or more models 
built from different approaches, in order to compare their performances and look for a 
form of complementation between them. 
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Chapter 4  
 
Case study: Coffee Crop Pests 

This chapter describes the case studies in which CoMPeM will be applied. The coffee 
crop pests addressed were Coffee Leaf Rust and Coffee Berry Borer. Coffee production 
is one of the agricultural activities of great interest in countries such as Colombia and 
Costa Rica. There are projects like AgroCloud4 in Colombia and PROCAGICA5 in 
Central America that focus efforts on implementing smart farming environments, 
providing information services on the environment of coffee crops, as well as tools to 
deal with coffee pests that generate significant losses to coffee growers. Precisely, these 
types of projects need solutions oriented to the modeling of coffee pests, taking 
advantage of the experts of the work teams and the efforts in obtaining data from smart 
farming environments. Given the willingness to collaborate with the present doctoral 
work, the study area corresponds to an experiment on agroforestry systems carried out 
at the Tropical Agronomic Research and Teaching Center (CATIE), located in Costa 
Rica. This facilitated obtaining the resources of both experts and monitoring data 
related with the PROCAGICA project. 
 

4.1. Coffee Pests 
 
Coffee pests are the main yield-reducing factors in coffee production systems in many 
countries. Given the complexity of the interactions of the causative agents of pest with 

 
4 http://agrocloudcolombia.com 
5 https://www.redpergamino.net  
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the crop and the environment, it is important to make efforts to understand this 
complexity and achieve the development of sustainable agroecosystems [87]. Two coffee 
pests were chosen as the CoMPeM case study: Coffee Leaf Rust (CLR) and Coffee Berry 
Borer (CBB). 
 
4.1.1. Coffee Leaf Rust (CLR) 
 
Coffee Leaf Rust (CLR) is one of the diseases of coffee plants that cause more injuries 
in trees and crop losses [20]. The causal agent is the fungus Hemileia vastatrix Berk. & 
Broome (1869). The disease cycle is composed by propagule germination, penetration 
through stomata into the leaf, colonization of leaf tissue, sporulation through stomata 
and dispersal which comprises propagule release, its transport and deposition on coffee 
leaves. The uredospore is the only known propagule. The Figure 15 shows the fungus 
life cycle flow diagram and the factors affecting it (dashed lines). The factors are 
environmental and crop properties: fruit load (FL), leaf area developed by the coffee 
tree canopy (LA), radiation intercepted by the coffee tree canopy (RAD), rainfall (R), 
soil moisture (SM), leaf wetness duration (LW), stomatal density (SD), air temperature 
(T) and wind speed in the coffee tree canopy (W). The ways in which the factors affect 
the cycle can be three: positive (solid lines), negative (dashed lines), or with an optimum 
(dotted lines) [88]. 

 
Figure 15. Hemileia Vastatrix life cycle flow diagram and factors affecting it. Source: Avelino et al. [88] 
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The latent period, i.e. the time between germination and sporulation, is a key parameter 
of the epidemic: the shorter it is, the more intense the epidemic [89]. The first symptoms 
are yellowish spots that appear on the underside of leaves. These spots then grow and 
produce uredospores displaying a typical orange color (Figure 16 left). Chlorotic spots 
can be observed on the upper surface of the leaves. During the last stage, lesions become 
necrotic [20]. The disease affects coffee leaves causing defoliation (Figure 16 right) and, 
in the worst-case scenario, death of branches and heavy crop losses.  
 

 
Figure 16. Coffee leaves with lesions caused by CLR (left) and defoliation caused by the disease (right). 

Source: Gaitán et al. [22] 

 
For example, in Colombia after the 2008 epidemic, production decreased by 30% from 
2008 to 2011, compared with 2007; while in Central America the production decreased 
by 16% after the epidemic of 2012-2013 [20]. Reductions in production generate a 
negative impact on the livelihood of coffee growers and agricultural workers, as 
harvesters. Disease controls imply greater investment, which makes the farmer's 
situation even more precarious. Additionally, the majority of coffee varieties planted in 
Latin America are still susceptible to coffee rust, covering 80% of the area in Central 
America in 2012 [20]. Among the cultivated species, Coffea arabica is the most severely 
attacked [16]. Despite the development of CLR-resistant coffee varieties, such as in 
Colombia where more than 60% of its coffee crops are planted with resistant varieties 
[20], new rust races have appeared capable of breaking this resistance [90]. 
 
One of the most used ways for the CLR assessment is the calculation of its incidence. 
A plant unit (normally, a leaf) is categorized according to whether it presents the 
symptoms of the disease or not [91]. After classifying a representative sample of plant 
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units, the CLRI (Coffee Leaf Rust Incidence) corresponds to the average proportion of 
leaves infected over the total analyzed. CLRI is a continuous variable ranging 0 - 100. 
The main limitation of this measurement for CLRI monitoring is the possible error in 
the categorization of infected or healthy leaves. Also, the incidence is a descriptor of 
the dynamics of both CLR and coffee plant [92]. Although the definition of incidence is 
uniformly accepted, there are many different ways of choosing the set of plants and 
leaves to be examined, and even of determining if a leaf is diseased or not. CLRI is not 
therefore necessarily comparable between different trials if the sampling method was 
different. 
 
Weather, shade level, fruit load and crop management are four of the principal drivers 
for the development of CLR development [89], [93], [94]. Each phase of CLR has its 
own weather requirements and specific durations for these requirements. 
 
Temperature affects propagule germination, penetration, colonization and sporulation 
phases. For germination, the optimum is around 22 °C [95], while daily average 
temperatures around 28 °C favors sporulation [50] and temperatures of 25 °C shorten 
the latent period [96]. Temperatures of 22 °C - 28 °C that favor germination and lower 
temperatures (13 °C - 16 °C) that favor the formation of appressoria over the stomata, 
structures that facilitates the penetration phase, allow the infection to occur in less than 
6 hours in presence of free water [97]. 
 
The fungus requires the presence of a layer of water on the underside of the leaves to 
germinate [17], [95]. Water is also important for dispersal, particularly via splashing, 
i.e., the dispersal in raindrops after impacting lesions with uredospores.  However, if the 
rains are very abundant and intense, the uredospores can be eliminated by washing [98]. 
As CLR is an obligate parasite, needing living leaves for its survival, any released 
uredospore that cannot reach a coffee leaf will not contribute anymore to the epidemic 
growth. 
 
Relative humidity is an indirect measurement of leaf wetness. This condition can be 
derived from the number of hours with relative humidity of the air above a specific 
limit, usually 90% or 95% [99].  
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The physiological characteristics (particularly in relation with fruit load) of the coffee 
tree has an influence on the latent period of the disease. For susceptible crops with high 
fruit load and favorable weather conditions, the latent period can last less than 2 weeks. 
It is longer (up to several months) on the oldest leaves of low yielding coffee plants in 
cold and dry conditions [93].  
 
The presence of shade on coffee crops has an effect on the disease [100], since it 
maintains very narrow thermal amplitude values and favors a constant high air relative 
humidity [101]. It also affects other drivers involved in the CLR cycle, such as rain, 
wind, fruiting load and soil moisture [102]. The balance of these effects is still 
controversial. 
 
Crop management (fertilization, diseases controls) drives CLR epidemic. However, crop 
management is limited by the economic capacity of the coffee grower. The continuous 
monitoring of the disease allows the application of fungicides with no excess, at an 
appropriate time as soon as CLRI reaches a certain level, usually 5% [103], reducing 
further CLR intensity and impacts. On the other hand, fertilizer applications contribute 
to the recovery of coffee tree due to the action of nutrients on vegetative growth [104]. 
 
The observed CLRI is also a result of coffee plant growth [88], [92], [105] and previous 
CLRI values, as proxies for the estimation of  the inoculum stock that will potentially 
cause new infections if the right conditions are met [105]. The importance of host growth 
lies in the fact that, in a growing season, an apparent dilution of CLRI occurs when 
new healthy leaves appear, decreasing the proportion of infected leaves [92], [102], [106]. 
This decrease does not imply that the conditions for the pathogen are not favorable. 
Similarly, fall of non-rusted leaves, for diverse reasons, will increase CLRI [107]. 
 
4.1.2. Coffee Berry Borer (CBB) 
 
The Coffee Berry Borer (CBB) Hypothenemus hampei (Figure 17) is the most serious 
pest in all coffee-producing areas in the world [19]. This species feeds exclusively on the 
coffee almond, where it also reproduces. The damage is caused by the adult female when 
drilling the fruits in order to deposit around 75 eggs, from which the larvae emerge that 
destroy the seed. This causes the partial or total loss of the grain [108]. Since the female 
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can continue to reproduce even after the fruit falls to the ground, dried or overripe 
fruits that remain after harvest pose a greater risk of reinfestation of the coffee tree. 
 

 
Figure 17. Coffee Berry Borer. Source: Gaitán et al. [22] 

 
Factors that affect CBB infestation are temperature, relative humidity, precipitation, 
and agronomic management. There are special values related to the altitude of the area, 
the development being faster and the impact of the insect greater in low locations 
(<1200 meters above sea level - m.a.s.l.) with temperatures above 21 °C, and 
development is less in sites above 1600 m.a.s.l. with average temperatures below 19 °C, 
where there is no impact of the CBB on coffee production [109]. During El Niño season, 
infestation levels in coffee trees increase considerably at the end of the production cycle. 
In addition, the times in the duration of the insect life cycle are affected due to the 
variation of the maximum and minimum temperatures that occur during the night and 
the day. Taking as base temperature of 21 °C, the incubation of the egg lasts 9 days, 
the larvae 19 days, the pupa 11 days and in the melanization of the adult 7 days, the 
life cycle from egg to adult lasts a total of 45 days, approximately. In the case the 
average temperature is 18 ° C, the cycle can last 60 days (see Figure 18) [110]. CBB life 
cycles accelerate at high temperatures, producing more progeny in less time, compared 
to lower temperatures where the development cycle is slower and longer [19]. 
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Figure 18. CBB lifecycle at base temperature of 21 °C. Source: Gaitán et al. [22] 

 
The emergence of CBB from grains is closely related to relative humidity. Between 90% 
and 100% there is a greater emergency, while below 80% it decreases. Similarly, the 
higher the humidity (90% - 93.5%) affects emergence rate by influencing survival or 
fecundity of the populations inside the berry [19]. 
 
In dry periods, the fruits that fall to the ground last longer, which increases the 
development of the CBB given the higher average temperature. On the other hand, in 
rainy periods, the decomposition of the fallen fruits is rapid, which reduces the food 
available for the CBB and causes its mortality. This concludes that CBB development 
and emergence is less during rainy periods [111],[112]. 
 
On the other hand, the influencing management factors are related to good practices, 
such as timely harvest, harvesting of ripe, overripe and dried fruits left by collectors 
after harvest. This practice is called repase and is essential to keep pest damage at low 
levels [19]. Additionally, the critical period of CBB attack begins between 120 and 150 
days after the main prayers and extends until the beginning of the harvest. The fungus 
Beauveria bassiana has been the main natural enemy of the coffee borer. The control 
of CBB occurs in the practices of timely harvest and collection of the ripe fruits left by 
the collectors [19]. 
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4.2. Study area 
 
The study area corresponds to a long term experiment of coffee-based agroforestry 
systems established in Costa Rica in 2000, described in [113], [114], studying ecological 
processes that promote sustainability and higher coffee productivity under different 
crops conditions. The experiment implements smart farming approaches for the 
monitoring of coffee crops conditions (weather, pests, cropping practices). CLRI and 
CBB are some of the monitored coffee pests. This trial was carried out in the Tropical 
Agricultural Research and Higher Education Center (CATIE) at coordinates 9º 53' 44’’ 
North Latitude and 83° 38' 07’’ West Longitude. Detailed information has been 
continuously collected, which makes it a unique experiment in the area. The experiment 
has a total area of 9.2 ha., located at 685 meter above sea level, in soils with a clay-
loam texture. The variety of coffee is Caturra of the species Coffea arabica, susceptible 
to most CLR races. The crop management (fertilization, pest control) has two 
strategies: organic and conventional. Organic management uses chicken manure and 
organic matter (coffee pulp) at two intensity levels. Conventional management has also 
two levels. The high conventional level uses the complete technical package for 
maximizing productivity including pesticides and herbicides application (copper-based 
fungicide (50% Cu) in 1 Kg ha-1 doses combined with a systematic product 
(cyproconazole 10% WG) in 0.4 liter ha-1 doses), and fertilization (300 kg N ha-1, 20 kg 
P ha-1, 150 kg K ha-1). The medium conventional level is a less intense level, using a 
half-dose of inputs compared to high conventional level [113]. There are 20 treatments 
configured with different combinations of six types of shaded and full sun exposed crops, 
and the two management strategies mentioned above. The shade trees used are:  
 

• Poró (Erythrina) (E). 
• Terminalia (Amarillón) (T). 
• Chloroleucon (Cashá – Ab.i) (C). 
• Full sun (PS). 
• Combinations of the above.  

 
The Figure 19 shows the distribution of the blocks and plots in the experiment. Each 
of the shade types contains some management variations as seen in the upper left corner 
of the figure: high conventional (HC), medium conventional (MC), medium organic 
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(MO) and low organic (LO). The colored elements in the figure correspond to 
annotations of the experiment on the collection of monitoring data. The treatments are 
replicated in three blocks. For our purpose, we only considered the two levels of 
conventional management since organic management always has a high CLR and CBB 
level, besides that conventional management is the most used. 
 

 
Figure 19. Map of the coffee-based agroforestry systems experiment at CATIE. Source: CATIE 

 

4.3. Data and expertise sources 
 
The CATIE experiment is located in a smart farming environment. The sources of data 
and expertise in the case study allowed the application of CoMPeM in a multi-
disciplinary research group for CLR and CBB modeling. 
 
4.3.1. Data source 
 
Daily weather data were obtained from the CATIE Meteorological Station located in 
its campus, in Turrialba, Costa Rica, at an altitude of 602 meters above sea level, at 
coordinates 9° 53' North Latitude and 83° 38' West Longitude. The weather station has 
sensors for air temperature, relative humidity and a rain gauge. The weather station 
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and the sensors comply with the World Meteorological Organization standards. The 
average meteorology in the experiment location between 2002 and 2014 is: precipitation 
3037 mm/year, air temperature 22 °C, relative humidity 89.6%. The data was in Excel 
spreadsheets, one per year with sub-tables for each month, containing the following 
variables: maximum (tMax) and minimum (tMin) air temperature, average (tAvg) air 
temperature calculated over the day, average (hAvg) and minimum (hMin) relative 
humidity, daily precipitation (pre). The data in the files did not contain null data and 
was extracted and condensed into a single CSV file. 
 
On the other hand, the information on the pests and the host growth was in Excel 
spreadsheets also, one measure per month, containing the shade condition, management, 
host leaves count, CLR incidence and CBB count, subplot, and measurement date. CLR 
and CBB assessment was done monthly in the experiment, but for CBB only four-year 
data was found. To avoid redundancy issues, we only used the data from one of the 
blocks according to the process carried out. In the case of CLR we took data from block 
1 for modeling process, while the data of block 2 for results validation and model 
explanations. For CBB we took the data of block 2 for knowledge-based model 
validation since this block had the largest number of records. 
 
We used the information of weather and pests monitoring from April 2002 to December 
2014. The data from the CATIE experiment were shared by Dr. Elias de Melo Virginio 
Filho, coordinator of the Agroforestry Systems Project in Sustainable Coffee 
Plantations, while the data from the weather station were obtained through the 
intermediation of Dr. Jacques Avelino (Co-Supervisor of this Ph.D. work) with CATIE. 
The foregoing, as part of the two doctoral research internships carried out at said 
institution. 
  
4.3.2. Expertise source 
 
The source of expertise about the case study corresponds to CATIE experts with whom 
there was collaboration in the two doctoral research internships carried out at said 
institution. Below are the experts involved in the case study: 
 

• Jacques Avelino. Ph.D. in Plant Pathology. Researcher on perennial crop 
diseases at CIRAD offices at CATIE. Co-Supervisor of the present doctoral 
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project and directed the two research internships at CATIE. Dr. Avelino has a 
great experience in the study of coffee pests, especially CLR, which is visible in 
the quantity and quality of his publications. 
 

• Natacha Motisi. Ph.D. in Epidemiology. Researcher at CIRAD offices at CATIE. 
Dr. Motisi has done various research related to coffee pests. 
 

• Elias de Melo Virginio Filho. Ph.D. Agroforestry systems specialist. Dr. de Melo 
directs the Coffee Agroforestry Systems Experiment at CATIE. 
 

• Emmanuel Lasso. Ph.D. candidate author of this work. Universidad del Cauca. 
 

• Juan Carlos Corrales. Ph.D. in Telematics Engineering. Director of the present 
doctoral work. Expert in the application of information and communication 
technology services in agricultural environments. Full Professor at Universidad 
del Cauca. 

 

4.4. Summary 
 
In this chapter, the generalities of the case study in which the proposed conceptual 
model will be applied were presented. The coffee pests addressed were CLR and CBB. 
The study area was an experiment in Costa Rica that implements smart farming 
elements, such as pests and weather monitoring. For the CoMPeM application, the data 
resources used were data from the coffee-based agroforestry experiment carried out in 
the study area, while the expertise resources were a multi-disciplinary group made up 
of CATIE experts in coffee, as well as the authors of the present document. For CLR, 
the available resources made it possible to apply CoMPeM for data and knowledge-
based modeling, while for CBB only knowledge-based modeling. 
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Chapter 5  
 
CoMPeM application for Coffee Leaf Rust 
(CLR) 

This chapter presents the application of CoMPeM for Coffee Leaf Rust (CLR) modeling. 
Each of the macroprocesses of the conceptual model are executed from the available 
resources described in the case study. These resources allowed modeling based on data 
as well as based on knowledge and the complementary study of the models. This 
experimentation provides a better understanding of the proposal of the present doctoral 
work. 
 

5.1. Study of Pre-feasibility 
 
The human talent available for this study was a Data Scientist with experience in 
predictive modeling processes and a Plant Pathologist expert in coffee arabica-CLR 
pathosystem. The available data sources are CLR and vegetative growth monitoring in 
the experiment, the properties of the crop (shade level and crop management practices), 
and weather station data. The data about CLR corresponds to its incidence. Since the 
monitoring data (crop, weather, and CLR) from experiment was available, the Modeling 
Approach was established of two types: data-based and knowledge-based.  
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The Modeling Objective was modified to: model the CLRI development at the field scale. 
After the Study of Pre-feasibility, the flow of activities in CoMPeM starts in the Star 
State of Science connector, which gives way to the Evolution of Pest Modeling 
macroprocess. 
 

5.2. Evolution of CLR Modeling through Systematic 
Mapping (SM) 

 
The research questions (SM-1) that establish the research scope were: 
 

• What has been the evolution of Coffee Leaf Rust modeling? 
• Which modeling techniques have been used for Coffee Leaf Rust forecasting? 
• Who are the experts in CLR modeling? 

 
The selected bibliographic sources systems were Web of Science for high-quality studies 
and Google Scholar to obtain also the gray literature. The most used name for the 
disease is Coffee Rust in English, the latin name Hemileia Vastatrix, roya del café in 
Spanish, and Ferrugem do cafeeiro in Portuguese. Table 3 shows the search strings for 
bibliographic sources systems and the number of studies found. 
 

Table 3. Search strings and number of studies founded in bibliographic sources systems for CLR 
modeling 

Search string Source Quantity 

(TITLE-ABS-KEY (coffee AND rust) AND TITLE-ABS-KEY (prediction 
OR model OR dynamics OR forecast)) 

Web of 
Science 

101 

coffee AND rust AND (prediction OR model OR dynamics OR forecast) Google 
Scholar 

45200 

roya AND café AND (predicción OR modelo OR dinámica) Google 
Scholar 

5570 

Ferrugem AND cafeeiro AND (predição OR modelo OR dinâmica) Google 
Scholar 

6490 

Web of Science offers the possibility of filtering the search string in the titles, abstracts, 
and keywords, while Google Scholar searches for them throughout the document. The 
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number of studies is much less than those found in Google Scholar for the mentioned 
filter and the fact that Google Scholar has gray literature indexed. Due to the large 
number of studies obtained in Google Scholar, these were ordered by relevance 
according to the tool that this search engine offers and selected the top of the most 
relevant. Some criteria were taking into account the Screening of Papers for Inclusion 
and Exclusion process (SM-3): Studies directly related to the CLR modeling, not its 
detection on coffee leaves or studies of its impact on coffee crops. As a result, 29 
academic papers were selected. The studies corresponding to gray literature that 
describe the principal drivers for CLR as technical manuals and bulletins of coffee 
institutions were characterized as basic knowledge.  
 
For academic papers, the keywording of the abstracts (SM-4) allowed finding the follow 
concepts: Hemileia vastatrix, machine learning, decision trees, rust resistance, 
incidence, severity, climate-change, temperature, humidity, precipitation, agroforestry, 
shade, data mining. The main categories found were: weather, agricultural activities, 
crop properties, disease. Figure 20 shows the mapping (SM-5) of modeling techniques 
used and elements around the CLR like its characteristics (genetics, resistance), 
development and incidence studies. The incidence has been of great interest in the most 
recent studies, while from the year 2000, the emergence of works based on Machine 
Learning (ML) techniques is visible in the mapping results. 
 

 
Figure 20. Mapping of studies in CLR modeling 

 
Additionally, we used bibliometrix, an R library for science mapping analysis [115]. This 
library allowed us to perform an automatic analysis of the academic papers around of 
their references, authors, citations, affiliations and keywords. According to their 
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publications and times cited (TC) in the last years, the principal authors are shown in 
Figure 21. It allowed us to recognize Dr. Jacques Avelino as the principal active 
investigator of CLR, whose works are widely cited and show recent activity in modeling 
the disease. 
 

 
Figure 21. Production of principal authors over Time 

 

5.3. Relevant concepts related to CLR Modeling 
through Systematic Review (SR) 

 
We took the primary studies obtained in SM-1 and SM-2 as a basis for Research 
Identification (SR-1). Additionally, the research questions were updated to: 
 

• What are the variables most related to CLRI?  
• How were the techniques used for CLRI modeling implemented?  
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The selection of primary studies (SR-2) took into account the same criteria of SM-3 and 
additionally the selection of those studies that were directly related to the modeling and 
drivers of the disease, not its detection on coffee leaves or studies of its impact on coffee 
crops. Also, studies focused on incidence were most relevant since this is the disease-
related variable in the experiment’s dataset. Thus, studies about modeling of disease 
resistance from its genetics, identification of severity in leaves from computer vision, 
socio-economic studies, and descriptive analyzes were ruled out.  
 
The results of processes about quality assessment (SR-3) and data extraction (SR-4) 
are synthesized (SR-5) in Table 4. This table relates the final relevant studies. The 
columns expose the publication year, times cited (TC), target variable addressed, 
predictors of the target variable, modeling technique (MT), metric of the modeling 
validation, best metric value, and highlights of each study (main contributions, findings, 
approaches and/or future works).  
 

Table 4. Synthesis of Systematic Review for CLR forecasting. TC: times cited. MT: modeling 
technique. BMV: best metric value 

Study Year TC Target variable Predictors MT Metric BMV Highlights 

[50] 2020 1 The onset of 
coffee leaf rust 
symptoms and 
signs 

Microclimatic 
variables in time 
windows, fruit 
load, lesion data, 
sporulation 

Statistical 
analysis 

RMSE 0.012 CLRI monitoring data is an 
important predictor. The 
analysis of weather 
variables in different time 
windows improve the 
modeling. 

[92] 2020 1 Rust life stages, 
inoculum 

Host leaf renewal, 
fruit load, shade, 
fungicide 

Structural 
equation  
modeling 

p-value p < 
0.0001 

Importance of host growth, 
disease monitoring and 
fungicide application as 
predictors. Antagonist 
effect of shade. 

[116] 2019 0 Coffee Rust Level Maximum and 
minimum 
temperature, 
rainfall, relative 
humidity, altitude 

Rule-based 
expert system 
(classification
) 

Accuracy 66.67% Use of expert knowledge 
and technical reports. 
Future works: consider 
flowering date and 
knowledge representation 
for reasoning. 

[117] 2018 7 CLR infection 
rate from 
incidence data 

Temperature, 
rainfall, rainy 
days, relative 
humidity, leaf 
wetness 

Multiple 
linear 
regression 

R squared 0.785 The Gompertz growth 
model was the best to 
describe CLR epidemics 
accurately. Monthly 
minimum air temperature 
and relative humidity were 
the main weather variables 
to estimate CLR apparent 
infection rate. 

[118] 2018 1 Incidence value 
and expected 
growth 

Weather variables 
(temperature, 
relative humidity, 
rainfall) during 

Ensemble 
method, 
decision tree 

MAE, 
Precision 

MAE 1.2  
Precision 
92.2% 

The modeling based on 
ensemble methods gets 
better performance. 
Considering expert 
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the day and in 
hours of leaf 
wetness. Coffee 
variety, crop age, 
shade, crop 
management 

knowledge to generate the 
features of datasets 
improves the modeling task. 

[119] 2012 35 Incidence Temperature, 
rainfall, rainy 
days, relative 
humidity, leaf 
wetness, season, 
load, previous 
incidence 

Bayesian 
networks 

Error rate 8.82% The technique is worse than 
decision trees taking 
advantage of context 
sensitive cases. As future 
work, an expert validation 
is suggested. 

[120] 2008 12 Infection rate 
from incidence 
data 

Temperature, 
rainfall, relative 
humidity, leaf 
wetness, 
temperature in 
leaf wetness 
condition. 

Decision 
Trees 

Accuracy 88% The weather variables were 
characterized according to 
incubation and infection 
periods. Temperature in 
conditions of leaf wetness is 
the most important 
predictor. 

 
Among the predictors considered, the weather is the most used category, and its analysis 
can be improved using time windows. Additionally, the consideration of shade as a 
quantitative or qualitative variable, CLR monitoring data that represents the previous 
state of the disease, use of fungicide, and fruit load are predictors with essential effects 
on the modeling task and increase the diversity described in the training datasets. Most 
of these studies were applied in smart farming environments. Regression-based models 
show significant results, and the use of Machine Learning algorithms represent improved 
processes. From the analysis of the most cited references in the articles, the following 
studies were identified as a theoretical basis: [20], [21], [88], [93], [94], [100], [102], [103], 
[105], [121]–[124]. 
 
Lastly, the findings found in SM and SR: theoretical basis, concepts, categories, and ST 
synthesis table; constitute the State of Science of the conceptual model. 
 

5.4. Knowledge-based Modeling (KM) of CLRI 
through IPSIM 

 
We built a model from knowledge acquired in the State of Science. The basic and 
aggregated attributes and their relationships (KM-1 and KM-2 phases) were defined 
based on, but not necessarily equal to, the categories found in keywording of the 
abstracts (SM-4) and elements of the synthesis of Systematic Review (SR-5). The tree 
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structure of the model is presented in Figure 22. We considered aggregate attributes as 
processes in pathogen – host - environment interactions. The processes can represent 
the relationship between two or more basic attributes, as well as two or more aggregated 
attributes or a combination of them. Basic attributes are shown in green, while 
aggregated in gray. We used ordinal scales in all the attributes (KM-3). To avoid overly 
long decision tables, we aggregated attributes on top of other aggregates, such as Crop 
conditions formed by Climate hazard and Vulnerability. The output variable (Incidence 
Category) is the final aggregate attribute, which is shown in red.   
 

 
 

Figure 22. Tree-based representation of knowledge-based model for Coffee Leaf Rust Incidence 

 
The scales of the basic and aggregated attributes (KM-3) were Favorable to the disease 
and Unfavorable to the disease. Both the Previous Incidence basic attribute and the 
final output Incidence Category have a different scale. The scales of basic attributes 
(user input), the values for each level and studies supporting this information are shown 
in Table 5 (KM-3). The colors in scales represent whether the value of the scale is 
favorable to the disease (red), unfavorable to the disease (green), or a medium effect 
(black). For some attributes, such as temperature, various studies can establish ranges 
that differ from each other, and focus on only one stage of its development. Since our 
approach is the general characterization of CLR incidence, we sought a range in each 
attribute that reconciles the different studies. For weather-based attributes, the value 
corresponds to the average of 14 days before the model used. The host (coffee tree) 
growth attribute represents whether there was an increase in host size (number of 
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leaves) in the last 14 days. The attributes related to chemical control and nutrition 
refer to compliance with the coffee authorities’ recommendations on these issues. 
 

Table 5. Basic attributes scale for Coffee Leaf Rust Incidence 

Basic attribute Scales Values 
Average air temperature [95],[16], [21] Favorable Between 21°C and 25°C 
 Unfavorable Other values 
Average relative humidity [99] Favorable >= 95% 
 Unfavorable Other values 
Daily rain [125],[50], [95], [17] Favorable Between 1mm and 15 mm 
 Unfavorable Other values 
Chemical control [16], [92] Favorable Medium or Low 
 Unfavorable High 
Crop nutrition [94] Favorable Not adequate or null 
 Unfavorable Adequate 
Shade [100], [102], [125] Favorable Shaded crop 
 Unfavorable Full sun exposure 
Host growth [88], [92], [105] Favorable Growth 
 Unfavorable Decrease 
Previous Incidence [88], [92], [105] >50 CLRI greater than 50% 
 25-50 25 to 50% of CLRI 
 5-25 5 to 25% of CLRI 
 0-5 0 to 5% of CLRI 

 
Both the Previous Incidence basic attribute and the output variable Incidence Category 
have the same scale. The disease scale corresponds to the range division of incidence 
values from 0 to 100% in a finite number of categories or classes. In this way, any 
measurement of incidence is found in one of these classes [91]. Since in the model, the 
category of the previous incidence is a value registered by a user, we follow Kranz's 
[126] recommendation for the characterization of the incidence of a plant disease on the 
following scales: 0-1%, 1-25%, 26-75%, and >75%. We modified Kranz's categories 
according to literature and expert knowledge:  

• According to the recommendations for preventive application of  fungicides from 
5% incidence [16], we used this value to define the two lowest categories of 
incidence, 
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• According to expert knowledge (Avelino, pers. comm, March, 2021), a peak of 
50% of incidence is a value that already represents great negative impacts on 
crops (around 50% of loss in the next year production due to branch death), so 
that we used this value to define the two highest categories.  

 
As a result, Previous Incidence and the final output Incidence Category were defined 
by four categories: 0-5 (0 to 5% of CLRI), 5-25 (5 to 25% of CLRI), 25-50 (25 to 50% 
of CLRI), >50 (CLRI greater than 50%). 
 
The rules represented in aggregation tables (KM-4) were built considering an equal 
weight in all the basic attributes. An example of an aggregation table for Climate hazard 
from basic attributes Temperature and Relative Humidity and Daily Rain is shown in 
Table 6. The aggregating table for the output variable is exposed in Table 7. The symbol 
* indicates that the value of the attribute does not influence the rule. The logical 
operators “<” means less than, “>” means greater than, “=” equals to, and “:” indicates 
a range of values. For reasons of document length, we only show these examples. These 
relationships correspond to KM-4 phase. The rest of the aggregation tables are found 
in Appendix A. 
 

Table 6. Aggregating table for Climate hazard 

Temperature Relative humidity Daily Rain Climate hazard 
Favorable Favorable Favorable Favorable to the disease 
* Unfavorable Favorable Moderately favorable to the disease 
Favorable Unfavorable * Moderately favorable to the disease 
Unfavorable * Favorable Moderately favorable to the disease 
Unfavorable Favorable * Moderately favorable to the disease 
Favorable * Unfavorable Moderately favorable to the disease 
* Favorable Unfavorable Moderately favorable to the disease 
Unfavorable Unfavorable Unfavorable Unfavorable to the disease 

 
Table 7. Aggregating table for Incidence Category (output variable) 

Current Incidence CropConditions Incidence Category 
>50 Favorable to the disease >50 
>50 >= Moderately favorable to the disease 25-50 

>= 25-50 Moderately favorable to the disease 25-50 
25-50 <= Moderately favorable to the disease 25-50 
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25-50:5-25 Favorable to the disease 25-50 
25-50:5-25 Unfavorable to the disease 5-25 

5-25 >= Moderately favorable to the disease 5-25 
>= 5-25 Moderately favorable to the disease 5-25 

0-5 Moderately favorable to the disease 5-25 
0-5 Unfavorable to the disease 0-5 

 
In order to carry out the validation (KM-5) of the model, we took the data of the 
CATIE experiment and the meteorological station located next to it to build model’s 
basic attributes according to the scales defined in the Table 5 for each month. We took 
as the future incidence to be predicted the lecture of CLRI of the next month. It was 
encoded according to the scale of the output variable. The number of resulting instances 
was 439. Figure 23 shows the distribution of predicted and real categories (classes) of 
CLRI related to the results. 
 

 
Figure 23. Difference of predicted and real categories for knowledge-based CLRI model.  

 
The model accuracy was 56.03% and the Cohen’s weighted kappa 0.31, that can be 
interpreted as a fair strength of agreement [127] between the model predictions and the 
data observed. 
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5.5. Data-based Modeling (DM) of CLRI through 
CRISP-DM 

 
We took the State of Science obtained in SM and SR macroprocesses to carry out the 
business understanding (DM-1). The business objective was to generate a CLRI 
prediction model from data on crop properties (shade, management, vegetative growth) 
and weather variables characterized in time windows. The data mining objective was 
to process a dataset, select the features with the most significant impact on a target 
variable, generate a regression model, and analyze each feature’s impact on model 
predictions. 
 
Data understanding (DM-2) and preparation (DM-3) start with collecting the datasets 
of the experiment of coffee-based agroforestry and meteorological station located in the 
study area, described in Chapter 4. The thermal amplitude (tAmp), which represents 
the difference between the maximum and minimum temperatures, and the 
characterization of each day as a rainy day or not (precipitation greater or equal to 1 
mm) (rDay), were calculated and added to the dataset. The variability of some of the 
weather variables (average value) is shown in Figure 24. For each variable, there are 
some outliers marked in the figure, which were reviewed. None of these corresponded 
to erroneous observations, but rather extreme events that usually occur in these 
variables. 
 
On the other hand, for shade condition, we considered densely shaded crops and exposed 
to full sun. The shade was coded as dummy variables (binary). For shade: 1 if the crop 
was under the dense shade, 0 if it was in full sun. For management: 1 if it was highly 
conventional, 0 if it was medium conventional. There were 22 instances with null values 
corresponding to measurements not performed in the first three months of 2002 and 
between February and July 2003. The average CLRI value for each month and the 
combination of shade and management is shown in Figure 25. In general, crops in full 
sun show lower CLRI values, and in 2007 a critical incidence peak can be seen. 
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Figure 24. Variability and outliers of some weather variables per year 

 

 
Figure 25. Average CLRI by month and combination of shade and management 

 
From the studies found during SM and SR [88], [92], [105], the concepts of the previous 
incidence and host growth as predictors of future incidence were taken into account. 
For this, a procedure was carried out to check the incidence of the previous month 
registered monthly. The number of host leaves in two consecutive months was 
identified, designating the value of 1 if increase or 0 otherwise. The variables obtained 
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from the experimental data are shade, management (mgmt), host growth (hGrowth), 
previous incidence, and incidence. Additionally, the variables subplot number and 
number of leaves were excluded since the first does not provide relevant information 
about the problem and the second is already implicitly represented in the hGrowth 
variable. 
 
To generate the datasets that combine the data from the experiment with the weather 
data, we considered some concepts found in the State of Science macroprocesses. The 
date of prediction (DP) corresponds to the day the previous incidence was measured, 
while the date of predicted incidence (DPI) is 28 days later, corresponding to the 
predicted incidence. The CLRI measured in DP was called current incidence (cCLRI) 
while the one in DPI predicted incidence (pCLRI). Incidence values above 100% were 
found and removed. In our approach, it is necessary to have the measurement of two 
consecutive months of the disease, thus, months with no data were discarded. To 
combine the weather, disease, and crop properties datasets, we relied on the weather 14 
days before DP. This period was used since CLRI at DP provides measurement of the 
inoculum stock available for new infections [105]. It is already the result of the 
meteorological conditions that mainly occurred in the previous month, considering that 
the latent period varies between 1 and 4 weeks [124]. Table 8 shows the summary of 
the weather, crop and disease variables used. 
 

Table 8. Summary of the weather, crop and disease variables used 

Type Variable Name Unit 

Weather 

Maximum air temperature tMax °C 
Minimum air temperature tMin °C 
Average air temperature tAvg °C 
Thermal amplitude tAmp °C 
Average relative humidity hAvg % 
Minimum relative humidity hMin % 
Rainy days rDay Days 
Daily precipitation pre mm 

Crop 
Shade type shade Binary 
Management type mgmt Binary 
Host growth hGrowth Binary 

Disease 
Current CLRI cCLRI % 
CLRI 28 days later pCLRI % 
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We proposed an approach to discover the weather windows and variables that most 
explain a future observed CLRI [128]. A dataset with the resulting features was used to 
obtain a prediction model through machine learning. The different stages of our 
approach are presented in Figure 26. This approach implements DM phases 3 through 
6. First, weather monitoring information is broken down into windows of different 
duration, and associated with crop property information. A feature selection process is 
applied to obtain the best features for the modeling of the CLRI and discard the 
irrelevant ones. Next, the resulting datasets are used to train different machine learning 
algorithms and obtain their respective model. To establish the best combination 
between sets of selected features and machine learning algorithms, the model with the 
lowest prediction error is selected. Finally, the highly correlated variables are cleaned 
and the impact of the values of the final features on the CLRI prediction generated by 
the model is analyzed. Each subprocess and element is reported below. 
 

 
Figure 26. Modules to discover the weather windows and features that most explain a future observed 

CLRI 

 
In order to generate features in shorter times and identify which of them are most 
related with the CLRI to be predicted, i.e. at DP + 28 days, we analyzed sub-frames 
within the MTF sequentially, called windows [129]. Each new window begins one day 
after the start time of the previous one. If s is the size of the set and i is the size of the 
window, the MTF can be divided into s - i + 1 windows. 
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Figure 27 shows the windows before DP that we obtained. The feature index represents 
the corresponding range of days (before DP). For example, tMax7-4 represents the 
maximum temperature between days 7 and 4 before DP. The weather data were divided 
into 4 types of windows, according to their size, in the following way: 
 

• 14D: Single window of 14 consecutive days (i = 14); one feature for each weather 
variable.  

• 7D: 8 windows of 7 consecutive days (i = 7); 8 features for each weather variable.  
• 4D: 11 windows of 4 consecutive days (i = 4); 11 features for each weather 

variable. 
• 3D: 12 windows of 3 consecutive days (i = 3); 12 features for each weather 

variable.  

 
Figure 27. Set of windows for weather variables according to window size 
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Four datasets, 14D, 7D, 4D and 3D, were generated with 439 CLRI measurements 
(instances) each. The number of features of each dataset depends on the window: 14D 
had 13 features (8 related to weather), 7D had 69 features (64 related to weather), 4D 
had 93 features (88 related to weather) and 3D had 101 features (96 related to weather). 
The non-weather variables are: shade, mgmt, hGrowth, cCLRI and pCLRI. 
 
The Feature Selection module performs a data preparation (DM-3). In a dataset, the 
high dimensionality (large amount of features) can generate problems for data 
processing since a large number of irrelevant or misleading features do not provide 
significant information related with the target variable in a learning process [130]. 
Additionally, a large number of correlated predictors (multicollinearity) is usually 
associated with model overfitting [131]. To solve this, from computer and data science, 
the Feature Selection (FS) approach was proposed. FS is based on the selection of the 
best features among all the features that are useful for a determined machine learning 
task [130]. The resulting reduced dataset can be processed more easily (because fewer 
features are presented and the instances size is decreased), so the models obtained are 
more simple and accurate [132]. Several elements of FS process depend on the 
characteristics of the dataset used and the learning task for which it will be used. Our 
dataset had continuous numerical target variable and numerical features (including 
those encoded as dummy variables). Since the target variable was numerical, the 
supervised learning task was regression.  
 
There are several FS algorithms that can be classified into three categories, depending 
on the process used to achieve their objective [133]: Filter, Wrapper and Embedded 
methods. We applied some algorithms for each method in order to compare them. Each 
FS method generates lists of features selected for each window. New subsets were 
generated from these lists. Since the FS process is done in relation to the target variable 
(pCLRI), this one was separated from the others for the process. 
 
The Filter method was based on Pearson's correlation coefficient, given its performance 
in FS related to regression model building [134]. The features were individually 
correlated to the target variable by the Pearson's correlation coefficient from the 
correlation function available in Pandas for Python [135]. The threshold to select the 
features was addressed by the Rule of Thumb proposed by Krehbiel [136], which takes 
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into account the sample size for statistical significance. Features with a correlation 

coefficient |𝑟| ≥ !
√#

, where n is the number of dataset features, were selected. 

 
The wrapper methods used were Sequential Feature Selector (SFS) [137] and Recursive 
Feature Elimination (RFE) [138]. SFS sequentially implements the backward and 
forward searching and RFE uses a criterion of importance assigned to each feature in 
each iteration to remove the one with less value. SFS and RFE are available for Python 
in mlxtend [139] and Scikit-learn [140] libraries respectively. Features were evaluated 
by using a learning algorithm. Cross validation was used to estimate the accuracy of 
each subset of features and those that decrease the performance in the training were 
removed from the dataset. We applied SFS and RFE with two different ensemble 
learning algorithms: Random Forest (RForest), based on the combination of simple 
decision trees, training each tree independently, using a random sample of the data 
[141], available in Scikit-learn; and Gradient Boosting (XGBoost) library for Python, 
based also on a combination of decision trees but it builds trees one at a time, where 
each new tree helps to correct errors made by previously trained tree [142]. 
 
For embedded methods, we used the Feature Selection component from XGBoost 
Algorithm, and Least Absolute Shrinkage and Selection Operator (LASSO) [143] 
available in Scikit-learn. The embedded methods reduce computation time [144], which 
is high in wrapper methods. Embedded methods include the feature selection as part of 
the training process [145].  
 
Table 9 shows the number of features defined as relevant and irrelevant by each of the 
feature selection methods and approaches. The total number of features in each dataset 
of the windows are 12, 68, 93 and 100 for 14D, 7D, 4D and 3D respectively. 
 

Table 9. Number of features defined as relevant and irrelevant by feature selection methods and 
approaches 

Dataset FS Method Approach Relevant F. Irrelevant F. 

14D 

Filter Pearson 2 10 
Embedded LASSO 2 10 
 XGBoost FS 12 0 
Wrapper SFS Rforest 11 1 
 SFS XGBoost 8 4 
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 RFE Rforest 7 5 
 RFE XGBoost 1 11 

7D 

Filter Pearson 16 52 
Embedded LASSO 2 66 
 XGBoost FS 24 44 
Wrapper SFS Rforest 43 25 
 SFS XGBoost 11 57 
 RFE Rforest 49 19 
 RFE XGBoost 1 67 

4D 

Filter Pearson 28 64 
Embedded LASSO 3 89 
 XGBoost FS 24 68 
Wrapper SFS Rforest 12 80 
 SFS XGBoost 16 76 
 RFE Rforest 61 31 
 RFE XGBoost 3 89 

3D 

Filter Pearson 30 60 
Embedded LASSO 3 97 
 XGBoost FS 22 78 
Wrapper SFS Rforest 6 94 
 SFS XGBoost 8 92 
 RFE Rforest 28 72 
 RFE XGBoost 2 98 

 
 
The process for choosing the best reduced subset of those obtained by the FS methods 
is described below. We trained four supervised learning algorithms (corresponding to 
DM-4) with subset and compared their performance metrics to select the best one 
(corresponding to DM-5), since the chosen subset would be used to generate a CLRI 
prediction model. To ensure a better result, the best configuration for each algorithm 
was obtained through a pipeline with a randomized search (available in Scikit-learn). 
The algorithms used were: XGBoost, Random Forest Regressor, Suppor Vector 
Regression (SVR) and Decision Tree Regressor, also available in Scikit-learn. The 
randomized search allowed to test multiple combinations of the hyper-parameters of 
each algorithm. The range of hyper-parameters is described in Table 10.  
 

Table 10. Tuning of learning algorithms hyper-parameters 
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Algorithm Hyper-parameter Range 
XGBoost Maximum depth of a tree 3 - 15 in steps of 1 

Fraction of observations to be randomly samples 
for each tree 

0.05 - 1 in steps of 0.05 

Fraction of columns to be randomly samples for 
each tree 

0.1 - 1 in steps of 0.05 

Learning rate 0.001, 0.01, 0.1, 0.5, 0.9 
Random Forest 
Regressor 

Bootstrap True, False 
Maximum number of levels in each decision tree 10 - 100 in steps of 10 
Maximum number of features Auto, Square root 
Number of trees in the forest 100 - 1000 in steps of 

100 
Support Vector 
Regression 

Kernel type to be used in the algorithm rbf, poly, sigmoid  
Kernel coefficient Scale, Auto 
Regularization parameter C 0.1,1, 10, 100 

Decision Tree 
Regressor 

Maximum depth of the tree 3 - 15 in steps of 1 
Minimum number of samples required to split an 
internal node 

2 - 12 in steps of 1 

Function to measure the quality of a split MSE, MAE 

 
 
Cross-validation was used to measure the closeness of the prediction to the eventual 
outcomes for each of the resulting models. The metric used was mean absolute error 
(MAE). Thus, we got the best parameters for each algorithm applied to each data 
subset and its MAE. Additionally, we tested the original dataset (not reduced) with the 
same algorithms and got the MAE. Finally, we selected the combination of algorithm 
and data subset where the lowest MAE was obtained. 
 
Table 11 shows the best reduced data subset and the learning algorithm that got the 
lowest MAE for each window. The best results were obtained in the dataset 
corresponding to window 4D and reduced by Embedded - XGBoost method (24 
features), and using XGBoost as learning algorithm (MAE = 7.19). The features of this 
reduced dataset were: tMin14-11, tAvg14-11, rDay14-11, tAvg13-10, tMax13-10, 
tAvg12-9, tMin11-8, pre11-8, pre10-7, tMax9-6, hMin9-6, pre9-6, hMin7-4, tAvg6-3, 
tMax6-3, hMin6-3, pre6-3, tMax5-2, pre5-2, tMin4-1, hGrowth, cCLRI, shade, mgmt. 
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Table 11. Feature Selection (FS) method, learning algorithm related, minimum Mean Absolute Error 
(MAE) and compared MAE and number of features (No. F.) for original (O) and reduced (R) dataset 

obtained from Feature Selection 

Window FS Method L. Algorithm MAE R. MAE O. No. F. R. No. F. O. 
4D Embedded - XGBoost XGBoost 7.19 8.24 24 92 
7D Embedded - XGBoost XGBoost 7.34 8.28 24 68 
3D Wraper - RFE XGBoost 7.38 8.38 28 100 
14D Wrapper - SFS XGBoost 7.43 8.5 8 12 

 
We analyzed the correlations between the selected features in the best data subset 
obtained. In the generation of weather windows, there may be highly correlated 
variables where one explains similarly to another. For this, we took the correlations 
between the features selected from the Pearson's coefficient. In the case of finding two 
variables with a moderate or high correlation (absolute value > 0.5) [146], we removed 
the one that had a lower importance score, given by the algorithm the model was trained 
with. This process was not done previously since the importance and relevance of all 
features within learning tasks was not known yet. In addition, we built a new dataset 
with the resultant features and train a model with it, in order to compare the MAE 
with the best one obtained in the previous section. The testing set corresponds to data 
from block 2 of the CATIE experiment. The correlations are shown in Figure 28. 
 
From features correlation and the importance values given by the XGBoost algorithm, 
the final set of features considered for the CLRI modeling were: rDay14-11, pre11-8, 
tMax9-6, pre6-3, tMin4-1, hGrowth, cCLRI, shade and mgmt. The resultant MAE 6.94, 
was 0.25 less with the reduced dataset for second time after correlation analysis than 
the best one found in Table 11.  
 
The Deployment (DM-6) was addressed as a functional prototype for coffee crops that 
implement smart farming (described in Appendix B). The prototype is available at 
PROCAGICA web platform (https://www.redpergamino.net/app-stadinc). 
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Figure 28. Correlations between the selected features in the best data subset obtained 

 
In addition, an analysis of the impact of each feature on the model output (predicted 
incidence) through SHAP (SHapley Additive exPlanations) values [147] was done as 
part of the deployment. The SHAP values was introduced by Lundberg and Lee [147] 
as a tool to interpret the predictions made by a machine learning model. Given a model, 
a set of test data and a set of features, SHAP provides an interpretation of the 
importance of each feature for a particular prediction. The value of importance is given 
according to how each feature contributes to model outcomes. The contribution is 
quantified taking as a reference the average model output over the entire training 
dataset (base value). The sum of the SHAP values for all the features is the difference 
of the prediction to the base value. We used the SHAP library for Python and 
SHAPforxgboost library for R [147] to get the SHAP values. The explainer used was 
the TreeExplainer, since our model corresponded to one of parallel tree boosting. We 
used the dependence and summary plots to represent the impact of the value of each 
feature on the model output [148]. This allowed us to understand the contribution of 
each feature in light of the scientific knowledge on the disease. The base value of target 
variable pCLRI in the output of the model applied to the data from block 2 was 26.79% 
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of CLRI, which is the average of the predictions made by the model from the test set. 
A summary of the SHAP values for the features, where the colors of the points represent 
the value of each variable (on its own scale) is presented in Figure 29.  
 

 
Figure 29. Summary of SHAP values for the features according their values. The range of values for 
each feature is represented in a color gradient, where red represents its highest value and blue the 

lowest. 

The impact on model output is related to the base value and its axis shows how the 
prediction differs above or below its value. From summary plot, we deduce that the 
relationship between pCLRI and cCLRI is directly proportional and corresponds to 
contributions of greater magnitude in the model output. This means that the amount 
of expected incidence in DPI is largely explained the previous incidence present in DP. 
The effect of features coded as binary variables is visible in the summary plot: the host 
growth (hGrowth) and the conventional high management (mgmt) make the predicted 
incidence lower. The presence of shade in crops (shade) increases the predicted 
incidence.  
 
For numeric features, the contribution to model prediction (SHAP value) according to 
feature value is shown in detail in Figure 30. This graphical representation allows 
checking the type of relationship between the features and pCLRI that was not clear in 
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the Figure 29 (nonlinear relationship). The average of daily precipitation between 11 
and 8 days before DP (pre11-8), until 15 mm contributes positively to incidence and 
above 15 mm, the reverse is seen. The average of minimum temperatures between 4 
and 1 day before DP (tMin4-1) are positively related to the predicted incidence until 
19 °C. Above this value, the relationship is inverted. The number of rainy days between 
14 and 11 days before DP (rDay14-11) negatively contributes to pCLRI. No rainy days 
in this window tend to favor the incidence which decreases after every rainy day in the 
window. Low maximum temperatures between 9 and 6 days before DP (tMax9-6) 
increase the incidence while high values have the opposite effect. The predicted 
incidence tends to increase with higher average of daily precipitation between 6 and 3 
days before DP (pre6-3) until 10 mm. Above this value, pCLRI decreases. For values 
above 19 mm, this feature has no effect in the predicted incidence. 
 
The Figure 31 shows some examples of SHAP values representing the conditions in the 
features so that the predicted value differs from the base value (increases or decreases). 
The features that cause an increase in the value of the target variable (pCLRI) are in 
red, and those that cause a decrease in blue. The size of the segments of each feature 
represents the magnitude of its effect over the prediction and the value of features with 
low importance for each specific prediction is not shown.  
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Figure 30. Dependence plots for numeric features relating the contribution to model prediction (SHAP 
value) according to feature value. The red curve shows the smooth tendency and the histograms over 

the axis, the values distributions. 
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Figure 31. Examples of SHAP values for some predictions made by the CLRI model 

 
 

5.6. Complementarity of models 
 
We explored the complementarity between the two modeling approaches in order to 
improve the accuracy obtained in the KM model. Since the variables of the obtained 
models are not equal, we carried out an additional DM process using a training dataset 
composed of the KM variables (Table 5). For this case, the learning task was 
classification, since the variable output used in KM was categorical. We tested the 
following algorithms for classification: XGBoost, Decision Tree, Random Forest, 
AdaBoost and Support Vector Classifiers. The best accuracy and Cohen’s weighted 
kappa were obtained using XGBoost. The model allowed obtaining a ranking of 
importance of the variables, as shown in Table 12. We modified the rules of the 
aggregation tables (KM-4) of KM model to roughly represent the ranking of importance 
in Table 12 and carried out the validation process (DM-5) again. The model accuracy 
of the updated KM model was 63.1% which is a 7.07% improvement over the first KM 
model built. The Cohen’s weighted kappa obtained was 0.41, that can be interpreted 
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as a moderate strength of agreement [127] between the model predictions and the data 
observed. The updated aggregation tables are presented in Appendix A. 
 

Table 12. Variable importance in a model trained with a dataset composed of the same variables of 
KM model 

Variable Importance 
Previous Incidence 0.5107 
Host growth 0.1197 
Daily rain 0.0924 
Temperature 0.0853 
Relative Humidity 0.0718 
Shade 0.0713 
Management (crop nutrition and chemical control) 0.0485 

 
 
Figure 32 shows the distribution of predicted and real categories (classes) of CLRI and 
the confusion matrix related to the updated KM model. 
 
 

 
Figure 32. Difference of predicted and real categories, and confusion matrix for knowledge-based CLRI 

model.  
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The model accuracy was 64.45%, and the precision, recall, and F1-score for each of the 
classes are shown in Table 13. The model a has high precision for 5-25 class predictions, 
representing the ability to predict this class among all classes. The low recall value for 
>50 class shows a higher proportion of false negatives for this class, most of which occur 
for predicting instances as that class that corresponded to 25-50 class. The F1-score [76] 
shows that 5-25 class has the best balance between precision and recall among the other 
classes. 
 

Table 13. Precision, recall and F1-score for each class of CLRI 

Class Precision Recall F1-score 
0-5 0.67 0.5 0.57 
5-25 0.70 0.81 0.75 
25-50 0.56 0.58 0.57 
>50 0.67 0.28 0.39 

 

The Wilcoxon sign test was applied as the classes of the model output correspond to an 
ordinal variable. We obtained the difference between the real and the predicted class 
expressed as a number. Each class were considered like integer (0 for 0-5, 1 for 5-25, 2 
for 25-50 and 4 for >50). The result is shown in Figure 33. The number of instances for 
which the difference was 0 corresponds to the instances correctly predicted by the 
model. The distribution of the errors was zero-centered; therefore, the model can be 
considered as unbiased [149]. The difference between the values in 1 and -1 shows that 
the model tends to overestimate the CLRI class, that is, to predict upper classes than 
the original, e.g., predict 25-50 class when 5-25 class was actually presented. 
  

 
Figure 33. Number of difference classes between real observations and model predictions. 
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We compared the two models directly, transforming the response into terms of the 
other. Although both models address the incidence, the output variable in the two 
models differs from each other, being a number for one and a range for the other. First, 
the KM model output, CLRI, was transformed into a quantitative variable, taking the 
center of the category value ranges, e.g., for 5-25, the center is 15. Predicted CLRI 
(pCLRI) was compared to observed incidences by calculating the MAE and Bias. The 
results were MAE 11.29 % and Bias -2.66 % which shows a lower performance than DM 
model. Second, the DM model output was transformed into a qualitative variable 
corresponding to the categories used in KM. The accuracy obtained was 84.93% which 
corresponds to a good value for predictions. The precision, recall, and F1-score are 
shown in Table 14. 
 

Table 14. Precision, recall and F1-score for each class of CLRI for transformed output of Data-based 
Model 

Class Precision Recall F1-score 
0-5 1.00 0.60 0.75 
5-25 0.86 0.87 0.87 
25-50 0.81 0.83 0.82 
>50 0.88 0.91 0.90 

 
The summary of metrics obtained for each model and the associated transformation is 
shown in Table 15. 

Table 15. Comparison of models for CLRI 

Metric Knowledge-based 
model 

Data-based 
model 

Quantitative 
output variable 

MAE (%) 10.93 7.19 
Bias (%) 2.9 0.03 

Qualitative output 
variable 

Accuracy (%) 64.45 84.93 
F1-score 0.57 0.83 

 
For quantitative models, after applying McNemar’s test, the p-value obtained was 1.3 
x 10-11. For quantitative models, after applying ANOVA test, the p-value obtained was 
1.3 x10-15. As the p-value was less than 0.05, the null hypothesis was rejected in the 
two cases. There is a significant difference between the predictions of the two models.  
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Finally, we estimated that DM model needs at least 59 instances to reach the accuracy 
of KM model (Figure 34). Given that the data contained information from 4 different 
plots (given the management and shade combinations), this means that at least one 
year of monitoring data must be obtained to achieve the same accuracy in DM than in 
KM. The dataset of the CATIE experiment was used to incrementally generate subsets 
until reaching the size of the whole dataset (439 instances). Each subset was used to 
train a model from XGBoost with the hyperparameter settings found previously (DM-
4 process). Additionally, the accuracy was calculated using the data from block 2 as 
test dataset. 

 
Figure 34. Accuracy according the training dataset size 

5.7. Discussion 
 
The systematic mapping and review make it possible to identify the most relevant 
studies according to the number of times they are cited and also the authors who work 
the most in the area. Although these processes focus on research published in high-
impact journals, they also consider gray literature as an essential part of understanding 
the relevant concepts around CLR.  
 
For data-based modeling, the combination of the analysis of weather variables 
characterized in windows of short duration, CLRI monitoring and crop properties, with 
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feature selection methods, machine learning and a model explanation technique, allowed 
us to analyze the contribution of weather and crop management for dispersion, 
germination and penetration CLR phases. The previous incidence (cCLRI) was the 
feature that has the most contribution to the predicted incidence values, according to 
SHAP values. It presents a linear behavior respect to the target variable. That was 
expected, since the future incidence depends largely on the current inoculum, which 
under favorable conditions is maintained or increased. Conversely, if cCLRI is low, the 
incidence in DPI would not be expected to grow greatly. This shows that, if there is no 
periodic monitoring of the disease in the crops, it is difficult to predict a future incidence 
as was demonstrated by Kushalappa et al. [105] and Merle et al. [92]. Moreover, the 
model performance and the quality of the analyzes carried out respond to the reliability 
in the field measurement process. 
 
The features windows that we identified can be interpreted as the sequence of weather 
conditions needed for disease expression in DPI (pCLRI), from dispersal to colonization 
phases. Although these events occurred before DP, they will lead to symptoms and signs 
visible only after DP, due to the duration of the incubation and latent periods that 
normally exceed 14 days [124]. Therefore, these variables provide information different 
from that included in the CLR assessment in DP.  
 
From our results, we deduce that, contrary to what is usually considered, rainfall can 
reduce CLRI as long as its abundance is sufficient. We found, for instance, that four 
consecutive rainy days from 14 to 11 days before DP were detrimental to CLR growth. 
In addition, the shape of the relationship between pCLRI and two of the features 
characterizing precipitations (pre11-8 and pre6-3), that were retained in our model, was 
unimodal. These results indicate that a moderate increase of rainfall is propitious to 
CLR growth, possibly because free water is necessary for germination and penetration 
[17], [95], but excess of rainfall is detrimental possibly due to wash-off of uredospores 
by rainwater as already shown by Avelino et al. [125] and proposed and Merle et al. 
[50]. Our results provide new evidence of the importance of the wash-off effect to explain 
CLR epidemics. The peaks we found were 10 mm and 19 mm per day for pre6-3 and 
pre11-8 respectively, which is in accordance with the 10 mm per day reported by Merle 
et al. [50] and Avelino et al. [125].  
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Once the uredospores are deposited, they need water to germinate and the temperature 
has a great impact. Excessively high maximum temperatures (tMax9-6 > 29 °C) 
disadvantage rust development [150], while lower values around 22°C generate optimal 
conditions for germination and penetration [95]. The windows of the precipitation in 
days 6 to 3 before DP (pre6-3) and minimum temperatures between 4 and 1 day before 
DP (tMin4-1) share 2 days. Rainfall around < 10 mm, that leave free water on the 
leaves, in conjunction with minimum temperatures around 19 and 20°C generate 
conditions for germination and penetration phases [95]. The minimum daily 
temperatures are normally reached just before sunrise. High minimum temperatures 
combined with darkness are needed for the uredospores to germinate and accomplish 
infection [96].  
 
Even though the model was not constructed with weather data after DP, it generates 
CLRI predictions with an acceptable error. However, including weather data after DP 
could help improve the model. As demonstrated by Merle et al. [50], daily rainfall and 
thermal amplitude impact up to 11 days before the symptom appearance on the coffee 
leaf. 
 
The host growth (hGrowth equal to 1) generates a decrease in the predicted CLRI value, 
where a dilution effect of the disease is verified, as already reported in [92], [102], [106]. 
On the contrary, in periods of vegetative decrease the CLRI values tend to increase due 
to the absence of dilution effect. This feature appears to be essential for CLRI 
predictions. Any model that would not include the effects of host growth will fail in 
predict CLRI. For shaded crops (shade equal to 1), the expected incidence is higher 
than for those in full sun, which is an indication of the favorable microclimatic 
conditions under shade. Shade has been reported to buffer temperatures, to increase 
wetness, favoring germination, infection and reducing the latent period [102], to 
intercept raindrops reducing uredospore washing [125] and to promote uredospore 
dispersal in the air due to the increased kinetic energy of the raindrops in the understory 
[125] that heavily hit the coffee leaves [100]. Similarly, the observed effect of 
management (mgmt) was expected. Proper nutrition contributes negatively to the 
disease [94] and fungicides application reduces rust area and protects the plant against 
new infections [92]. The mgmt feature can be improved by having the information if 
fungicides and fertilizers were applied in the past month previous to DP.  
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The SHAP values contribute to the interpretation of the results when applying a 
machine learning process. Many of these processes generate models known as “black 
box” where their inputs and outputs are known, but not the process that generates said 
outputs from the inputs. SHAP values allowed us to have an idea of how the model 
generates a prediction. In addition, the graphical representation facilitated the 
interpretation of the relationships found between the features and the target variable 
in light of the scientific knowledge on the disease. The interpretation and validation 
were even better and easier due to the reduction of features, according to their 
importance in the modeling process and after elimination by mutual correlation analysis. 
 
The analysis of favorable conditions for CLR was improved considering different short 
consecutive windows compared to a single long duration period, where short phenomena 
can go unnoticed. Although, statistically, in the shorter window the modeling task 
would have more “options” for the generation of the functions in the resulting model, 
the 4-day window was better than the 3-day one. If the window is too short, there is no 
biological response related to disease phases. 
 
In the application of the FS methods, the Wrapper RFE method is the one that selects 
the lowest proportion of relevant features. In the Wrapper RFE method, since cCLRI 
has a much greater importance than other features, the reduction of the sizes of the sets 
of features in each iteration lead only to consider that feature. 
 
The scientific bases of knowledge-based modeling were the same as those used by data-
based modeling, allowing to obtain a model that considers similar drivers. In this case, 
the model expresses relationships between variables that are grouped according to the 
dimension they represent, such as: climate hazard, cropping practices, vulnerability and 
previous incidence of the disease. The study of the complementarity of the models 
allowed to explore how elements of a data-based model can improve a knowledge-based 
model. From an estimate of the importance of the model variables in relation to the 
variable output, obtained from the data, we were able to increase the accuracy of the 
KM model by 7.07%. Although the new accuracy obtained was 63.1%, KM model 
represents CLR mechanisms that occur in a general way in coffee crops, while the data-
based model (DM) may be linked to the conditions present in the experiment site from 
where these data were monitored. We are aware that evaluations and comparative study 
may be biased by the data of the case study. The improvement of the KM model in the 



5.8. Summary 
 
 

 

93 

comparative study represents how a model that describes general mechanisms of the 
disease can be adjusted to the characteristics of a study area. For our case study, the 
results show that knowledge-based modeling can be an alternative to generate a 
prediction model when the available dataset has around 59 instances. 
 

5.8. Summary 
 
This chapter presented the application of the proposed conceptual model for Coffee Leaf 
Rust. All CoMPeM processes were applied in a smart farming environment to provide 
a better understanding of its use. This allowed the modeling tasks to be done from 
knowledge about pest and results of research that have addressed it, which was acquired 
from formal processes that facilitate its assimilation. For data-based modeling, we 
propose an approach to discover the time period (window) for each weather variables 
and crop related features that most explain a future observed CLR incidence, in order 
to obtain a prediction model through machine learning. The selection of the variables 
more related with coffee rust incidence and rejection of the features with no significant 
contribution of information in machine learning tasks were approached from Feature 
Selection methods (Filter, Wrapper, Embedded). In this way, a CLR incidence 
prediction model based on the features with the greatest impact on the development of 
the disease was obtained. Moreover, the use of SHapley Additive exPlanations allowed 
us to identify the impact of features in the model prediction. The mean absolute error 
expected in the model is 7.19% of incidence, trained with XGBoost algorithm and the 
dataset reduced by Embedded method. The knowledge-based modeling produced a 
model with 63.1% accuracy. This model contains predictors similar to the one produced 
based on data. From the complementary study we concluded that knowledge-based 
modeling can be an alternative to generate a prediction model when the available 
dataset has around 60 instances. 
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Chapter 6  
 
CoMPeM application for Coffee Berry Borer 
(CBB) 

This chapter presents the application of CoMPeM for Coffee Berry Borer (CBB). The 
macroprocesses of the conceptual model are executed from the available resources 
described in the case study. These resources allowed modeling based on knowledge. This 
experimentation provides a better understanding of the proposal of the present doctoral 
work. 
 

6.1. Study of Pre-feasibility 
 
In this case, the human talent available for this study was only the Data Scientists 
presented in the case study. This was done in order to test the CoMPeM application 
by only researchers from an area other than agronomy or pest study. The available data 
sources are CBB and vegetative growth monitoring in the experiment, the properties of 
the plot (shade level and control type), and weather station data. The available data 
were designated for the validation of the knowledge-based model given its low quantity 
(data from 15 seasons in different plots). Since there was no source of expert knowledge, 
the state of science process was fully exploited.  
 
After the Study of Pre-feasibility, the flow of activities in CoMPeM starts in the Star 
State of Science connector, which gives way to the Evolution of Pest Modeling 
macroprocess.
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6.2. Evolution of CBB Modeling through Systematic 
Mapping (SM) 

 
The research questions (SM-1) that establish the research scope were: 
 

• What has been the evolution of Coffee Berry Borer modeling? 
• Which modeling techniques have been used for Coffee Berry Borer forecasting? 

 
The selected bibliographic sources systems were Web of Science for high-quality studies 
and Google Scholar to obtain also the gray literature. The most used name for the pest 
is Coffee Berry Borer in English, broca del café in Spanish, and broca do cafeeiro in 
Portuguese. Table 16 shows the search strings for bibliographic sources systems and the 
number of studies found. 
 

Table 16. Search strings and number of studies founded in bibliographic sources systems for CBB 
modeling 

Search string Source Number 

(TITLE-ABS-KEY (coffee AND berry AND borer) AND TITLE-ABS-KEY 
(prediction OR model OR dynamics OR forecast)) 

Web of 
Science 

81 

coffee AND berry AND borer AND (prediction OR model OR dynamics OR 
forecast) 

Google 
Scholar 

7700 

broca AND café AND (predicción OR modelo OR dinámica) Google 
Scholar 

12200 

broca AND cafeeiro AND (predição OR modelo OR dinâmica) Google 
Scholar 

2140 

 
A large number of studies are published in Spanish. This may be due to the fact that 
Colombia and Mexico are among the countries most affected by CBB and their research 
centers have published different reports and scientific articles about their study [111]. 
Some criteria were taking into account the Screening of Papers for Inclusion and 
Exclusion process (SM-3): Studies directly related to the CBB development, not its 
impact on coffee crops. As a result, 17 academic papers were selected. The studies 
corresponding to gray literature that describe the principal drivers for BB as technical 
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manuals and bulletins of coffee institutions were characterized as basic knowledge. For 
academic papers, the keywording of the abstracts (SM-4) allowed finding the follow 
concepts: Hypothenemus hampei, infestation, propagation, climate, growth, 
reproduction, temperature, dry leftover, fruits, modeling, simulation, mortality. The 
main categories found were: weather, pest development, crop properties. 
 
Figure 35 shows the mapping (SM-5) of the selected studies about CBB development.  
The studies were characterized according to their approach: Exploratory, which 
correspond to those that make use of experimental data to find relationships and 
dynamics between CBB and the factors that determine it; Knowledge-based models, 
which propose or generate a prediction or simulation model from expert knowledge and 
literature; and Data-based models, which induce prediction models from data. 
 

 
Figure 35. Mapping of studies in CBB development. KBM: Knowledge-based models. DBM: Data-

based models. 

 

6.3. Relevant concepts related to CBB Modeling 
through Systematic Review (SR) 

 
We took the primary studies obtained in SM-1 and SM-2 to identify the research (SR-
1). Additionally, the research questions were updated to: 
 

• What are the variables most related to CBB?  
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• How were the techniques used for CBB modeling implemented?  
 
The selection of primary studies (SR-2) took into account the same criteria of SM-3 and 
additionally the selection of those studies that were directly related to the modeling and 
drivers of the pest, not its relationship with control methods and agronomic practices, 
or studies of its impact on coffee crops. Also, studies focused on infestation were most 
relevant since this is the pest-related variable in the experiment’s dataset. The following 
studies found in the Systematic Mapping were taken into account as a source of 
knowledge for the modeling phase: [112], [151]–[162].  
 
The results of processes about quality assessment (SR-3) and data extraction (SR-4) 
are synthesized (SR-5) in Table 17. This table relates the final relevant studies. The 
columns expose the publication year, target variable (TV), times cited (TC), target 
variable addressed, predictors of the target variable, modeling technique (MT), metric 
of the modeling validation, best metric value, and highlights of each study (main 
contributions, findings, approaches and/or future works). In this case, given the type of 
modeling to be applied, only studies that carried out knowledge-based modeling were 
considered.  
 
Table 17. Synthesis of Systematic Review for CLR forecasting. TV: Target variable. TC: times cited. 

MT: modeling technique. BMV: best metric value 

Study Year TC TV Predictors MT Metric BMV Highlights 

[163] 2016 2 Infestation Population, 
individuals, plant 
size 

Multiple 
swarms 

NA - The simulation model 
estimates a pest infestation 
taking into account only the 
speed and size of the individual 
and the size of the plants 
(coffee trees). A proposed 
future work is to consider 
other factors that limit the 
CBB to be added to the 
simulation model. 

[164] 2014 7 Infestation Temperature, 
altitude, crop age, 
collection quality 

Fuzzy logic 
model 

MAE 0.19 The predictors are chosen and 
their favorability for CBB 
defined from expert knowledge. 
Fuzzy sets allow combining the 
different scales of each 
predictor. The use of genetic 
algorithms allows to reduce the 
number of rules of the model 
from input data. 
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[111] 2013 46 CBB 
attacks 

Temperature, solar 
radiation, 
precipitation, 
supply of berries, 
adult emergence 
patterns modified 
by weather, 
intraspecific 
competition, and 
rain enhanced 
mortality 

Mechanistic NA - The model takes into account 
mortality factors, behavior of 
adult individuals and the effect 
of intraspecific competition to 
carry out a simulation of the 
development of CBB. The 
model functions incorporate 
weather variables. 

[165] 2011 275 Number of 
CBB 
generations 

Temperature, 
precipitation, vapor 
pressure, relative 
humidity and 
ecoclimatic index 

CLIMEX 
(mechanistic 
model) 

NA - A mechanistic model is used to 
estimate CBB from future 
climate scenarios. The weather 
variables are characterized 
from the ranges in which they 
are favorable for the 
generation of CBB. 

[166] 1998 48 Infestation Coffee plant 
dynamics, 
temperature, 
parasitoids attack, 
number of 
previously attacked 
berries, agronomic 
practices 

Mechanistic NA - The approach presents a model 
of CBB attacks under ideal 
conditions and under diverse 
conditions of production, 
agronomic practices and 
environment. The different 
predictors are in turn obtained 
from other mechanistic models. 

 
In most of the studies in Table 17, the simulation models considered future scenarios, 
for which there is no validation data, and therefore do not obtain model performance 
metrics. Temperature is a common predictor in most studies, given its relationship with 
the fecundity and emergence pattern of CBB. The inclusion in the models of the weather 
variables ranges favorable for the CBB has shown good results. Additionally, there are 
properties of the crops that are taken into account, such as shade and the spatial 
distribution; and pest behavior like the number of berries previously attacked. 
 
Lastly, the findings found in SM and SR: theoretical basis, concepts, categories, and ST 
synthesis table; constitute the State of Science of the conceptual model. 
 

6.4. Knowledge-based Modeling of CBB through 
IPSIM 

 
The basic and aggregated attributes and their relationships (KM-1 and KM-2) were 
defined based on the categories found in SM-4 and elements of the synthesis of 
Systematic Review (SR-5).  The tree structure of the model is presented in Figure 36.  
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Figure 36. Tree-based representation of knowledge-based model for CBB Risk 

 
Basic attributes are shown in green, while aggregated in gray. We used ordinal scales 
in all the attributes (KM-3). The output variable (CBB Risk) is the final aggregate 
attribute, which has three levels: Low risk, Moderate risk and High risk. We consider 
this risk based on how much CBB infestation could be expected from that present at 
the beginning of the season (specifically in flowering), since the bored coffee berries 
remaining in coffee bush after harvest greatly limit the infestation expected for next 
season [156]. From this, if there are no bored coffee berries remaining, the ranges of the 
risk levels are: 0 to 1% of CBB (Low Risk), 1 to 5% of CBB (Moderate Risk) and higher 
to 5% of CBB (High Risk). In case there is an infestation of CBB in flowering (CBBi), 
the ranges were considered in terms of that infestation: 0 to CBBi (Low Risk), an 
increase of up to 5% with respect to CBBi (Moderate Risk) and an increase of more 5% 
compared to CBBi (High Risk). The scale of aggregated attributes is: Favorable to the 
pest; Moderately favorable to the pest; Unfavorable to the pest. The scales of basic 
attributes (user input), the values for each level and studies supporting this information 
are shown in Table 18.  
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Table 18. Basic attributes scale for CBB Risk 

Basic attribute Scales Values 
Average air temperature 
[154], [159] 

Favorable Between 21°C and 23°C 

 Unfavorable Other values 
Average relative humidity 
[154], [158], [160] 

Favorable >= 90% 
Unfavorable Other values 

Rain [111], [112] Favorable Start of rainy seasons after a dry period 
 Unfavorable Prolonged rainy period 
Shade [152], [158] Favorable Full sun exposure 
 Unfavorable Under shade 
Days after flowering 
[153]–[155], [157] 

Very favorable 120 daf until harvest 
Favorable Between 90 and 120 daf 
Unfavorable After harvest and until 90 daf 

Number of flowerings 
[152], [161] 

Favorable  Many distributed flowerings per season 
Unfavorable Few concentrated flowerings per season 

CBB on flowering [156] Favorable Bored coffee berries remaining in coffee bush after 
harvest 

Unfavorable No coffee berries remaining in coffee bush after 
harvest 

 
The colors in scales represent whether the value of the scale is favorable to the disease 
(red), unfavorable to the disease (green), or a medium effect (black). For some 
attributes, various studies can establish ranges that differ from each other, so we sought 
a range in each attribute that reconciles the different studies. For weather-based 
attributes, the value corresponds to the data of the last 30 days before the model used. 
The value of the Days after flowering attribute is obtained from the flowering date for 
the corresponding year and the days that pass after it (daf). 
 
An example of an aggregation table (KM-4) for Climate hazard from basic attributes 
Temperature, Relative Humidity and Rain is shown in Table 19. The symbol * indicates 
that the value of the attribute does not influence the rule. 
 

Table 19. Aggregating table for Climate hazard 

Temperature Relative humidity Daily Rain Climate hazard 
Favorable Favorable Favorable Favorable to the pest 
Unfavorable Favorable Favorable Moderately favorable to the pest 
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Favorable Unfavorable Favorable Moderately favorable to the pest 
Favorable Favorable Unfavorable Moderately favorable to the pest 
Unfavorable Unfavorable * Unfavorable to the pest 
Unfavorable * Unfavorable Unfavorable to the pest 
* Unfavorable Unfavorable Unfavorable to the pest 

 
The aggregation table for the output variable is exposed in Table 20. The logical 
operators “<” means less than, “>” means greater than, and “=” equals to. For reasons 
of document length, we only show these examples. All aggregation tables are shown in 
the Appendix C. 
 

Table 20. Aggregating table for Incidence Category (output variable) 

Climate hazard Relationship crop x pest CBB Risk 
Favorable to the pest <= Moderately favorable to the pest High risk 
<= Moderately favorable to the pest Favorable to the pest High risk 
<= Moderately favorable to the pest Unfavorable to the pest Moderate risk 
Moderately favorable to the pest >= Moderately favorable to the pest Moderate risk 
Unfavorable to the pest Favorable to the pest Moderate risk 
Unfavorable to the pest >= Moderately favorable to the pest Low risk 

 
A short validation (KM-5) was made from the data of the CATIE experiment and the 
meteorological station located next to it, which only contained records from 15 seasons 
(from flowering to harvest) in different plots. Additionally, the structure of the model 
and its results were reviewed by two experts in the CBB study: Professors Inge 
Armbrecht (Universidad del Valle) and Selene Escobar (Universidad San Francisco de 
Quito). We built model’s basic attributes according to the scales defined in Table 18 
for each record in the validation dataset. Figure 37 shows the model estimations for 
each month in 2011 season (color bar for each month) and the real CBB observed in 
the plots (points) for coffee trees under shade and full sun exposed trees. For August in 
shaded crops there was an underestimation of the CBB by the model, while for full sun 
crops the underestimation occurs in June.  
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Figure 37. Real CBB infestation and model estimation risk for two plots in 2011 season 

 
Similarly, the same elements for 2014 season are shown in Figure 38. This season, CBB 
levels were low for both types of crops. However, the model appears to identify the 
existing trend of CBB infestation. The months that do not appear with data correspond 
to months without records in the experiment. The rest of the plots that show the results 
of real CBB infestation and model estimation risk are found in Appendix C. 
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Figure 38. Real CBB infestation and model estimation risk for two plots in 2014 season 

 
Figure 39 shows the model output according to the presence of shade in the coffee crops 
versus the real CBB observed. The distribution of the estimated risks of the model 
seems to be consistent with the observed data from CBB, where the low risk estimates 
are around 0, the moderate risks between 1 and 4, and the high risks above this value. 
However, some extreme cases can be seen, such as CBB infestation around 25% for full 
sun crop and relatively high values (around 9 for shaded crop) that were classified as 
moderate risk. 
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Figure 39. Model output according to the presence of shade in the coffee crops versus the real CBB 

observed. 

 
In order to have a quantitative approximation of the performance of the model, the risk 
category based on the CBB infestation in the month following the prediction date was 
taken as the ground truth for validation. It was encoded according to the scale of the 
model output. The comparison of predicted and real categories (confusion matrix) and 
errors visualization are shown in Figure 40. The model accuracy was 57.00%. The 
precision, recall, and F1-score for each of the classes are shown in Table 21. The model 
a has high precision for Moderate Risk class predictions, representing the ability to 
predict this class among all classes. The low recall value for High Risk class shows a 
higher proportion of false negatives for this class.  
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Figure 40. Difference of predicted and real categories, and confusion matrix for knowledge-based CBB 

model.  

 
Table 21. Precision, recall and F1-score for each class of CBB Risk 

Class Precision Recall F1-score 
High Risk 0.27 0.37 0.31 
Moderate Risk 0.72 0.62 0.67 
Low Risk 0.71 0.65 0.68 

 

6.5. Discussion 
 
The modeling trend identified in the state of science leads to data-driven approaches. 
However, given the low amount of data in our case study, only knowledge-based 
modeling was carried out. In any case, the CBB modeling studies based on both 
knowledge and data and the gray literature allowed determining the predictors to be 
used in the structure of the model and its scales. Some studies have highlighted the 
impact of predictors that we did not take into account in our model, such as: the age 
of the crop, since the level of infestation tends to increase as the coffee plantations get 
older [162]; landscape variables around the coffee crop such as other land uses, which 
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can limit the dispersal distances of the CBB population; the coffee berries and coffee 
leaves present in the soil of the coffee plantations that affect the population of natural 
enemies of CBB such as ants [167]. These predictors could have provided greater 
robustness to the model, however the information related to these was not found in the 
experiment of the case study, so the validation would be compromised. The proposed 
model can be an initial approximation that allows providing an estimate of risk to the 
coffee farmer so that the farmer can make the pertinent control decisions. Furthermore, 
the formalization of the model as a multi-attribute structure allows more predictors to 
be included in the future without requiring many background changes in its structure. 
The characterization of the risk levels from the infestation present at the beginning of 
the season is in accordance with the impact of the work called repase which is the 
removal of bored berries after harvest, which is a good controller of this pest. However, 
the results showed that for some seasons, although the initial infestation was nil, the 
CBB reached high levels of infestation at the end of the season. Given the low amount 
of data, the validation of the model was not exhaustive but still allowed an inspection 
of its estimations against historical data from CBB. 
 

6.6. Summary 
 
In this chapter, the CoMPeM application for the Coffee Berry Borer modeling was 
shown. For the case of this coffee pest, the conditions detected in the pre-feasibility 
study determined that only knowledge-based modeling would be carried out. The 
exploration of the state of science provided the theoretical bases and a look at the 
techniques used in other investigations, in order to elaborate the conceptual base of the 
model. The model obtained relates the interaction of climate hazard, pest, crop 
conditions and phenology. The accuracy of the model was 57.00%, where the highest 
number of errors in the predictions were due to an underestimation of risk. 
  



6.6.Summary 
 

 

 

108 

 

  



 
 

 

Chapter 7  
 
Conclusions and Future Works 

This chapter details the conclusions about the results obtained and future work. These 
elements are aligned with contributions of this Ph.D. thesis. 
 

7.1. Conclusions 
 
The impacts of crop pests can be reduced by the early identification of the conditions 
that generate the pests. Several approaches have proposed the generation of prediction 
models for crop pest forecasting based on expert knowledge or induced from data. 
However, these models have been obtained from different methodologies or without 
them making use of empirical experimentation. In this sense, a guide that formalizes a 
robust modeling process (from obtaining knowledge of the crop pest to be modeled, to 
the modeling alternatives according to the available sources) is necessary. 
 
To tackle the mentioned challenges, we proposed a conceptual model called CoMPeM 
that guides the activities for the crop pest development modeling and forecasting. The 
proposed CM in Chapter 3 considers three contrasted situations in the available sources 
for the crop pest modeling: (i) few data exist on the pathosystem but knowledge is 
available, which allows the creation of mechanistic but qualitative models without the 
possibility of using data for model evaluation and validation; (ii) a large amount of data 
is available but exhaustive knowledge on the pathosystem is lacking, which can be cope 
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by exhaustive data processing through the induction of models based on the available 
data; and (iii) both sufficient knowledge and data are available, which allows validating 
knowledge-based models using the data, as well as improving the analysis process of 
data-based models from expert knowledge.  
 
CoMPeM guides a robust crop pest modeling process, from obtaining knowledge of the 
crop pest to be modeled, to the modeling alternatives according to the available sources. 
Those who use the conceptual model initially come across a pre-feasibility study, so 
that the purpose of modeling is evaluated and determined from the beginning. 
Furthermore, CoMPeM deals with the possible situations related to the availability of 
resources necessary for modeling such as data and knowledge. For example, a common 
problem is the amount of data with which the models are trained. This means that a 
modeling alternative is needed in the face of this kind of lack. 
 
We took theoretical references to carry out mappings and systematic reviews of the 
literature, in order to obtain a State of Science in CoMPeM. This allows obtaining 
formal and robust knowledge bases about the crop pest, in addition to identifying how 
other researchers have approached its modeling, the resources they have used and their 
main findings. Although the findings consigned in scientific production (books, journal 
papers, among others) show solid bases of knowledge on a pest, gray literature is still 
very important, since many resources in this category correspond to knowledge that is 
being applied by partner institutions to the crop production in each country or region. 
For this, it is important to identify the gray literature that is most cited in papers 
published in peer reviewed journals. 
 
Our approach facilitates the adoption of new modeling techniques, starting from a series 
of steps designed for groups of people with different skills, and the models can be 
included in Integrated Pest Management plans [11]. Several approaches about crop pest 
modeling assume knowledge of the problem that is already present without considering 
steps to obtain and refine it, and others carry out the modeling process empirically 
without following a methodology. Although this does not mean that the results are less 
reliable, the use of methodologies is recommended to achieve an orderly, reliable and 
well-presented process.  
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Additionally, we proposed a complementary study that allows estimating how the 
outputs of two or more models differ from each other and at what point their 
performance may be close. This can be used to support the choice of a model according 
to: the conditions for its deployment, if the necessary input variables are available; the 
scale to which it is applied, if it was trained with data from a single location; the amount 
of data used to train the model, which generates the need for an alternative when it is 
not enough. Given recent advances in computer science, data-based models generally 
perform better than knowledge-based models when a dataset is both large enough and 
of guaranteed quality. However, knowledge-based models tend to be more replicable in 
different conditions, since they are built based on the mechanisms that determine the 
development of a crop pest, while the model induced from the data will respond to those 
specific conditions present in the dataset. 
 
The application of CoMPeM was demonstrated for Coffee Leaf Rust (CLR) and Coffee 
Berry Borer (CBB) modeling. All CoMPeM processes were applied in the case of CLR 
modeling to provide a better understanding of its use. For CBB, the available resources 
only allowed the knowledge-based modeling. Therefore, the results from CLR modeling 
allowed for a much more extensive discussion than that presented for CBB modeling. 
 
In our case study, the human talent consisted of an interdisciplinary group. However, 
this situation is not always present, and our approach allows groups of pest/crop experts 
or groups of data scientists to carry out a successful modeling process with a crop pest 
knowledge base acquired from formal processes that facilitate its assimilation.  
 
For CLR, in the case of data-based modeling, the process suggested by CoMPeM 
allowed us to obtain a model with a MAE of 7.19% for CLRI forecasting. We identified 
the favorable conditions of rain and temperature that lead to dispersal, germination and 
penetration CLR phases. Additionally, we trained a machine learning model able to 
estimate the disease incidence 28 days later. The combination of the analysis of weather 
variables characterized in windows of short duration, CLRI monitoring and crop 
properties, with feature selection methods, machine learning and a model explanation 
technique, allowed us to achieve it. All the process was made with real data from a field 
experiment. We are aware that the model performance may be overestimated since the 
used dataset corresponds only to one location. To improve the generalization of the 
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model, the application of the same approach in other regions and countries is necessary. 
However, the results of our study are a promising advance for CLR modeling. 
 
The CLR knowledge-based modeling resulted in a multi-criteria and hierarchical model 
that makes it possible to represent the pathogen x host x environment relationships 
that limit the CLRI, from associations that can be easily inspected and validated by 
experts. This model has an accuracy of 63.1%. Both models were validated with data 
from a real agroforestry experiment. The study of the complementarity of the models 
allowed to increase the accuracy of the KM model by 7.07% from a data-based model 
trained with the same variables. We are aware that evaluations and comparative study 
may be biased by the data of the case study. For our case study, the results show that 
knowledge-based modeling can be an alternative to generate a prediction model when 
the available dataset has around 59 instances. 
 
In the case of CBB, the CoMPeM application allowed us to recognize the main drivers 
and how they affect the pest, to be used as predictors in the hierarchical model created. 
This type of representation of the model allowed an inspection by two experts, who 
made some suggestions about the scales of some attributes and the way to interpret 
each risk category (model output), contained in the presentation of the model made in 
the chapter 6. The accuracy of the model was 57.00%, where the highest number of 
errors in the predictions were due to an underestimation of risk. Nevertheless, the model 
provides a starting point for estimating CBB infestation risks one month in advance 
which allows to take preventive actions and avoid greater losses due to the pest. 
 
We are aware that modeling tasks can become very complex for a group of human 
talent without experience in it, so the conceptual model is structured in such a way 
that its steps are easily followed. The results obtained when applying CoMPeM in a 
case study show that it can become a valuable tool for different institutions and research 
groups that wish to start a crop pest modeling process. As the amount of data monitored 
in the crops is greater, the smart farming analysis components can be improved, 
applying CoMPeM again under the new conditions. Hence, the CoMPeM application 
can generate useful results for different stages of smart farming, such as the 
understanding of a problem such as pests, the response capacity given by the predictions 
of a model and decision-making based on these predictions. 
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7.2. Future works 
 
Considering the previous aspects, we propose as future works: 
 

• Apply the approach to model pests from other crops. The mechanisms and cycles 
of a crop pest are given by the agent that causes it and its relationship with the 
environment and host, so it would be expected that the CoMPeM application 
will have a similar development than in our case study. However, each case study 
could provide new elements for the conceptual model that have not been taken 
into account in our proposal. 
 

• Validate the models obtained in the case study with data of other regions and 
countries. Although performance metrics may be negatively affected, this new 
validation would provide an overview of the correctness of the model's 
predictions applied to crops under various conditions. In the case of the data-
based model for CLR, if the new data is added to the training dataset, this can 
improve the generalization of the model. In countries like Colombia, where coffee 
production is divided into three zones, given the variety of environmental 
conditions in the places where coffee is planted, models could be generated for 
each zone, or the variables that differentiate each one could be characterized and 
included in a general model. This could estimate a validity range of the model. 
 

• Update the CoMPeM processes to include a stage to guide the creation of hybrid 
models that incorporate knowledge about the mechanisms of crop pest 
progression in machine learning and data analysis processes to carry out crop 
pest forecasting [168]. In this way, model overfitting can be avoided in cases 
where the data are scarce or do not represent the variability of the application 
domain, based on the structure of the mechanistic model [169]. 
 

• For the processes of obtaining the state of science, we propose using domain 
ontologies related to the crop and pest studied (if they exist). The advantage of 
using this type of knowledge representation structures is that in themselves they 
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provide an approximation to the hierarchy and relationship of the important 
concepts for modeling. 
 

• For data-based modeling, we propose adding an incremental learning phase to 
update automatically the model [170]. Thus, new data obtained from monitoring 
in a precision agriculture approach would be continually being used to train the 
model used for crop pest forecasting. 
 

• Propose a method for the inclusion of CoMPeM in the Integrated Pest 
Management (IPM) workflow. IPM is an important element of smart farming. 
Our approach shows a promising contribution to the early identification of 
favorable conditions for crop pests, for which its use would improve responses to 
infestations and epidemics, as well as optimize control methods and decision 
making. 
 

• Propose a method that allows to assess the uncertainty of the conceptual model. 
Although the performance of the models generated following the process 
suggested by CoMPeM is already considered, it is important to know to what 
extent following the CoMPeM steps allows obtaining models with better 
performance than without following CoMPeM steps. 
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Appendix A. Knowledge-based model of CLR 
 

A.1. Aggregation tables for the first KM model 
 

IPSIM-based modeling is addressed through a software called Dexi6 for multi-attribute 
decision making. Below are the aggregation tables that describe the relationships 
between the base and aggregated attributes for CLR model. The colors in scales 
represent whether the value of the scale is favorable to the disease (red), unfavorable 
to the disease (green), or a medium effect (black). The symbol * indicates that the value 
of the attribute does not influence the rule, and the logical operators “<” means less 
than, “>” means greater than, “=” equals to, and “:” indicates a range of values. 

 

Table A. 1. Aggregation table for model output 

  currentIncidence  CropConditions  Incidence category  
  52%  48%    
1  >50  Favorable  >50  
2  >50  >=Moderately favorable  25-50  
3  <=25-50  Moderately favorable  25-50  
4  25-50  <=Moderately favorable  25-50  
5  25-50:5-25  Favorable  25-50  
6  25-50:5-25  Unfavorable 5-25  
7  5-25  >=Moderately favorable  5-25  
8  >=5-25  Moderately favorable  5-25  
9  0-5  <=Moderately favorable  5-25  

10  0-5  Unfavorable 0-5  

 

 
6 https://kt.ijs.si/MarkoBohanec/dexi.html 
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Table A. 2. Aggregation table for crop conditions 

climate.hazard  Vulnerability  CropConditions  
<=Moderately favorable  <=Moderately favorable  Favorable  
*  Favorable Favorable  
<=Moderately favorable  Unfavorable  Moderately favorable  
Unfavorable  >=Moderately favorable  Unfavorable 

 
Table A. 3. Aggregation table for climate hazard 

Daily Rain  Temperature RHumidity  climate.hazard  
Favorable Favorable  Favorable Favorable 
Favorable *  Unfavorable Moderately favorable  
* Favorable Unfavorable Moderately favorable  
Favorable Unfavorable *  Moderately favorable  
* Unfavorable Favorable Moderately favorable  
Unfavorable Favorable *  Moderately favorable  
Unfavorable * Favorable Moderately favorable  
Unfavorable Unfavorable Unfavorable Unfavorable  

 
Table A. 4. Aggregation table for vulnerability 

CropPract  hostGrowth  Vulnerability  
Favorable Decrease  Favorable 
Favorable Growth Moderately favorable  
Moderately favorable  Decrease  Moderately favorable  
>=Moderately favorable  Growth  Unfavorable  
Unfavorable  *  Unfavorable  

 
Table A. 5. Aggregation table for crop practices 

Management  Shade  CropPract  
Favorable Shaded  Favorable 
Favorable Full sun  Moderately favorable  
Unfavorable  Shaded  Moderately favorable  
Unfavorable  Full sun  Unfavorable  

 
Table A. 6. Aggregation table for management 

ChemicalC  Nutrition  Management  
Medium or low *  Favorable 



 

 

*  Not adequate or null Favorable 
High  Adequate  Unfavorable  

 
 

A.2. Aggregation tables for the updated KM model 
 

The following aggregation tables correspond to the updated model presented in the 
Complementary of models (CM) process. 

 

Table A. 7. Aggregation table for model output 

  currentIncidence  CropConditions  Incidence category  
  52%  48%    
1  >50  Favorable  >50  
2  >50  >=Moderately favorable  25-50  
3  <=25-50  Moderately favorable  25-50  
4  25-50  <=Moderately favorable  25-50  
5  25-50:5-25  Favorable  25-50  
6  25-50:5-25  Unfavorable 5-25  
7  5-25  >=Moderately favorable  5-25  
8  >=5-25  Moderately favorable  5-25  
9  0-5  <=Moderately favorable  5-25  

10  0-5  Unfavorable 0-5  

 
Table A. 8. Aggregation table for crop conditions 

  climate.hazard  Vulnerability  CropConditions  
  50%  50%    
1  Favorable <=Moderately favorable  Favorable  
2  <=Moderately favorable  Favorable Favorable  
3  Favorable Unfavorable  Moderately favorable  
4  Moderately favorable  Moderately favorable  Moderately favorable  
5  Unfavorable  Favorable Moderately favorable  
6  >=Moderately favorable  Unfavorable  Unfavorable 
7  Unfavorable  >=Moderately favorable  Unfavorable 

 
Table A. 9. Aggregation table for climate hazard 
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  Temperature  RHumidity  dRain  climate.hazard  
  56%  33%  11%    
1  Moderately favorable  Moderately favorable  *  Favorable 
2  Moderately favorable  Unfavorable *  Moderately favorable  
3  Unfavorable Moderately favorable  Moderately favorable  Moderately favorable  
4  Unfavorable *  Unfavorable Unfavorable  
5  Unfavorable Unfavorable *  Unfavorable  

 
Table A. 10. Aggregation table for vulnerability 

  CropPract  hostGrowth  Vulnerability  
  33%  67%    
1  Favorable Decrecimiento  Favorable 
2  Favorable Crecimiento  Moderately favorable  
3  >=Moderately favorable  Decrecimiento  Moderately favorable  
4  >=Moderately favorable  Crecimiento  Unfavorable  

 
Table A. 11. Aggregation table for crop practices 

  Management  Shade  CropPract  
  50%  50%    
1  Favorable Bajo sombra  Favorable 
2  Favorable Pleno sol  Moderately favorable  
3  Unfavorable  Bajo sombra  Moderately favorable  

4  Unfavorable  Pleno sol  Unfavorable  

 
Table A. 12. Aggregation table for management 

 ChemicalC  Nutrition  Management  
  70%  30%    
1  Decrecimiento  Favorable Favorable 
2 Crecimiento  Favorable Moderately favorable  
3 Decrecimiento  >=Moderately favorable  Moderately favorable  
4  Crecimiento  >=Moderately favorable  Unfavorable  
5  Decrecimiento  Favorable Favorable 

 



 

 

 
 
 
 

Appendix B. Deployment of CLRI model 

B.1. Introduction  
 
The Deployment of CLRI model obtained in Chapter 5 was addressed as a functional 
prototype for PROCAGICA (available at https://www.redpergamino.net/app-stadinc). 
The module that allows the model to be used is called STADINC (Statistical 
Development of Incidence prediction), available in the Tools section of the 
PERGAMINO platform. 
 
PROCAGICA is the Central American Program for Comprehensive Management of 
Coffee Rust, whose objective is: Increase the capacity of the region to design and 
implement policies, programs and measures for a better adaptation, response capacity 
and resilience of the most vulnerable population, living in the coffee production areas 
of Central America and the Dominican Republic, and that it is exposed to the adverse 
effects of climate change and variability. 
 

B.2. System functionalities  
 
The objective of STADINC is to provide a tool to obtain a CLRI prediction 28 days 
after the consultation date. The system is presented in Figure B. 1 and is composed of the 
following modules. 



B.2.System functionalities 
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Figure B. 1. STADINC modules 

 
• Data from climate model retrieval: Reusable module offered by the 

PERGAMINO platform, which allows obtaining the maximum and minimum 
temperature and precipitation data for the coffee areas covered by PROCAGICA 
using a climate model. 

 
• CLRI prediction: Module that allows setting the predictor values associated with 

crop and CLR properties, as well as loading the CSV file with the weather data 
to be used. 
 

• Weather windows generation: To avoid the user having to generate the weather 
windows that the model requires, this module is in charge of calculating them 
from daily values of temperature and precipitation. 
 



B.3. System functionalities 
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• Predictors generation: Construction of the instance required by the model 
composed of its predictors. 
 

• Model loading: Deserialization of the model stored on the server. 
 

• SHAP values extraction: Calculation of the impact of each predictor on the 
output of the model. 
 

• Model output retrieval: Extraction of the CLRI value predicted by the model. 
 

B.3. System functionalities  
 
The STADINC architecture represented by the logical view shown in the Figure B. 2. 
This view organizes the software classes into packages and three layers: Application, 
Mediation and Foundation. 
 

 
Figure B. 2. Logical view of STADINC 
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B.3.1. Application layer 
 
Provides the functionalities to a STADINC user. It is composed by the following 
package: 
 

• Graphical user interface: contains the software classes and forms to provide a 
visual representation for data submission and response deployment. This allows 
user interaction with STADINC, with graphic elements such as plots, icons, text 
boxes, among others. The graphical user interface was developed in the R 
package Shiny7. 

 
B.3.2. Mediation layer 
 
Contains the software classes named controllers. In our case, its structure corresponds 
to the one suggested for creating R-Shiny apps. It is composed by the following 
packages: 
 

• Global: It contains the methods of loading the model and obtaining its output, 
as well as the SHAP values of the predictors for a specific prediction. This allows 
the implementation of functions in Server package. 
 

• Server: Implements the mechanism for information, prediction and SHAP values 
retrieval. This class controller gets the user input and processes it to validate the 
input data and generate the response elements in the graphical interface. 

 
B.3.3. Foundation layer 
 
This layer is composed by the software used in the STADINC: 
 

• R Engine8: programming language and environment for statistical computing. 
The PERGAMINO platform is based on this language. We used R 3.6 and 
different from its core functions are used for data manipulation. 

 
7 https://shiny.rstudio.com 
8 https://www.r-project.org 
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• Shiny9: R package that allows the creation of interactive web apps encoded in R. 
 

• R Shiny Server10: Web server for Shiny applications that provides its hosting and 
access through the internet. It allows host an app in a controlled environment. 
 

• XGBoost11: Gradient boosting library that implements machine learning 
algorithms based on the gradient boosting framework. Since the model based on 
CLRI data was generated with this technique, this library allows to load said 
model and make predictions. 
 

• SHAPforxgboost12: Library that implements the calculation of SHAP values 
specifically for models built from XGBoost. 

 

B.4. User interfaces 
 
The main interface for the use of STADINC is composed of a form that allows to load 
the CSV data file for the calculation of the predictors related to weather and another 
one for the user to enter the data of the crop properties and the previous incidence 
(Figure B. 3). After the data submission, the response of the model and the impacts of 
the variables are shown as presented in the Figure B. 4. 

 
9 https://shiny.rstudio.com 
10 https://rstudio.com/products/shiny/shiny-server/ 
11 https://xgboost.readthedocs.io/en/latest/ 
12 https://cran.r-project.org/web/packages/SHAPforxgboost/index.html 
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Figure B. 3. STADINC data entry forms 

 

 
Figure B. 4. CLRI prediction visualization and impact of model variables in STADINC.



 

 

 

 
 
 

Appendix C. Knowledge-based model of CBB 
 

C.1. Aggregation tables 
 
 
IPSIM-based modeling is addressed through a software called Dexi13 for multi-attribute 
decision making. Below are the aggregation tables that describe the relationships 
between the base and aggregated attributes for CBB model. The colors in scales 
represent whether the value of the scale is favorable to the disease (red), unfavorable 
to the disease (green), or a medium effect (black). The symbol * indicates that the value 
of the attribute does not influence the rule, and the logical operators “<” means less 
than, “>” means greater than, “=” equals to, and “:” indicates a range of values. 
 

Table C. 1. Aggregation table for model output (CBB Risk) 

  Climate Hazard  Pest x Host  CBB Risk Category  
  57%  43%    
1  Favorable to the pest  <=Moderately favorable to the pest  HighRisk  
2  <=Moderately favorable to the pest  Favorable to the pest  HighRisk  
3  <=Moderately favorable to the pest  Unfavorable to the pest  ModerateRisk  
4  Moderately favorable to the pest  >=Moderately favorable to the pest  ModerateRisk  
5  Unfavorable to the pest  Favorable to the pest  ModerateRisk  

6  Unfavorable to the pest  >=Moderately favorable to the pest  LowRisk  

 
 

 
13 https://kt.ijs.si/MarkoBohanec/dexi.html 
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Table C. 2. Aggregation table for climate hazard 

  Rain  Humidity  Temperature  Climate Hazard  
  33%  33%  33%    
1  Favorable  Favorable  Favorable  Favorable to the pest  
2  Favorable  Favorable  Unfavorable  Moderately favorable to the pest  
3  Favorable  Unfavorable  Favorable  Moderately favorable to the pest  
4  Unfavorable  Favorable  Favorable  Moderately favorable to the pest  

5  *  Unfavorable  Unfavorable  Unfavorable to the pest  
6  Unfavorable  *  Unfavorable  Unfavorable to the pest  
7  Unfavorable  Unfavorable  *  Unfavorable to the pest  

 
 

Table C. 3. Aggregation table for relationship pest x host 

  Crop conditions  Pheno  Pest x Host  
  43%  57%    

1  Favorable to the pest  
<=Moderately favorable to the 
pest  

Favorable to the pest  

2  
<=Moderately favorable to the 
pest  

Favorable to the pest  Favorable to the pest  

3  Favorable to the pest  Unfavorable to the pest  
Moderately favorable to the 
pest  

4  
>=Moderately favorable to the 
pest  

Moderately favorable to the pest  
Moderately favorable to the 
pest  

5  Unfavorable to the pest  
<=Moderately favorable to the 
pest  

Moderately favorable to the 
pest  

6  
>=Moderately favorable to the 
pest  

Unfavorable to the pest  Unfavorable to the pest  

 
 

Table C. 4. Aggregation table for crop conditions 

  Shade  CBB on flowering  Crop conditions  
  50%  50%    
1  Favorable  Favorable  Favorable to the pest  
2  Favorable  Unfavorable  Moderately favorable to the pest  
3  Unfavorable  Favorable  Moderately favorable to the pest  

4  Unfavorable  Unfavorable  Unfavorable to the pest  
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Table C. 5. Aggregation table for Phenology 

  Days after flowering  Number of flowerings  Phenology  
  33%  67%    
1  Very favorable  Favorable  Favorable to the pest  
2  Very favorable  Unfavorable  Moderately favorable to the pest  
3  >=Favorable  Favorable  Moderately favorable to the pest  
4  >=Favorable  Unfavorable  Unfavorable to the pest  

C.2. Validation of Knowledge-based model of CBB 
 
A short validation was made from the data of the CATIE experiment and the 
meteorological station located next to it, which only contained records from 15 seasons 
(from flowering to harvest) in different plots. The following figures contain the results 
for different seasons and types of shade: Poró (Erythrina) (E), Terminalia (Amarillón) 
(T), Chloroleucon (Cashá – Ab.i) (C), Full sun (PS) and combinations. 

 
Figure C. 1. Real CBB and model estimations for ET-MO plots in 2011 season 
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Figure C. 2. Real CBB and model estimations for CE-MC plots in 2011 season 

 

 
Figure C. 3. Real CBB and model estimations for crops under shade with Terminalia and several 

seasons 
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Figure C. 4. Real CBB and model estimations for crops under shade with Poró and several seasons 

 

 
Figure C. 5. Real CBB and model estimations for crops full sun exposed and several seasons 
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Figure C. 6. Real CBB and model estimations for crops under shade with Cashá plus Terminalia and 

several seasons 

 
 


