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Abstract. Formal Concept Analysis (FCA) comes with a range of rel-
evant techniques for knowledge analysis, such as conceptual structures
or implications. The Duquenne-Guigues basis of implications provides a
cardinality minimal set of non-redundant implications. The concern of
a domain expert is to discover new knowledge within this implication
set. The objective of this prospective paper is to collect and discuss the
different patterns of implications extracted from a dataset on plants used
in medical care or consumed as food. We identify 16 patterns combining
3 types of knowledge elements (KE). The patterns highlight redundant
KEs, or KEs of little interest, in particular, those corresponding to plant
taxonomy, as it is familiar knowledge for the experts. Removing these
KEs from the implications would make them tacit. We suggest a post-
process for cleaning up the implications before reporting them to the
experts. In addition, we discuss the different patterns and how an impli-
cation classification based on patterns could help the experts.

Keywords: Formal Concept Analysis · Duquenne-Guigues basis · Im-
plication Rules · Life Sciences Knowledge Base · One Health

1 Introduction

Formal Concept Analysis (FCA) is a mathematical framework based on lattice
theory which aims to formalize the notion of concept [6]. It gives foundations for
a large range of methods for knowledge processing and knowledge discovery [12].
These methods include the construction of formal concepts and their ordering
in a concept lattice or in restricted sub-structures of the lattice. For a domain
expert (e.g. pathologist, entomologist), navigating through a complex lattice to
extract knowledge may remain a challenge. An alternative view on knowledge is
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building the Duquenne-Guigues basis (DGB) of implications [8]. An interest of
this implication basis is its formulation of pieces of knowledge using a compact
and comprehensive formalism. DGB indeed provides a cardinality-minimal set
of non-redundant implications.

Through DGB building, expert concern is to discover new knowledge within
the implication set. Diverse situations can occur. For instance, if an implication
is too obvious for the expert, e.g. because it exclusively describes a domain
taxonomy, then it presents a too limited interest to be kept in the implication set.
This implication therefore becomes a tacit knowledge, while the others remain
explicit. In more complex situations, the implication may contain both obvious
knowledge elements (KE) and useful KE. In such cases, the obvious part of the
implication may become tacit, when the other part may remain explicit.

The objective of this paper is to observe and discuss different patterns of
implications extracted from a dataset on plants used in medical care or consumed
as food. With these patterns, we aim to identify obvious KE included in the
implications, and how implications can be simplified. The patterns may also
provide an opportunity to classify the implications into coherent sets. Section 2
introduces the background and the dataset. Section 3 presents and discusses the
preliminary results. Section 4 concludes and draws future work.

2 Background and Dataset

Background FCA elaborates knowledge, including formal concepts or attribute
implications, on top of a formal context (FC) K = (G,M, I) where G is an
object set, M is an attribute set and I ⊆ G × M . An implication, denoted
by A =⇒ B, is an attribute set pair (A,B), A,B ⊆ M such that all ob-
jects owning the attributes of A (premise) also own the ones of B (conclusion):
{g|∀ma ∈ A, (g,ma) ∈ I} ⊆ {g|∀mb ∈ B, (g,mb) ∈ I}. There are several types
of implication bases [1]. Here we consider the Duquenne-Guigues basis (DGB)
of implications [8], which is a cardinality minimal set of non-redundant implica-
tions, from which all implications can be produced. An implication is held (or
supported) by a number of objects, that we call the implication scope (S). The
support is the proportion of such supporting objects. Let Imp = A =⇒ B,
S(Imp) = |{g|∀m ∈ A, (g,m) ∈ I}|. Support(Imp) = S(Imp)/|G|. For this
work, the DGB of implications is built on a FC using Cogui software platform4,
which includes a Java implementation of LinCbO

The dataset and the taxonomic knowledge To conduct the evaluation, we use
an excerpt of the Noctuidae dataset [13], which is itself part of the Knomana
dataset [14]. This dataset draws particular attention of experts in the context
of One Health initiative [11] for addressing the worrying worldwide invasion of
Spodoptera frugiperda (Lepidoptera from the Noctuidae family) which was first
detected in Africa in 2016 [7] and is continuously spreading. At the end of 2018,
S. frugiperda was first found in Yunnan Province in China [16]. Furthermore, in

4 http://www.lirmm.fr/cogui/
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2018, it was first recorded in South Asia, namely India [9]. In January 2020, it
was trapped in Australia’s special biosecurity zone in the Torres Strait islands of
Saibai and Erub, and confirmed on 3 February 2020, and on mainland Australia
in Bamaga on 18 February 2020 [15].

Table 1. On the top, excerpt of [13] that describes organisms uses, and, on the bottom,
the associated formal context (FC) after the nominal scaling of Species, Genus, Family,
food, and medical. S, G, and F are short notation for Species, Genus, and Family.

Organism Species Genus Family food medical

p1 AcorusCalamus Acorus Acoraceae no yes

p2 CychoriumIntybus Cychorium Asteraceae yes yes

p3 AchilleaCollina Achillea Asteraceae no no

FC S Acorus S Cychorium S Achillea G Ac G Cy G Ach F Aco F Aste food no- medical no-
Calamus Intybus Collina orus chorium illea raceae raceae food medical

p1 X X X X X

p2 X X X X X

p3 X X X X X

This dataset indicates for each plant organism, out of the 600 in the dataset,
its species, its genus, its family, and whether it is consumed as food and used
in medical care. There is one-to-one mapping between organisms (objects) and
Species values (cf. Tab. 1). Species, genera, and families respect a taxonomy
which is a 3-level tree structure with this general shape: Species ≺ Genus ≺
Family; E.g. Species Acorus calamus ≺ Genus Acorus ≺ Family Acoraceae (see
Fig. 1). This taxonomy is a familiar knowledge for the experts. The dataset
comprises 600 species from 376 genera and from 98 families.

Fig. 1. Example of taxonomy for plants. Family, genus, and species names are respec-
tively presented on the top, in the middle, and at the bottom of the figure. An arrow
represents a generalization relation.

Formal context built from the dataset A FC describes a set of objects using a
set of Boolean attributes. When the dataset contains a multi-valued attribute,
conceptual scaling can be used to obtain Boolean attributes [6]. Various con-
version methods are adopted, among which the nominal scaling for categorical
attributes, such as the species name (e.g. Achillea collina or Acorus calamus),
where each value is converted into a Boolean attribute [10]. Applied to this
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work, the conversion of the dataset as a FC consisted in the nominal scaling of
the attributes Species, Genus, Family, food, and medical. The taxonomy KE is
expressed, in the FC (G,M, I), by the fact that for a plant organism p ∈ G and
a given species s from genus g and family f , with s, g and f ∈ M , if (p, s) ∈ I,
then (p, g) ∈ I. Similarly, if (p, g) ∈ I then (p, f) ∈ I. In addition, the dual of
the food (i.e. no-food) and medical (i.e. no-medical) attributes are added in the
FC to explicit respectively the fact to be not consumed (no-food) or not used in
medical care (no-medical). Note that, in [13], the attribute medical is encoded
by Medical X, no-medical by Medical , food by Food X, and no-food by Food .

3 Results and Discussion

As noticed in [4], the implications from the DGB are not redundant one with
the others. But they may contain redundant attributes in the premise and in
the conclusion, due to the fact that pseudo-intents are used instead of minimal
generators. Besides, we can expect that implications respect a limited number of
patterns, and that some of these patterns have different meanings. A long-term
objective of this work is to provide the experts with a minimal set of implications
filtered and classified to assist them in the analysis. In this section, we observe
patterns in implications of DGB. Then, we discuss how implications may be post-
processed and classified making them more appropriate to the domain expert.

3.1 The implications from DGB

Due to the scaling of the attributes Species, Genus, and Family, the FC asso-
ciated to the dataset has 1078 Boolean attributes, i.e. 600 attributes to inform
on the species, 376 on the genus, 98 on the family, and 4 on the medical and
food use. For the 600 plant organisms, Table 2 shows that 1168 implications
were extracted from this FC. Most of the implications, i.e 1007, are held by one
object, and thus are specific to a plant species. Among the 161 remaining ones,
9 implications are supported by more than 9 objects. The maximum scope, i.e.
35, corresponds to the implication informing that none of the 35 species from
the Meliaceae Family, present in the dataset, is consumed (cf. ID 1 in Table 3).

Table 2. Number of implications per scope.

Scope 1 2 3 4 5 6 7 8 10 11 16 18 29 35

#Implications 1007 76 37 18 12 3 1 5 3 2 1 1 1 1

These 1168 implications are formulated using 16 patterns, where a pattern
corresponds to the pair (Premise, Conclusion) in which each of the declarative
sentence is designed using the SGFp schema (Table 3). This schema is the ordered
list of presence of the attributes Species (S), Genus (G), Family (F), food or no-
food, medical or no-medical (p), in the declarative sentence. By grouping food,
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no-food, medical and no-medical, our intent is to focus our analysis on the types
of KEs, and not the KEs themselves.

Various combinations of S, G, F, and p can be observed in the premise or
the conclusion. For instance, pattern 1 informs on the use of all plants from a
family. Pattern 2 provides the taxonomic relation of a genus with a family. Some
patterns are more extended, such as pattern 5 that states on the genus of plants
from a family with a given use.

Table 3. Implication patterns from DGB. The premise and the conclusion are de-
signed using the SGFp schema. KU, KT, and KD are respectively short notations
for Knowledge on plant Use, Knowledge on plant Taxonomy, and Knowledge on the
Dataset.

ID Premise Conclusion knowledge Example of implication #implications Max
elements scope

1 F p KU F Meliaceae ⇒ no-food 35 35
2 G F KT G Salvia ⇒ F Lamiaceae 12 18
3 Fp p KU no-food,F Annonaceae ⇒ no-medical 10 16
4 G Fp KU, KT G Trichilia ⇒ no-food,F Meliaceae 84 10
5 Fp G KU, KD food,medical,F Rutaceae ⇒ G Citrus 6 5
6 F G KD F Piperaceae ⇒ G Piper 1 5
7 GFp p KU, KT medical,F Asteraceae,G Artemisia ⇒ no-food 7 4
8 Fp Gp KU, KD medical,F Annonaceae ⇒ food,G Annona 1 3
9 F Gp KU, KD F Lythraceae ⇒ no-food,no-medical,G Lythrum 5 2
10 S GFp KU, KT S ZygophyllumAlbum ⇒ no-food,no-medical,G Zygophyllum,F Zygophyllaceae 600 1
11 G SFp KU, KT, KD G Zygophyllum ⇒ no-food,no-medical,S ZygophyllumAlbum,F Zygophyllaceae 280 1
12 Fp SG KU, KT, KD medical,no-food,F Zingiberaceae ⇒ S HedychiumCoronarium,G Hedychium 29 1
13 GFp S KU, KT, KD medical,no-food,G Cinnamomum,F Lauraceae ⇒ S CinnamomumCassia 38 1
14 F SGp KU, KT, KD F Zygophyllaceae ⇒ no-food,no-medical,S ZygophyllumAlbum,G Zygophyllum 42 1
15 Fp SGp KU, KT, KD food,F Lauraceae ⇒ medical,G Cinnamomum,S CinnamomumVerum 3 1
16 GFp Sp KU, KT, KD medical,F Solanaceae,G Solanum ⇒ food,S SolanumLycopersicum 15 1

3.2 Observing patterns and implications

Three types of KEs were identified in the implications. KU type informs on the
relationship of a plant, at any taxonomic level, with a use as food or medical care.
The second KE type is the Taxonomic relationship type (KT), such as giving
the family in the conclusion when the species is indicated in the premise. The
third type (KD) corresponds to a KE resulting from the content of the Dataset,
which represents a limit in this work. For instance, taxonomic referential web
sites list 5 genera from the Piperaceae family 5. As only one is present in the
dataset (i.e. Piper), inferring that “a plant from the Piperaceae family is of the

genus Piper” is wrong in the real life, but is true in this work as it results from
a side effect of the dataset.

Except for patterns 2 and 6, all the implication patterns include KU (Table
3), suggesting at first sight that the latter are useful implications for the ex-
pert. But attention should be paid on implications combining KU, KT, or KD,
and respected by implications with a scope value of 1, meaning that each one
is associated to a single plant organism. Pattern 10 (scope 600) only reports
information from the context as these rules only describe an organism by its

5 E.g. http://www.plantsoftheworldonline.org/ lists 5 plant genera.
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attributes. Similarly, patterns 11 and 14 indicate that a given genus or fam-
ily has only one species in the dataset, the other attributes being those of the
species, and these patterns could be considered as containing only KD. Most
of the patterns include KT. Including the taxonomy was crucial in this work
for FC processing in order to discover knowledge at a higher generic level, but
corresponds to a redundancy in the implications.

This preliminary analysis gives directions for pattern and implication post-
processing and classification. Some may be specific to some characteristics of
Knomana, such as the fact that attribute species is an object identifier, and
some could be generalized to all datasets.

The post-processing may have different forms for redundant or evident in-
formation: either removing it, or simply separating it from the rest, so that it
remains written but not distracting. KU, KD, KT can be highlighted in different
ways to distinguish them. Highlighting the different reasons under redundancy
or evident information (e.g. KT information versus logical redundancy due to the
fact that minimal generators are not used) would be useful. We could consider
removing redundancy only in premise [5] or only in conclusion, or in both.

Patterns also have to be analyzed. For example, pattern 4 (G -> Fp) could
be simplified as G -> p, as F is tacit given G. This would change the pattern
classification (initially KU KT), as it is now reduced to KU.

As regard with implications, a post-process could remove KT from the im-
plications, corresponding to a tacit knowledge as experts are familiar with the
taxonomy. As the redundancy due to KT may appear in the premise (e.g. the
species and its genus), in the conclusion, or in both (e.g. a species implies a

family), the post-process has to consider the implication in its entirety. This
approach differs with [5] where authors consider exclusively the left-minimal
premises for technical purpose (i.e. a fast computation of attribute closure and
a minimal left hand side in the implication). In addition, a filtering could lead
to remove pattern 2 implications that only express tacit knowledge.

KUs are the explicit KEs investigated by the expert and thus have to be put
forward. KDs present a particular situation in the implications as they result
from a lack of knowledge in the dataset. Pattern 6 has to be considered carefully
as it contains only KD. Thus, the experts have to be alerted of KD presence to
consider this aspect in the dataset analysis.

A classification of implications based on patterns seems to us relevant for
presenting them to the expert by groups having a coherent meaning: E.g. im-
plications providing information on the diversity of some plant families in the
dataset or pure information on the One Health Approach. Depending of the
number of rules in some categories, a classification may have a significant im-
pact for the expert, e.g. discarding or at least separating rules from pattern 10
distinguishes 600 rules that only recall initial data. We also guess that if a post-
processing is made, the way it is made has to be notified to the expert and it
should be indicated if this is reversible operation.

Finally, literature on association rules also faced the issues of extension of
non-redundant rules [17] and redundancy removal introduced by using a taxon-
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omy in concept-based rules building [3]. Classifying association rules in a lattice
has been addressed in [2] in the context of fault localization, where rules are
described by elements of their premises, that can be inspiring in our case, using
patterns as an implication description.

4 Conclusion

This paper identifies 3 types of knowledge elements and 16 patterns that con-
stitute the implications from the Duquenne-Guigues basis on a formal context.
Each implication needs a specific consideration before being presented to the
expert. For instance, a post-process can be conducted to remove tacit knowledge
elements from implications, which may drive to delete some of them.

In a future work, we will study how the different patterns can be used to
display implications to experts by categories, that may help them to focus on
different aspects of the dataset. For instance, the user may focus on knowledge el-
ements related to some plant families in the dataset, or pure knowledge elements
on the plant uses at the family level.

This work is a preliminary study to the analysis of the Duquenne-Guigues
basis of implications resulting from a Relational Context Family of the Knomana
knowledge base. The general objective is to contribute in the decision support
process to identify plants that could be used by farmers to control pest. These
pesticidal plants will be an alternative to pesticide and antibiotics, considering
the One Health approach. Using this approach, one must be aware of the multi-
uses of these plants to prevent the intentional effects on the animals, the humans,
and their environment.

In a more general perspective, it would be relevant to examine how the
forms of post-processing, filtering and classification of patterns and rules can
be generalized in order to be able to apply these approaches to other datasets,
more particularly when several taxonomic relations are involved.
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implication bases: A survey of structural aspects and algorithms. Theor. Comp.
Sci. 743, 93–109 (2018)
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