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SUMMARY 

 
Geographic information systems (GIS) and spatial modelling are crucial for designing, implementing, and 
optimizing area-wide programmes of insect and/or disease control. This chapter provides a basic 
introduction to the science of GIS, Global Positioning System (GPS), satellite remote sensing (RS), and 
spatial modelling, and reviews the principal ways in which these technologies can be used to assist various 
stages of development of the sterile insect technique (SIT) as part of area-wide integrated pest management 
(AW-IPM) programmes — from the selection of project sites, and feasibility assessments and planning of 
pre-intervention surveys, to the monitoring and analysis of insect suppression programmes, and the release 
of sterile insects. Potential barriers to the successful deployment of GIS tools are also discussed. 

 
1. INTRODUCTION 

 
The success of the sterile insect technique (SIT) and other area-wide interventions, 
aimed at controlling populations of insect pests, depends to a large degree on 
appropriate project planning and implementation. More specifically, successful 
programmes depend on an accurate knowledge of pre-existing distributions of insects 
in time and space, on the appropriate design of insect suppression strategies and 
sterile insect release projects, and on the development of suitable frameworks for 
monitoring and evaluation. Methods and tools have become available that enable the 
development of models simulating the demography of a metapopulation of insects, 
thus making the ex-ante assessment of various control strategies possible (Peck 2012; 
Peck and Bouyer 2012). 

Geographic Information Systems (GIS), the Global Positioning System (GPS), 
remote sensing (RS), and spatial modelling are allied technologies that together 
provide a means of gathering, integrating, and analysing spatial data. These tools are 
already being used extensively in other areas of agroecological management and 
epidemiological research (Barnes et al. 1999; Nutter et al. 2002; Moiroux et al. 2013; 
Tsafack et al. 2013; Dicko et al. 2015), and their use within area-wide integrated pest 
management (AW-IPM) programmes (Adam et al. 2013; Percoma et al. 2016) 
including those with an SIT component is growing quickly (Bouyer et al. 2010; Dicko 
et al. 2014). The tools are becoming increasingly accessible to non-specialists thanks 
to a wide range of freeware (FAO/IAEA 2006). 

The principal aim of this chapter is to present applications of GIS and associated 
spatial tools within AW-IPM programmes. The first part of the chapter constitutes a 
short primer on GIS, GPS, and RS technologies. Subsequent sections illustrate the use 
of these tools in ecological and epidemiological studies, and address issues specific to 
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area-wide programmes integrating the SIT, particularly with respect to the use of 
spatial tools in feasibility assessments, planning and implementing pre-intervention 
surveys, and guiding the subsequent operational programmes of insect suppression 
and sterile insect release. 

 
2. SPATIAL TOOLS: STATE OF THE ART 

 
2.1. Geographic Information Systems (GIS)  
 
GIS can be defined as computer-based systems capable of capturing, cleaning 
(checking for errors and gaps), integrating, storing, retrieving, analysing, and 
displaying spatial data. GIS incorporate spatial data (geographical features) in the 
form of geographical coverages (maps), and descriptive data (attributes) in the form 
of relational databases linked to the mapped features (Kitron 1998). 

GIS coverages can be developed using information from a variety of sources, 
including digitized paper maps, field surveys using hand-held GPS receivers, and 
thematic layers derived from remote sensing. Much of the utility of GIS stems from 
their ability to combine datasets of different provenances, spatial scales, and data 
types. Most, if not all, of these applications have become freely available in general-
purpose computing environments such as R (Bivand et al. 2008). 

In most GIS packages, geographic data are represented by vector and raster data 
models. In the vector model, geographical features are represented by points, or as 
lines and polygons made up of points joined by lines (arcs). In the raster model, 
spatial data comprise a regular grid of cells in which points are represented as single 
cells, and lines as strings of connected cells. Raster data are better suited to storing 
and modelling variables that vary continuously in space (Bonham-Carter 1994). 
Topographic data, for example, are commonly stored as raster grids (digital elevation 
models). Climate data, which vary continuously in space and time, are also commonly 
stored as rasterized climate “surfaces” (Hutchinson et al. 1995) or raster stacks 
combining hundreds or thousands of elementary rasters (Anyamba et al. 2014). Most 
GIS software packages can handle both vector and raster data, which are 
complementary and frequently used jointly.  

GIS can be used for their mapping and visualization capabilities, or for much 
more sophisticated forms of spatial and statistical analysis. In this context, spatial 
analysis refers to the manipulation and transformation of GIS data to extract 
additional meaning from them. Common examples of spatial analysis include 
buffering map features (e.g. to define areas of exposure (potential infestation) around 
insect-breeding sites), interpolating between points (e.g. to produce climate “surfaces” 
from a network of weather stations), overlaying a number of individual geographical 
coverages to produce derivative maps, or even spatial modelling of suitable 
landscapes for target insect species, insect distribution or density. The latter approach 
can often take the form of “suitability analysis”, in which spatial coverages are 
weighted and combined to identify and display locations that meet specific criteria 
(Clarke et al. 1996). Later in this chapter, an example is described in which suitability 
analysis has been used for decision support in trypanosomosis control. Several 
introductory texts provide more detail on the range of spatial analytical techniques 
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available in most GIS packages (Bonham-Carter 1994; Burrough and McDonnell 
1998). 

GIS software and general-purpose computing environments now commonly 
include a range of geostatistical commands and specialized add-on packages allowing 
basic as well as sophisticated spatial analyses, including testing for space-time 
clustering among point and polygon data (Pfeiffer and Hugh-Jones 2002; Bivand et 
al. 2008). This type of exploratory data analysis is particularly appropriate for 
identifying unusual spatial patterns within large datasets, and is often used as a means 
of hypothesis generation.  

The accuracy of the final output from a GIS-based analysis is, to a significant 
degree, determined by the quality of the data in the GIS. The spatial and temporal 
resolutions of the data used in GIS need to be appropriate for the application in 
question. For example, topographic maps at a scale of 1:250 000 would be of little use 
in a village-scale study. Similarly, a series of annual climate surfaces would be ill-
suited to attempts to determine the seasonality of insect populations. Hand-held GPS 
receivers for ground assessment and validation, and satellite remote sensing for 
updated information on changes in surface conditions, have become easily accessible 
for pest control programmes.  

 
2.2. Global Positioning System (GPS) 
 
Hand-held GPS receivers are ideally suited to mapping spatial features where 
conventional maps are unavailable or inadequate (Thomson and Connor 2000). The 
basis of the GPS is a constellation of 24 NAVSTAR satellites developed and 
maintained by the US Department of Defense. These satellites act as reference points, 
with each satellite transmitting a radio signal in the form of pseudo-random code. On 
the ground, GPS receivers use this code to determine distances to each satellite 
(“ranging”), and calculate their position and altitude by “trilaterating” signals from a 
number of satellites. A European alternative named “Galileo” was launched in May 
2016 with two new satellites, and will allow much more accurate positioning, but it 
will not be available before 2020. 

GPS receivers typically achieve a horizontal accuracy in the 5–15 m range. 
Positional errors arise mainly from atmospheric effects on the GPS signals, from 
clock errors, and as a result of multipath reflection of signals at ground level. Much of 
the error due to atmospheric effects can be removed using “differential” GPS 
techniques, in which positions obtained from a roving GPS are corrected using signals 
received by a static GPS located at an accurately surveyed position. Horizontal 
accuracy using differential GPS techniques is usually in the 1–5 m range, although 
sub-metre accuracy can also be achieved depending on the hardware used. However, 
in most ecological or entomological survey situations, a positional error of 5–15 m is 
probably acceptable. 

GPS receivers are often used simply to collect spatial data (coordinates) for 
geographical features, with associated attribute data recorded separately and manually 
on survey forms. However, in many cases, GPS-receiver software now includes 
programmable “data dictionaries” which can be used to capture attribute information 
directly. Alternatively, some GPS receivers can be linked up to other devices such as 
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a tablet or a notebook computer. Both approaches greatly increase the speed and 
efficiency with which GPS data can subsequently be incorporated into existing GIS. 

It is also possible to upload the results of spatial modelling, like suitable habitats 
for insects (see below), using a GPS to guide operational teams toward specific sites 
used for monitoring (Bouyer et al. 2010) or control (Dicko et al. 2014). 

 
2.3. Satellite Remote Sensing (RS) 
 
Satellite RS is the process of gathering information about the earth’s surface using 
electromagnetic sensors on board satellites. Sensors can be “passive”, e.g. Spot, 
Landsat, and Meteosat satellites, in the sense that they detect solar radiation reflected 
from the earth’s surface, or “active”, e.g. radar, which provide their own energy 
source for illumination, and the reflected radiation is measured by the sensor. The 
latter have rarely been applied in ecological and epidemiological studies. Data from 
passive sensors can be used in a relatively raw form, e.g. to derive land-cover 
classification maps, or can be transformed into indices that constitute direct proxies 
(substitutes) for environmental variables, such as rainfall, land-surface temperature, 
and vegetation status (Hay et al. 1996). 

The value of satellite RS for ecological research has long been recognized, 
particularly in terms of its ability to offer objective, up-to-date assessments of surface 
conditions over large, sometimes inaccessible, areas. Moreover, the repeatability of 
satellite measurements makes RS particularly suitable for monitoring environmental 
conditions over time. The applicability of remote sensing to different types of 
ecological study will, however, depend on both the nature of the study and the spatial, 
temporal, and spectral characteristics of available image data (Box 1).  
 Images from different sensors vary greatly in terms of spatial resolution, e.g. with 
pixel sizes for commonly available products currently ranging from under a square 
metre to several square kilometres. Similarly, the temporal resolution (or revisit time) 
of individual sensors can be as little as 30 minutes in the case of geostationary 
meteorological satellites, or as much as 30 days in the case of some polar-orbiting 
satellites. Near-polar orbit satellites such as Landsat, Spot, or Moderate-resolution 
Imaging Spectroradiometer (MODIS) offer intermediary temporal resolutions, and are 
the most frequently used. In a project that requires local, detailed assessments of land 
cover, spatial resolution will be the prime consideration when selecting satellite data. 
If the project is more concerned with changing meteorological and vegetation patterns 
over time, temporal resolution will be of greater concern.  
 Species distribution modelling is increasingly based on the combination of high 
spatial and temporal resolution data, particularly MODIS data (Hartemink et al. 2011; 
Dicko et al. 2014). 

In the context of ecological and epidemiological studies, satellite data have been 
extensively used to model and predict the distributions of insects and/or associated 
diseases in time and space (Rogers and Randolph 1986; Rogers et al. 1996; Linthicum 
et al. 1999; Moiroux et al. 2013; Dicko et al. 2015). Modelling on a large scale has 
commonly involved using satellite data to delimit specific insect-breeding sites or 
habitats (Linthicum et al. 1987; Pope et al. 1994; Rejmankova et al. 1995). On a 
national or regional scale, these distributions are more commonly modelled on the 
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basis of proxies for meteorological variables and/or vegetation status (Linthicum et al. 
1987, 1990; Rogers et al. 1996; Hay et al. 1998; Brooker and Michael 2000; 
Randolph 2000). Several general reviews, covering these and other studies, are 
available (Thomson and Connor 2000; Hay et al. 2006). 
 

 
 Long-standing sensors, such as the National Oceanographic and Atmospheric 
Administration’s Advanced Very-High-Resolution Radiometer (AVHRR), or the 
MODIS on NASA’s Terra satellite, are helping to bridge existing gaps in data 
availability by providing data at both moderate spatial and temporal resolutions (250–
2000 m, and daily, respectively, in the case of MODIS). Another Terra sensor, 
ASTER, provides imagery with a spatial resolution similar to Landsat and SPOT data 
(15–30 m in visible and near-infrared bands), but with a vastly superior spectral 
resolution. Commercial satellites now also provide relatively low-cost data at very 
high spatial resolutions. For example, data from Digital Globe’s QuickBird sensor has 
a spatial resolution of 0.61 m in panchromatic mode and 2.4 m in multispectral mode. 
SPOT images offer a good compromise between spatial resolution and coverage. 
Pléiades 1A (launched in 2011), Pléiades 1B (launched in 2012), and SPOT 7 
satellites (launched in 2014) deliver images at very high spatial resolution (0.5 cm and 
1.5 m).  

Box 1. Resolution in Satellite Remote Sensing 
 

Spatial Resolution (Fig. 1) 
 

The spatial resolution (pixel size) of various sensors varies enormously: 0.61–2.4 m for QuickBird, 5–
10 m for SPOT 5, 15–90 m for ASTER, 15–60 m for Landsat, 250–2000 m for MODIS. The width 
(swath) of images varies accordingly, e.g. about 25 km for QuickBird, 185 km for Landsat. Polar-
orbiting meteorological satellites have relatively low spatial resolutions and large swath widths (1.1 km 
and about 2400 km, respectively, for AVHRR), while images from Meteosat and other geostationary 
meteorological satellites have 1–8 km pixels, but comprise an entire earth half-disk. 
 

Temporal Resolution 
 

Temporal resolution is defined by the time taken for a satellite to revisit the same point in its orbit 
(repeat time). Sensors with high spatial resolutions tend to have low orbits and long repeat times, e.g. 
16 and 26 days in the case of Landsat and SPOT satellites, respectively. Since over a year’s period 
some satellites sense only a few images for a given locality, obtaining cloud-free data can be 
problematic. At the other extreme, meteorological satellites have very short repeat times (12 hours for 
AVHRR, 30 minutes for Meteosat), and obtaining cloud-free data is rarely a problem. 
 

Spectral Resolution 
 

Passive sensors detect radiation from the sun that has been reflected by the earth’s surface (as well as, 
in some cases, radiation emitted directly from earth). The amount of reflected radiation depends on the 
nature of the surface and on the wavelength of the radiation concerned. For example, vegetation reflects 
most of the radiation it receives in the green (visible) part of the electromagnetic spectrum, but absorbs 
much of infrared energy. Dry soil, on the other hand, absorbs large amounts of visible light, but reflects 
a large proportion of near infrared. The ability to use these “spatial signatures” to infer surface 
properties depends on the spectral resolution of the remote-sensing data being used. Spectral resolution 
refers to the number, width and spacing of the spectral “bands” used by the sensor. Traditionally, most 
sensors have included three to seven bands in the visible and near-to-thermal infrared part of the 
electromagnetic spectrum (0.3–14-mm wavelengths). However some new sensors, e.g. MODIS and 
ASTER, have many more, and this improved spectral resolution should increase the ability to 
distinguish between different land-cover types. 
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 By improving the accuracy and coverage, taking into consideration temporal and 
geographic requirements, current satellite imagery is ideally suited for disease/vector 
control programmes at regional, national or smaller scale. Thematic layers like 
hydrographic networks, human or animal densities, tree cover, and vegetation 
classification are available on the web and can be used for operational programmes 
(Cecchi and Mattioli 2009; Stevens et al. 2015; Nicolas et al. 2016). However, it is 
crucial to validate the various layers in the field depending on its intended specific 
use, particularly in the case of vegetation layers that should be validated depending on 
the ecology of the target insect species (Guerrini et al. 2008, 2009). 

 
3. APPLICATION AREAS FOR GIS, GPS, AND RS IN OPERATIONAL 

PROGRAMMES 
 
There is enormous potential to use powerful analytical frameworks in spatial 
decision-support systems in AW-IPM programmes, which can take decision-makers 
beyond the point of simply possessing data, information, and knowledge. 
 Individually, GIS, GPS, and RS potentially have several important roles to play at 
various stages of project planning and implementation. The following sections 
illustrate how these technologies can be used to prioritize areas for control operations 
or to optimize these operations. Several key individual stages of project planning and 
implementation are addressed, from the design of pre-intervention surveys to 
monitoring and analysing data from insect release programmes. 

 
3.1. Planning and Implementing Pre-Intervention (Insect, Disease, Host) Surveys — 

GIS-Based Modelling of Spatial Distribution of Target Insects 
 
Insect pest control programmes, integrating a combination of suppression techniques, 
require accurate, up-to-date information on the spatial and temporal distribution of the 
target insect population. A spatially-explicit analysis can bring together a wide range 
of information sources — e.g. climate data, remote-sensing data, land-use and 
topographic data, historical data on insect distribution and abundance, disease 
prevalence, etc. — that together can be used to develop modelled or empirical 
estimates of the temporal and spatial distributions of the pest or disease. The nature of 
this spatial analysis, and the data sources used for it, will reflect the stage to which 
pre-intervention planning has developed. At the very early stages of feasibility 
assessment and planning, for example, spatial modelling will focus on identifying 
areas of relatively high pest density or areas where intervention programmes have 
potentially high benefit-cost ratios (Mumford, this volume) at the national or regional 
level, using low spatial resolution data for climate and medium or high spatial 
resolution data for land cover in combination with available historical information on 
the insects and/or diseases. These maps may be adequate for planning purposes in 
cases where insect intervention programmes are implemented at the national or 
regional scale. In other cases, it may be more appropriate to use these broad 
assessments for directing more detailed modelling efforts, using higher-resolution 
geographic datasets to focus sampling of insects to specific areas of interest.  
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3.1.1. Mapping Pest Distribution on a Regional Scale 
Many published research studies have used GIS and RS to predict the distribution of 
insects on national to global scales (Hay et al. 2006; Rogers 2006). The discussion 
here is limited to work most pertinent to using the SIT in the context of AW-IPM 
programmes, most of which has focused on the spatial prediction of tsetse flies 
Glossina spp. 

The use of low-spatial-resolution satellite data to predict insect distributions dates 
back to attempts in the early 1990s to correlate the distribution of tsetse and the 
incidence of trypanosomosis to spatial variations in climate and the normalized 
difference vegetation index (NDVI) (Rogers 1991; Rogers and Randolph 1991; 
Rogers and Williams 1993). Later models also incorporated surrogates of land-
surface temperature from AVHRR satellite data, and a proxy variable for rainfall 
(cold-cloud duration) from Meteosat data. Rogers et al. (1996), for example, used 
Fourier-processed satellite data for climate and NDVI in combination with digital 
elevation data to predict the presence/absence of eight tsetse species in Côte d’Ivoire 
and Burkina Faso, with an accuracy of 67–100%.  

A similar approach, using logistic regression, has also been used to model ranges 
of tsetse species in East Africa. The modelling process relies on the logistic regression 
of fly presence against a wide range of predictor variables for a large number of 
regularly spaced sample points for each area. The predictor variables include remotely 
sensed (satellite image) surrogates of climate — vegetation, temperature, and 
moisture, which have been subjected to Fourier processing to provide an additional 
set of season- and timing-related measures for each parameter. Demographic, 
topographic, and agro-ecological predictors are also used. These models are then 
applied to the predictor imagery to produce predicted probabilities of fly distributions 
at 1-km resolution. 

In southern Africa, Robinson et al. (1997) used climate surfaces, together with 
NDVI and elevation, to model the distributions of three tsetse species in the common 
fly belt. Maximum-likelihood classification techniques yielded overall correct 
predictions of 92.8 and 85.1% for Glossina morsitans centralis Machado and 
Glossina morsitans morsitans Westwood, respectively. In Togo, Hendrickx et al. 
(2001) found that discriminant models, based on satellite data, were generally less 
successful at predicting disease outcomes in cattle (trypanosomosis prevalence or 
packed-cell volume) than tsetse abundance. 

More recently, MaxEnt models have been used extensively to predict tsetse 
suitable habitats in southern (Matawa et al. 2013) and western Africa (Bouyer et al. 
2015; Dicko et al. 2015). MaxEnt, one of the most widely used species distribution 
models, is a machine-learning method based on the information theory concept of 
maximum entropy (Elith et al. 2011). MaxEnt fits a species distribution by contrasting 
the environmental conditions where the species is present to the global environment 
characterized by some generated pseudo-absence data, also called the background. 
The logistic output gives us a quantitative indicator of the habitat preferences of the 
species in the study area (Fig. 2). In West Africa it was used, together with a friction 
model to predict the resistance of landscape to tsetse dispersal (Krafsur and Ouma, 
this volume), to identify isolated populations of Glossina palpalis gambiensis 
Vanderplank that could be potential targets for eradication. 
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High predictive accuracy in prediction models requires recent and well-distributed 
insect data to train and validate the prediction process, and assess the accuracy of the 
model output. Models based on entomological data that were collected several 
decades ago may be used for regional prioritization of tsetse and trypanosomosis 
interventions but, because of their poor sensitivity and specificity, should be avoided 
for guiding control programmes (Guerrini et al. 2009). 
 Data on insect abundance is even more sensitive because the efficiency of traps 
depends largely on environmental conditions, period of the year, experience of the 
entomological team, etc. At the continental or regional scale, it could be argued that 
the relative risk of insect presence is an adequate indicator of abundance. However, 
this assumption is not valid for smaller areas, where models require up-to-date data 
from abundance surveys. It is probable that, in these situations, the principal role of 
RS and GIS is to make prospective surveys more cost-effective (Hendrickx et al. 
1999). In Burkina Faso a large grid-based baseline data survey, implemented in 
preparation for a control programme (L. Percoma, personal communication), 
deployed 3189 traps in an area of 40 000 km2, and the data were used to develop a 
spatio-temporal model of African Animal Trypanosomosis (AAT) risk that was 
validated using parasitological data on cattle (Dicko et al. 2015; Feldmann et al., this 
volume). The model included the prediction of tsetse densities and their infection rate, 
and hence such predictions can be very useful to focus the control effort on disease 
transmission “hot spots”. 

 
3.1.2. GIS for Decision Support 
Mapping pest distribution on a regional or national scale is an important first step in 
assessing the feasibility and spatial targeting of the SIT and other area-wide control 
actions. However, technical and resource constraints may make large-scale 
operations, over the whole of the identified area of potential pest distribution, to be 
impractical or uneconomic. Therefore, specific environmental information is required, 

Figure 2. Distribution of G. p. gambiensis in West Africa. Mean habitat suitability index 
predicted by a MaxEnt model. The index varies between 0 (less suitable, red scale) and 1 

(highly suitable, green scale). (Modified from Bouyer et al. 2015, reproduced with 
permission.) 
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either to identify parameters that are linked to pest presence, or to guide future 
sampling efforts to address specific questions including levels of genetic variability, 
similarity, and diversity among target insects. 

Recently, the economic benefits to livestock keepers from intervening against 
AAT were mapped in eastern Africa (Shaw et al. 2014). The study was conducted for 
six tsetse-infested countries in eastern Africa: Ethiopia, Kenya, Somalia, South 
Sudan, Sudan, and Uganda. Cattle production systems were mapped, and herd models 
for each production system were developed, in the presence or absence of AAT. The 
differences in income between these two scenarios enabled the mapping of the 
maximum potential benefits that could be obtained from tsetse and trypanosomosis 
control. The potential benefits ranged from USD 500 per square kilometre to more 
than USD 10 000. Such models could be used to prioritize tsetse and trypanosomosis 
interventions on a regional scale when used in combination with other data layers, e.g. 
tsetse distribution and density. The models also accounted for possible restocking of 
livestock in neighbouring areas when maximum stocking rates were exceeded. 

 
3.1.3. Mapping Pest Density with a Large Spatial Resolution 
The spatial distribution of most insect pests is not uniform but patchy, and there can 
be localized pockets of high insect density, in spite of a potentially misleading low-
overall population density. It is of prime importance, for the development and 
implementation of an insect control programme, that these pockets or “hot spots” be 
located (Shiga 1991). 

Depending on the spatial scale of the heterogeneity of insect density, the climate 
and remote-sensing datasets used to predict insect distribution over wide areas may 
not be appropriate for work on larger scales. AVHRR data, for example, have a native 
resolution of 1.1 km, but are commonly resampled to derive images with 4×4 or 8×8 
km pixels. However, several studies have successfully used high-resolution spatial 
data from Landsat and SPOT satellites to identify habitats associated with high insect 
density (Rejmankova et al. 1995; Roberts et al. 1996). For tsetse flies, fine-tuned 
studies of their habitat (type of vegetation and fragmentation level) at a high 
resolution (Landsat ETM+ data with a 30-m resolution) successfully predicted their 
densities at a local scale in Zambia and Burkina Faso (Guerrini et al. 2008; Ducheyne 
et al. 2009). More recently, MODIS data (1-km resolution) were used to upscale these 
studies to a national level in Burkina Faso (Dicko et al. 2015). 

Since the spatial distributions of insect populations are not constant, but tend to 
change over time, it is important that, where possible, risk maps be dynamic rather 
than static. For example, populations of riverine tsetse flies in West Africa commonly 
expand and contract seasonally along the river vegetation and perpendicular to the 
tributaries. The use of spatial analysis incorporating multi-temporal remote-sensing 
data enabled generating a “dynamic population distribution model” to predict these 
temporal and spatial population dynamics, and to link spatial patterns with 
heterogeneity of habitat (Dicko et al. 2015). This allows a more efficient and guided 
(rather than ad hoc) deployment of sampling devices during subsequent surveys, i.e. 
the sampling devices can be deployed in those areas where there is a high probability 
of trapping or, alternatively, in areas of low probability to confirm the model). The 
implication is that, assuming an adequate geo-spatial model exists, an efficient survey 
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strategy can be developed largely from the office, and detailed implementation 
guidelines, regarding where, how, and when to deploy the sampling devices, can be 
elaborated for the field teams. This would not only ensure adequate sampling 
coverage in all ecosystems, but also prevent the deployment of too many sampling 
devices in unproductive or unrepresentative sites, unnecessarily increasing project 
costs (Bouyer et al. 2010).  

The availability of temporal and spatial distribution models of the target insect 
populations on a large spatial scale has implications beyond the design of efficient 
sampling frames. In particular, such models can facilitate a more-efficient deployment 
of suppression tools and also a better-targeted release of sterile insects (Dicko et al. 
2014). This would also enable simulating combinations of strategies like successive 
or simultaneous use of insecticide targets and the SIT to identify the most effective 
strategy (S. L. Peck, personal communication). This increased efficiency should also 
translate into considerable economic savings in terms of logistics, personnel and 
sterile insects.  

 
3.2. Development and Implementation of Appropriate Insect Suppression and  
 Sterile Male Release Programmes 
 
3.2.1. Selection of Appropriate Suppression Methods 
Since the release of sterile insects is only efficient when they sufficiently outnumber 
the native insects, the SIT is more cost-efficient with a reduced density of the target 
population (Dame 1971). The density of untreated insect populations is usually too 
high, and needs to be reduced prior to the mass-release of sterile insects. Depending 
on the target insect, a variety of pre-release population suppression methods are 
usually available (Mangan and Bouyer, this volume), but their usefulness, 
appropriateness, and effectiveness will be determined by the characteristics of each 
target area or local situation. Pending the availability of suitable data layers 
(demography, land use/land cover, vegetation classification, distribution of target 
insect, etc.), spatial analysis can assist with the decision to select the most appropriate 
suppression method for a given target zone. This is demonstrated by the following 
examples for the suppression of tsetse fly populations in AW-IPM programmes:  
 Sequential Aerosol Technique (SAT). The SAT involves the application of non-

residual ultra-low-volume insecticides by fixed-wing aircraft or helicopter (or 
from vehicles using hot and cold fogging). The goal is to kill adult tsetse flies in 
the first spraying cycle by direct contact with insecticide droplets, and then kill 
emerging flies in five subsequent application cycles before the emerged flies can 
deposit larvae (Allsopp 1984). In view of the sensitivity and susceptibility of the 
SAT technique to topography, wind velocity and direction, temperature inversion, 
etc., a spatial analysis can provide information on the suitability of the target zone 
in terms of: (1) topography (the application of the SAT becomes problematic 
when the terrain becomes mountainous), (2) habitat and vegetation cover 
(correlation analysis between the vegetation density and the propensity of 
insecticide droplets to penetrate the tree canopy, to make predictions on the 
vertical dispersal rate of insecticide droplets in various vegetation types), and (3) 
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wind velocity (using climatic models to predict the dispersal and distribution 
patterns of insecticide droplets in each particular situation). In the eradication 
programme against Glossina morsitans centralis in Botswana (Kgori et al. 2006), 
GIS not only enabled the close alignment of flight swaths to assure full coverage 
of the target population in the spraying areas, but were also used to develop the 
monitoring system that demonstrated the successful outcome of the project. 

 Live-Bait Technology. In this technique, residual insecticides are applied to host 
animals that attract tsetse flies, which are killed on contact with the insecticide 
(Bauer et al. 1992). The technique is efficient and cost-effective, provided the 
density of the livestock population in the target area (if livestock is the main host) 
is sufficiently high. The distribution of animal herds is generally heterogeneous in 
space, and GIS can help identify areas where additional control tactics such as 
targets and traps are necessary to control the target population (Kagbadouno et al. 
2011; Adam et al. 2013).  

 Stationary-Bait Technology (insecticide-impregnated targets and traps). Tsetse 
populations can also be suppressed by deploying artificial stationary devices, 
which attract tsetse flies (Green 1994). The flies will be killed either upon making 
contact with the surface area of the target/trap (which is impregnated with a 
residual insecticide) (Laveissière et al. 1980) or when retained in a no-escape 
device (Dransfield et al. 1990). A spatial correlation analysis, using demographic 
data layers and tsetse population distribution models, can indicate how efficient or 
suitable this technology is in specific areas. 

 
3.2.2. Models to Predict Outcome of Different Suppression Scenarios 
Each area targeted for control will in most cases be heterogeneous, in terms of 
composition of the habitat (land use and land cover), vegetation cover and species 
composition, host (e.g. livestock and agricultural crops) distribution, demography, 
topography, etc., which will demand an integration of different suppression methods 
(Vreysen 2001; Mangan and Bouyer, this volume). Spatial analysis can be used to 
model the effect of various combinations of methods on the insect population, and 
assist in the decision to select the best combination (Kagbadouno et al. 2011; Adam et 
al. 2013). 

 
3.2.3. Implementation of Suppression and Sterile Male Release Programmes 
Aside from providing decision-support in the development and implementation of 
surveys, optimizing the suppression phase, and modelling the outcome of various 
suppression scenarios, GIS tools can assist in the actual implementation of 
suppression programmes, including sterile insect releases. A geo-spatial model, e.g. 
developed in the programme against G. p. gambiensis in Senegal to guide the 
distribution and density surveys, can be exploited to inform decisions on how a 
suppression strategy can be implemented. For example, spatial analysis can provide 
decision-support to select appropriate sites to deploy insecticide-impregnated traps 
and targets in tsetse suppression programmes, and ensure that the required target/trap 
density per surface unit is achieved with respect to vegetation type, topography, insect 
distribution, and other relevant factors (Fig. 3 and Box 2).  
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Figure 3. GIS and spatial modelling to optimize the tsetse eradication project in the Niayes 

region of Senegal. (a) Optimization of the integrated control strategy using model predictions. 
A MaxEnt model predicted suitable habitats for G. p. gambiensis (sensitivity 0.96, specificity 
0.57). Block 1 - suitable habitats delimited two polygons for aerial releases (RL1 and RL2) 
where the minimum numbers of sterile males released per km2 were 24 and 11, respectively. 

Chilled adult tsetse flies were released with a Mubarqui smart release machine in a gyrocopter 
(upper left) from the Kalahari aerodrome. Block 1 - green and grey lines show the track flying 
records on 14.04.2014 in RL1 and 11.04.2014 in RL2, respectively. Block 2 – for population 
suppression 1347 insecticide-impregnated traps were set from December 2012 to February 

2013 in the predicted suitable sites (blue lozenges). (b) Optimization of the monitoring system 
(biconical traps, upper left) using MaxEnt model predictions. Blocks 1 and 2 - 23% of the traps 

(black squares) deployed in the closest suitable patch. Blocks 3 and 4 (monitoring not yet 
started) - theoretical positions of the traps (black lozenges) suited to model predictions. Black 
arrows show displacements of traps following model predictions. (Modified from Dicko et al. 

2014, reproduced with permission.) 
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Box 2. Past and Current Applications of GIS in Area-Wide Integrated Pest Management 
Programmes that Include the SIT 
 

The GIS/RS, as a decision-support tool in AW-IPM programmes integrating the release of sterile 
insects, has been used to spatially display data, and to plan, implement and evaluate programmes. AW-
IPM programmes using the SIT against fruit flies are among the most successful programmes against 
major insect pests, and these programmes rely on the advanced use of GIS. In programmes against the 
Mediterranean fruit fly Ceratitis capitata (Wiedemann), such as the programme in Argentina, the 
“Moscamed” programme in Guatemala/Mexico, and the prevention programmes in California and 
Florida (Enkerlin, this volume), GIS/GPS/RS are mainly used to:  
 

 Provide navigational guidance in the release of the sterile insects, and to provide “real-time 
tracking” using commercially available satellite navigation/flight recorders.  

 

 Map and visually display the various trapping sites and monitoring routes.  
 

 Select trapping sites, using a grid layer over topographical maps or satellite imagery, and 
associating the trapping site with host and topographical features and their attributes.  

 

In addition, the “Moscamed” programme in Guatemala/Mexico is using GIS as a major component 
of various studies on: (1) fly performance in relation to altitude, wind velocity, habitat, etc., (2) “hot-
spot” areas (where the pest persists over time despite intense efforts to suppress it), (3) insect behaviour 
in relation to the timing of release (afternoon, night, or morning), and (4) changes in the dispersal 
behaviour of sterile insects over time (P. Gomes, personal communication).  
 

GIS/RS were also used in AW-IPM programmes against the New World screwworm Cochliomyia 
hominivorax (Coquerel). In Panama, GIS/RS were used to identify different vegetation types, and 
correlate the spatial and temporal distribution of screwworms with the various vegetation covers in a 
tropical environment. After classifying the forests based on tree height, structure, and species 
composition, the highest screwworm population density was found during the transition period from the 
wet to the dry season, and in forest habitats as opposed to open areas (Phillips et al. 2004). These data 
were used to more efficiently deploy monitoring tools in habitats favoured by screwworms, which 
could lead to earlier detection of low densities of screwworm populations, or possibly earlier control of 
outbreaks. The study clearly showed that GIS/RS can be used to improve trap placement by identifying 
areas of high screwworm activity. The method was applied in early 2003 to develop a trapping strategy 
after the accidental outbreak of the screwworm at the screwworm facility in Chiapas, Mexico (Phillips 
et al. 2004). Using GIS/RS techniques, optimal trapping sites were selected, which represented a 
reduction of 79% of the original trapping sites, i.e. considerable savings in terms of personnel and 
logistics.  
 

A recent example of using GIS and spatial modelling for planning, implementing and evaluating an 
AW-IPM program with an SIT component is the tsetse eradication programme in Senegal. In this 
programme suitable tsetse habitat was identified using a supervised classification during the feasibility 
phase, which reduced by 94% the required sample area to identify the distribution limits of target 
populations (Bouyer et al. 2010). Thereafter, these technologies were used during the pre-operational 
phase to assess the survival, mortality, and competitiveness of sterile males during pilot release trials. 
Finally, the method to identify suitable habitats for G. p. gambiensis was optimized and improved by 
RS techniques that were based on a MaxEnt population distribution model (Dicko et al. 2014). Using 
this model the number of traps per km² needed to suppress tsetse populations was reduced by >95%. 
The model was also used to determine the densities of sterile males to be released in the target area, i.e. 
10 sterile males per km² if the habitat was unsuitable, 100 sterile males per km² if it was suitable. The 
releases were done using an automatic chilled-adult release device that was parameterized with the GIS 
during the flights. Finally, it improved the sensibility of the permanent monitoring system by locating 
the fixed monitoring sites in the most suitable places (Fig. 3). 
 



718 J. BOUYER ET AL. 
 

 

The uniform application of certain suppression measures (e.g. bait sprays for fruit 
flies, SAT for tsetse flies) over a heterogeneous pest distribution target area can have 
negative implications, both in terms of cost and environmental impact, since habitats 
may be contaminated by unnecessary applications of insecticide (Papadopoulos et al. 
2003). Navigation/recording systems (such as Trimble’s TrimFlight 3 Ag-GPS 
system or SATLOCK’s AirStar system), which guarantee the correct application of 
the insecticides during aerial application, and ensure that fuel and materials are used 
efficiently, have been used for years in several fruit fly AW-IPM programmes that 
release sterile flies. Using these systems facilitates precise guidance, automated 
recording of covered areas (maximum efficiency, minimum overlap, and skips 
(omission of areas), identification and remedy of skips before leaving the operational 
area (avoiding costly call-backs), waypoint navigation, mapping capabilities, and 
control of insecticide-flow and sterile insect release rates (depending on pest 
distribution and density) based on ground speed. This eliminates the need for time-
consuming and costly ground markers, such as beacons or flaggers. The system is 
compatible with a wide range of GIS software packages, and enables applications to 
have better than 1-m accuracy.  

In many programmes that include the release of sterile insects, these are released 
at a constant dispersal rate (i.e. a uniform density per surface unit). As a consequence, 
insufficient overflooding ratios might result in areas of high native-insect population 
density, whereas more sterile insects than necessary might be released in areas of low 
native-insect population density (Vreysen, this volume). GIS and spatial analysis can 
provide guidance on spatial sterile insect requirements and dispersal patterns, in 
relation to wild insect population densities, habitat, elevation, etc. in a dynamic way 
(i.e. data layers on the target insect distribution are updated regularly or spatio-
temporal models of insect densities are used (Dicko et al. 2015)). This will result in a 
much more efficient use of sterile insects. In addition, commercially available satellite 
navigation/flight recorder systems, e.g. Ag-Nav, provide real-time tracking, and can 
visually display the areas that were treated with sterile insects (or have been left out), 
and at which altitude insects were released (to ensure a proper spread). This permits 
proper feedback to programme managers (Dowell et al., this volume).  

An example of a new automatic release system is the Macx System (Mubarqui 
group); it has been used routinely in fruit fly control programmes. It is linked to GIS 
software installed on tablets on board the aircraft. These systems ensure an efficient 
use of the sterile insects available as they automatically start and stop the releases of 
sterile males when entering or leaving the release areas (Fig. 4a), but also because 
they can adapt the sterile male release density to that of certain vegetation types, 
topography or density of the wild populations (Mubarqui et al. 2014). (For example, 
in Valencia, Spain, the rate of releasing sterile Mediterranean fruit flies is 
automatically adjusted according to the ripening period of citrus varieties in the target 
area (R. Argilés Herrero, personal communication)). The software provides automatic 
reports of the flights by uploading the data to an online relational database once the 
aircraft is back at the airport, or even in real time using a Global System for Mobile 
Communications (GSM) connection. 
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Figure 4. Optimization of area-wide fruit fly control in Mexico using the Macx System. (a) 
Parametrization of the sterile male releases of Anastrepha ludens (Loew) near Padilla, Tamps, 
on 10 July 2016. Release polygons are shown as green rectangles, theoretical release lines as 

pink lines, and tracks of the actual flying/release lines as orange-coloured spheres. (b) 
Monitoring results of A. ludens on week 28 of 2016 near Rio Verde, San Luis Potosí. Release 
polygons are shown as green rectangles, traps with catches of only sterile males as symbolic 

green flies, traps with catches of mixed sterile and wild males as yellow flies, traps with catches 
of only wild males as red flies, and traps without captures as black circles. (Reproduced with 

the permission of the Mubarqui group.) 
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3.3. Monitoring Suppression or Release Programmes 
 
Monitoring is an essential component of any AW-IPM programme (Vreysen, this 
volume). However, monitoring is time-consuming, and requires considerable funds 
for materials, logistics, and personnel. A careful balance must be found between 
“cost-efficiency” and collecting “reliable data”. In most AW-IPM programmes, in 
view of the size of the target areas, monitoring (direct and indirect) must be restricted 
to carefully selected representative sites. Spatial analysis can assist in identifying and 
selecting appropriate reference or fixed monitoring sites (FMS). The concept of FMS 
was developed and used during the monitoring activities of the AW-IPM programme 
in Zanzibar, Tanzania, against the tsetse fly Glossina austeni Newstead, albeit without 
any GIS support (Vreysen et al. 2000; Vreysen, this volume), and was also used in the 
eradication programme of G. p. gambiensis in Senegal (Box 2). 

From a pragmatic standpoint, it is important that all avenues of increasing the 
efficiency of trap-based monitoring systems are explored. Technologies that assist in 
the rapid transfer of data from the field to GIS are a key element of such systems. For 
example, in the codling moth AW-IPM programme in British Columbia, Canada, a 
GIS-based system is used to monitor a network of georeferenced traps. A bar-coding 
system is employed, in which the time and date that traps are monitored is 
automatically recorded, along with data on trap catch entered manually during a trap 
check (Dyck et al. 1993). These data can then be uploaded to the main project 
database via modem, facilitating the rapid output of electronic maps showing trap 
data. 

Area-wide pest control activities can also use geostatistical analysis routines to get 
“better value” out of available trap data. A range of spatial analysis techniques, 
employing both geostatistics and GIS, may be valuable for analysing insect 
population processes at a landscape scale (Liebhold et al. 1993). Of these, one 
possible analytical technique is “kriging” — an interpolation procedure that relies on 
an autocorrelation function (the variogram) to provide weighting of nearby points 
used in the estimates. Kriging is ideally suited to the analysis of trap data, with 
interpolated output taking the form of contour maps or density surfaces of insect 
densities.  

Such an approach has been used to monitor and predict populations of the spruce 
budworm Choristoneura fumiferana (Clemens), an important defoliator of trees in 
boreal forests in North America. Using kriging as a basis, Lyons et al. (2002) 
developed a set of software tools to produce interpolated estimates, using data from a 
pheromone-trapping network covering much of Canada and north-eastern USA. 
Output from the software system can be reclassified in a variety of ways, using GIS to 
provide maps that address particular management concerns. For example, maps are 
routinely produced that display areas where moth densities exceed a critical threshold, 
and hence where conventional larval sampling activities need to be initiated. Change-
analysis approaches are also used to create difference maps for consecutive years 
which, when reclassified, highlight areas of increasing, decreasing and stable moth 
populations. Kriged map surfaces have also been used as variables which, when 
combined with historical data on defoliation and defoliation frequency, have been 
used to successfully predict levels of defoliation in the following year. 
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 In the wider context of commercial crop decision-making, this type of approach 
has been taken a step further. In several states in the USA, integrated systems of 
insect and weather monitoring have been developed, providing estimates of insect and 
disease risk in near real-time. These systems, described by Thomas et al. (2002), use a 
network of georeferenced automated weather stations, which utilize radio telemetry to 
send data — on temperature, relative humidity, precipitation, and other 
meteorological parameters — every 15 minutes to a central processing centre. These 
data form the basis of Internet-based, daily estimates of weather and disease-risk 
related parameters (including insect degree-day maps), in addition to risk maps for 
specific diseases such as powdery mildew and Botrytis spp. 
 Another example of the use of GIS for monitoring is the Moscamed Programme in 
Mexico. This successful containment programme includes a trapping network of 
24 760 georeferenced traps (14 710 in Chiapas and 10 050 in the rest of the Mexican 
States) (Enkerlin et al. 2015). Data of adult captures, including sterile and wild flies, 
enable the assessment of relative population density and ratio of sterile to wild males 
in space and time (Fig. 4b). A new system called "sabueso" has recently been 
developed by the Mubarqui group in Mexico, which represents a relevant advance in 
technology for capturing the information from the field in real-time from the trapping 
network. The system is installed in low-cost smartphones, and allows the monitoring 
teams who are seeking the larvae and outbreaks to report their observations in real-
time to the team in charge of mechanical control. The same information is available in 
maps similar to Fig. 4b, enabling easy queries and analyses by management teams 
while optimizing economical and human resources. 

 
3.4. Data Analysis 
 
Area-wide insect pest control programmes generate a large amount of entomological 
and other related data, not only during baseline data collection and feasibility surveys 
but also during the monitoring of suppression and release activities (Dyck, Reyes 
Flores et al., this volume; Vreysen, this volume). It is a real challenge to manage data 
efficiently, analyse and interpret the results in a timely manner, and provide 
programme managers with consolidated data in a suitable format. The GIS unit of any 
pest control programme, if linked to a relational database, provides an ideal medium 
for the storage and analysis of data, and it can greatly facilitate their interpretation. 
Adequate feedback to programme managers is a prerequisite for sound decision-
making. The complexity and diversity of data accumulated during a control 
programme, requiring proper spatial analysis, are typified in the following examples: 
 Data derived from initial surveys. 

 Temporal and spatial fluctuations in:  
o  Population distribution (immature and adult stages) 
o  Population density  
o  Population structure (composition -- immature and adult stages)  
o  Disease prevalence or infestation level in hosts. 

 Data derived from monitoring suppression activities. 
o  Temporal and spatial changes in population distribution due to the application 

of the suppression methods  
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o  Temporal decline in the density of the target pest population in relation to 
different ecosystems  

o  Temporal changes in population structure (due to increase in mortality rates) in 
relation to different ecosystems.  

 Data derived from monitoring sterile insect releases. 
o  Spatial and temporal fluctuations in the ratio of sterile to wild insects  
o  Spatial and temporal fluctuations in the rate of induced sterility in the native 

insect population.  
Spatial correlation analysis using these variables will contribute to modelling the 
competitiveness of released insects in relation to habitat, host 
abundance/distribution, climatic variables, etc. Obtaining spatial and temporal 
data on sterile insect competitiveness is one of the most important features of any 
AW-IPM programme that releases sterile insects.  
o  Spatial and temporal fluctuations in the recapture rate of insects in traps, 

damage to hosts, disease patterns, etc.  
These data can be correlated with the release rate of sterile insects over the release 
grids, and then models developed on the mobility, dispersal characteristics 
(Vreysen et al. 2013), and spatial occupation of the sterile insects in different 
vegetation types, etc. It can also be used to assess whether sterile males are 
aggregating in the same ecological niches as wild males -- to ensure appropriate 
sterile to wild male ratios throughout the control area (Vreysen et al. 2011). 

 The results of a spatial analysis of a suppression and release programme can 
provide answers on issues such as the adequacy of deployment of suppression devices 
(sufficient number, adequacy of spread, efficiency, level of damage, timeliness of 
replacement of the suppression methods, etc.), and the appropriateness of sterile 
insect release operations (e.g. coverage of the proper block, flight at the proper 
altitude, possibility that insects were blown into nearby bodies of water, influence of 
wind, delivery of sterile insects so that they find and concentrate at the same locations 
as wild insects, etc.). They can also be used to implement spatio-temporal models that 
enable the testing of various control scenarios and then using the most appropriate 
one (S. L. Peck, personal communication). 

 
3.5. Support for Sterile Insect Quality Control 
 
Frequent monitoring of the performance of sterile insects (i.e. insect quality) in the 
field is an important, although often neglected, component of AW-IPM programmes 
that integrate the SIT (FAO/IAEA/USDA 2019). Parameters such as survival, 
mobility, dispersal characteristics, and spatial occupation of the habitat significantly 
influence the field performance or the competitiveness of released insects (Lance and 
McInnis, this volume; Parker, Vreysen et al., this volume; Vreysen, this volume). The 
values of these parameters may change over time, and are affected by host 
availability, vegetation cover, vegetation species, altitude, etc. GIS and spatial 
modelling can be used to predict these temporal and spatial changes in insect quality, 
and thus assist in developing remedies and timely adjustments in an intervention 
programme. As an example, swaths of flight release lanes are inherently linked to the 
dispersal capacity and mobility of the released insects, whereas their average survival 
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determines the release frequency (Hendrichs, Vreysen et al., this volume). Models can 
be developed to correlate sterile insect survival with host availability, vegetation 
cover, etc. to assist in regularly adjusting the dispersal rate of insects in relation to 
space (e.g. more frequent releases in those areas where survival is low). In addition, a 
spatial and temporal analysis of the dispersal characteristics offers opportunities to 
assess whether this parameter is changing with the length of time that the insects have 
been colonized in the rearing facility (Parker, Mamai et al., this volume).  

There is great potential for GIS to support the assessment of the quality control of 
released insects, particularly with regard to: (1) comparing the performance 
(competitiveness, mobility, dispersal, survival) of sterile insects derived from 
different strains, (2) studying the effects of releasing flies using different release 
systems, or at different altitudes, over different topographies (e.g. canyons), at 
different wind velocities, etc., and (3) analysing hot spots or reservoir areas where the 
pest persists in spite of intense actions to suppress the population.  

 
3.6. Barriers to Using GIS 
 
After the 1990’s GIS became more available and accessible to the general public, and 
the further development and diffusion of GIS have made available a large amount of 
information from different sources. The cost of acquiring primary data (such as 
satellite remote-sensing data) has decreased considerably, and many satellite data are 
now freely available on the Internet. RS images and derivative products (vegetation 
indices, rainfall indices, etc.) are now available at different levels of geometric pre-
processing, thus facilitating their use by non-experts. 

Today, the barriers to successful GIS development are significantly lower than 
they were in the past. The costs of hardware are now relatively low, while most 
software and data are free. Perhaps most significantly, GIS software is becoming 
increasingly accessible to non-specialists; non-geographers, after receiving 
appropriate training, can now carry out many GIS procedures without specialist 
support (although this does not completely eliminate the need for expert input; note 
comments below under “GIS expertise”).  

These advances, however, do not mean that potential barriers or pitfalls no longer 
exist. Several considerations need special attention, particularly when working in the 
context of a developing country, if a GIS endeavour is to be successful (BESR 2002). 
These considerations include:  
 Technical limitations. Limits in the accessibility of spatial data, such as 

inadequate telecommunications infrastructure, limited bandwidth or data storage 
capacities, and low Internet connectivity in certain countries, may hamper efforts 
to rapidly process and output GIS data. 

 GIS expertise. Trained and experienced experts in GIS are often in rather short 
supply, particularly in developing countries. The increasing accessibility of GIS 
software does not obviate the need for input from appropriately trained operators. 
Technical issues around data capture and integration can be non-trivial, as are 
procedures for image processing. Decisions regarding accuracy and permissible 
levels of data generalization also require relevant experience on the part of the 
GIS operator. 
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 Maintaining consistency. In many instances, AW-IPM programmes are 
implemented over large geographical areas, i.e. on a national or regional scale, 
employing various field teams in a series of sub-programmes, each attached to a 
particular country, zone or region. Agreements must be reached on compatible 
GIS formats, standardized methods of data collection, and data resources. These 
need to be kept consistent throughout the life of a project. 

 Administrative challenges. It can be a real challenge to easily gain access to 
available data because of unawareness about data request procedures on the part 
of government officials, complicated protocols for requesting government data, a 
variety of data standards making the sharing of data difficult, and complications 
due to copyright and distribution issues.  

 Pre-processing GIS and RS data. This step is often the most time-consuming task 
in any project involving such data. Based on the data considered in the analysis 
and particularly for RS data, some pre-processing steps must be applied to make 
the data usable for further analysis. The most common pre-processing methods for 
RS data are corrections (radiometric and geometric corrections) that seek to 
minimize distortion caused by satellite sensors. Furthermore, image enhancement 
methods such as noise removal or filtering may also be applied to RS data prior to 
the analysis. Finally, other operations such as georeferencing and mosaicking 
(combining multiple images) can also be used before analysis. 
It is important that, at all stages of GIS development, a dialogue between those 

responsible for designing and maintaining a GIS system, and those whose principal 
interest is the output of the system, begins at the start of the planning process, and 
continues throughout the life of a project. GIS operators need to realize that many 
decision-makers, in developed and developing countries, have no experience with 
GIS and other spatial decision-support tools, and thus do not appreciate the potential 
in using geographic information, or the technical issues involved in setting up and 
maintaining GIS. 

In this context, one essential message must be conveyed — the development of 
GIS requires careful planning, and often a substantial time-commitment. In a previous 
section (2.1.) of this chapter, GIS were defined as systems for capturing, cleaning, 
integrating, storing, retrieving, analysing, and displaying mapped information and 
data. These functions can be broadly seen as a series of operations that describes the 
data stream from the original source to a final map or output. The initial stages of this 
process (up to the point of storing the data) can be extremely time-consuming, and 
therefore it is important that GIS are designed to meet the needs of the various end 
users, and to include as little redundant information as possible. Once data have been 
integrated into GIS, it is possible to perform a wide range of spatial analyses on them 
at very little cost.  

 
4. CONCLUSIONS 

 
In ecology and epidemiology, GIS, GPS, RS, and spatial modelling are increasingly 
used as a complementary set of spatial tools for project planning, implementation, and 
evaluation. A GIS-centred approach offers many potential advantages to the area-
wide application of the SIT and other control methods, as a decision-support tool in 
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the day-to-day management of AW-IPM programmes. In the past, GIS have been 
applied mainly by academics as an end in itself, or at best as a research tool analysing 
correlations between different parameters to select priority areas where pest 
elimination would result in the highest socio-economic impact. More recently, GIS 
have been used as a tool for planning, implementing, optimizing, and evaluating SIT-
based operations.  

GIS also facilitate the overlaying of a variety of data coverages, e.g. climate, land 
use, drainage, etc., to identify factors that may explain the spatial and temporal 
patterns of insects and/or diseases. Using appropriate spatial analytical approaches, 
GIS can be used to identify and map the habitat of insect species and their 
relationship to cropping areas or human and animal populations. In this way, it is 
possible to generate maps indicating the risk of pests or diseases on a variety of 
spatial scales, and to monitor, in space and time, integrated information on insect 
population dynamics, ecological and meteorological conditions, and the incidence of 
disease or crop damage. 

AW-IPM programmes that include the release of sterile insects are, because of the 
interdependence of their many linked components, inherently complex; the collapse 
of one component might jeopardize the successful outcome of the entire programme. 
The success of such a programme depends mainly on aspects related to: (1) the 
quality of the sterile insect (e.g. sexual competitiveness of the irradiated and released 
insects, survival, mobility, dispersal characteristics, etc.), (2) the management of the 
release programme (e.g. timely delivery of insects, appropriate placement of the 
insects in the natural habitat, uninterrupted supply of sufficient sterile insects, etc.) 
(Dowell et al., this volume), and (3) the implementation of related programme 
components (e.g. adequate suppression of the native-insect population, relevant public 
relation campaigns, ample collaboration with the livestock/crop industry and other 
stakeholders, etc.) (Dyck, Regidor Fernández et al., this volume; Mangan and Bouyer, 
this volume). Programme managers need to keep a comprehensive overview of all 
these essential programme components and their outcomes, almost on a daily basis, 
and GIS provide an ideal tool to analyse and display data from these multifaceted 
programmes. Close collaboration between programme entomologists, and SIT and 
GIS experts and modellers, will be a prerequisite to fully exploit the potential of GIS 
and spatial modelling as decision-support tools, and to render AW-IPM programmes 
using the SIT much more efficient and cost-effective.  
 To make GIS/RS more applicable, programme managers must get access to all 
available data layers (administrative boundaries, soil types, crops, meteorological 
data, satellite imagery, vegetation cover, etc.). GIS technicians and modellers can, in 
many instances, produce data layers that are not available or are missing, e.g. by 
digitizing topographical maps and implementing supervised classification to map the 
landscape cover or even insect distribution models. Also, the establishment of global 
networks to enhance research collaboration, data sharing, and the pooling of common 
resources, e.g. via the development of special websites, can greatly facilitate the 
development potential of GIS. Regarding the day-to-day implementation of the 
various programme components, all data sets on the target insect (survey data, 
monitoring data, etc.) and related aspects (crop damage, disease incidence, etc.) must 
be georeferenced and entered into relational databases that are compatible with, and 
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can easily be linked to, GIS software (e.g. using ACCESS-based databases rather than 
EXCEL spreadsheets), allowing straightforward summaries and queries. Finally, 
standardized data collection, continuous flow of data files to a central location, and 
increased understanding of the basics of GIS by programme managers, are additional 
prerequisites to exploit GIS to their full potential in AW-IPM programmes.  
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