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Abstract— Extensive research studies have been conducted
in recent years to exploit the complementarity among multi-
sensor (or multi-modal) remote sensing data for prominent
applications such as land cover mapping. In order to make a
step further with respect to previous studies which investigate
multi-temporal SAR and optical data or multi-temporal/multi-
scale optical combinations, here we propose a deep learning
framework that simultaneously integrates all these input sources,
specifically multi-temporal SAR/optical data and fine scale optical
information at their native temporal and spatial resolutions.
Our proposal relies on a patch-based multi-branch convolutional
neural network (CNN) that exploits different per source encoders
to deal with the specificity of the input signals. In addition, we
introduce a new self-distillation strategy to boost the per source
analyses and exploit the interplay among the different input
sources. This new strategy leverages the final prediction of the
multi-source framework to guide the learning of the per source
CNN encoders supporting the network to learn from itself.
Experiments are carried out on two real world benchmarks,
namely the Reunion island (a french overseas department) and
the Dordogne study site (a southwest department in France)
where the annotated reference data were collected under op-
erational constraints (sparsely annotated ground truth data).
Obtained results, providing an overall classification accuracy
of about 94% (resp. 88%) on the Reunion island (resp. the
Dordogne) study site highlight the effectiveness of our framework
based on CNNs and self-distillation to combine heterogeneous
multi-sensor remote sensing data and confirm the benefit of multi-
modal analysis for downstream tasks such as land cover mapping.

Index Terms—Multi-sensor, multi-temporal and multi-scale
remote sensing, convolutional neural networks (CNNs), self-
distillation, land use and land cover mapping, sparsely annotated
data.

I. INTRODUCTION

NOWADAYS, a plethora of satellite missions continuously
provides remotely sensed images of the Earth surface via

various modalities (e.g. SAR or optical) and at different spatial
and temporal scales. Therefore, the same study area can be
effectively covered by rich, multi-faceted and diverse infor-
mation. In particular, with the advent of the European Space
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Agency’s Sentinel missions [1], a set of quasi-synchronous
SAR and optical data is systematically made available over
any area of the planet’s continental surface at high spatial
(order of 10m) and temporal (an acquisition up to every
five/six days) resolution. The remote sensing community has
been focusing its efforts for a while now to demonstrate the
benefit to combine the multi-modal information provided by
such sensors [2].

With particular emphasis on land use and land cover
(LULC) mapping, recently, the community is investigating
the potential of deep learning (DL) approaches to integrate
complementary sensor acquisitions available on the same study
area [3] with the aim to leverage as much as possible the
interplay between input sources exhibiting different spectral as
well as spatial content to ameliorate the underlying mapping
result.

Differently from standard and/or legacy approaches devoted
to remote sensing data fusion [2], [4] where, firstly each source
is processed independently to extract additional information
(i.e. indices in the context of optical data), secondly a ma-
chine learning approach is still deployed (independently) for
each source and, finally, a voting schema is applied on the
output of each source-specific method in order to get the
final prediction; deep learning methods have the ability to
directly work with raw signal data avoiding intermediate steps
(i.e. data harmonization or spatial/temporal resampling) and
automatically deal with the process of source combination in
an end-to-end manner.

In the works presented in [5], [6], panchromatic and mul-
tispectral bands at different spatial resolutions are directly
combined to provide LULC mapping at the finest resolution.
Recently, Hong et al. [7] proposes to fuse together multispec-
tral LIDAR with hyperspectral optical information for urban
land use and land cover classification.

Considering multi-modal remote sensing classification,
when at least one of the sources depicts a satellite image time
series (SITS), Kussul et al. [8] and Ienco et al. [9] combine
together SAR and optical SITS with the aim to leverage the
complementarity between active and passive sensors. More-
over, Benedetti et al. [10] and Gadiraju et al. [11] propose
to combine multi-temporal and single date very high spatial
resolution (VHSR) optical data with the objective to jointly
exploit multi-temporal and multi-scale information.

The majority of DL-based multi-modal approaches pro-
posed in remote sensing literature mainly involves two dif-
ferent sources as input. This is especially the case when SITS
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Fig. 1. Location of the Reunion island study site. The RGB composite is the VHSR SPOT-6 image. The corresponding ground truth is shown on the right.

data are leveraged in the analysis (SAR with optical and optical
multi-temporal/multi-scale).

Here propose a patch-based Convolutional Neural Network
(CNN) framework to cope with the combination of SAR and
optical SITS data as well as Very High Spatial Resolution
(VHSR) optical imagery to support real-world operational
LULC mapping under sparsely annotated ground truth data
scenario where three different input sources as combined
together to ameliorate the underlying land cover mapping
process.

The goal is to produce the mapping of a study area from a
limited set of per LULC class samples on the same area [12],
[13], [14]. Furthermore, in order to get the most out of the
interplay among multi-modal information, we design a self-
distillation strategy [15], [16] in which per source encoders
are optimized considering the final multi-modal classification
output. In this way, we allow the DL model to learn from
itself. More in detail, we enable the network architecture
to distill knowledge from deeper layers (the output of the
model) to shallow layers (the per source encoders) with
the aim to steer the learning process associated to lower
levels of the network. While this process has recently getting
attention in computer vision to strength the performance of
standard CNN frameworks [17] for mono-source analysis, it
is still unexplored in the context of multi-modal (or multi-
source) image classification. To assess the effectiveness of the
proposed framework, we consider two real-world benchmarks,
namely the Reunion island (a French overseas department
located in Indian Ocean) and the Dordogne study site (a
southwest department in France) both involving highly sparse
ground truth data obtained by means of field campaigns and
institutional surveys (see Fig.s 1 and 2). Our framework adopts
CNNs as per-source encoders since they are consolidated
strategies to deal with VHSR image and, recent studies (e.g.

[8], [18], [9], [19]) have highlighted that such models are even
competitive for multi-temporal information such as SITS data.

When dealing with real-world LULC mapping in an op-
erational setting, the collected GT is generally sparse due to
human-effort and cost constraints [20], [21], [22]. This means
that a limited number of polygons (in terms of surface with
respect to the study site) is annotated by field experts with the
aim to have samples covering the whole study area without
taking care to highlight possible spatial correlations among
classes (class polygons are far away from each other). For
instance, Fig. 1 depicts a study area characterized by sparse
GT data. In the extract to the right of the figure we clearly
observe that only a small portion of the area is labelled and
polygons are spatially sparse. Matter of fact, the most common
GT data collection protocol in operational settings prevents
the use of standard semantic segmentation approaches [23],
[24], [25] widely adopted in the computer vision commu-
nity, since semantic segmentation strategies require densely
annotated patches on which the model is trained on (each
pixel should be associated to a label information). For this
reason, when sparsely annotated data are considered, patch-
based approaches are usually preferred [26], [9], [13]. For
more details about patch-based and semantic segmentation
approaches, the interested reader can refer to [27].

To summarize, the contributions of our work are:

• A patch-based multi-branch CNN framework to deal
with multi-modal remote sensing land cover mapping
considering simultaneously three different input sources:
SAR/optical SITS and VHSR optical imagery;

• A new self-distillation strategy to transfer knowledge
from deeper layers (the output of our model) to shallow
ones (the per source encoder layers) with the aim to boost
the final classification performances of our multi-modal
framework;
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Fig. 2. Location of the Dordogne study site. The RGB composite is the VHSR SPOT-6 image. The corresponding ground truth is shown on the right.

• An in-depth experimental study to characterize the inter-
play among the different input sources. The same study
also underlines that the proposed framework is capable
to take the most out of the multi-modal information
associated to the study sites.

The remainder of this work is structured as follows: first,
Section II introduces the data associated to the two study
sites; then Section III describes the proposed framework
while the experimental settings and the results are reported
and discussed in Section IV. Finally, Section V draws the
conclusion and possible follows up.

II. DATA

The study was carried out on the Reunion island, a French
overseas department located in Indian Ocean (Fig. 1), and on
a part of the Dordogne department located in the southwest of
France (Fig. 2). Satellite data on the Reunion island consists
of a Sentinel-1 (S1) and Sentinel-2 (S2) time series of 26
and 21 images, respectively, acquired over the year 2017, as
well as a VHSR SPOT-6 image. The latter was obtained via a
radiometrically harmonized mosaic [28] of 4 images acquired
respectively on December 26, 2016 and on May 10, June
11, and November 20, 2017 in order to ensure a cloud-free
coverage of the whole study area. The Dordogne study site
dataset includes respectively time series of 31 S1 and 23 S2
images, both acquired in 2016, and a cloud free VHSR SPOT-6
image dated March 3, 2016.

S1 data was acquired in C-band with co- and cross-
polarization (VH and VV) and in ascending orbit. The data
was downloaded from the PEPS platform 1 in the Ground

1https://peps.cnes.fr/

Range Detected format and Interferometric Wideswath mode
2 with a pixel spacing of 10×10-m. The S1 images were
first radiometrically calibrated in back-scatter values, then
orthorectified and finally a multi-temporal filtering [29] was
performed over the time series in order to reduce speckle.
The S2 images were downloaded from the THEIA pole
platform 3 at level-2A (top of canopy reflectance values) and
were provided with cloud masks. Only 10-m spatial resolution
bands (Blue, Green, Red and Near infrared spectrum) were
considered in this analysis. A preprocessing was performed
over each band to fill cloudy pixel values as detected by
the supplied cloud masks through a linear multi-temporal
interpolation (cf. temporal gap-filling [12]). In addition, two
spectral indices were then extracted and involved in the
analysis: the NDVI [30] and the NDWI [31] leading to a total
of six channels describing each Sentinel-2 image. The SPOT-
6 images consist of one panchromatic and four multispectral
bands (Blue, Green, Red and Near infrared spectrum) at 1.5-
m and 6-m spatial resolution respectively, which have been
preprocessed in top of atmosphere reflectance.

The GT data for the Reunion island was built from various
sources: the Registre Parcellaire Graphique (RPG) reference
data for 2016 (the French land parcel identification system),
Global Positioning System records from June 2017 and the
visual interpretation of a SPOT image completed by a field
expert with knowledge of territory. The Reunion island dataset
is publicly available4 [32]. Similarly for the Dordogne site5,
the GT was built from RPG reference data for 2016 and

2https://sentinel.esa.int/web/sentinel/missions/sentinel-1/data-products
3http://theia.cnes.fr
4https://doi.org/10.18167/DVN1/TOARDNandadditionalinformationcanbefoundin
5Currently available upon request

https://peps.cnes.fr/
https://sentinel.esa.int/web/sentinel/missions/sentinel-1/data-products
http://theia.cnes.fr
https://doi.org/10.18167/DVN1/TOARDN and additional information can be found in
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TABLE I
CHARACTERISTICS OF THE REUNION ISLAND GROUND TRUTH

Class Label Polygons Pixels

1 Sugarcane 869 88 962
2 Pasture and fodder 581 68 098
3 Market gardening 758 17 488
4 Greenhouse and shaded crops 249 1 908
5 Orchards 767 33 721
6 Wooded areas 570 205 023
7 Moor and Savannah 506 155 231
8 Rocks and natural bare soil 299 154 343
9 Relief shadow 81 54 301

10 Water 177 82 592
11 Urbanized areas 1 126 19 056

Total 5 983 880 723

TABLE II
CHARACTERISTICS OF THE DORDOGNE SITE GROUND TRUTH

Class Label Polygons Pixels

1 Urbanized areas 253 2 002
2 Water 679 50 471
3 Forest 199 378 969
4 Moor 184 99 627
5 Orchards 608 97 546
6 Vineyards 593 92 259
7 Other crops 584 93 562

Total 3 100 814 436

the visual interpretation of a SPOT image as well. For both
study sites, the GT was assembled in Geographic Information
System (GIS) vector file, containing a collection of polygons,
each attributed with a land cover category (See Tables I and
II).
Finally, the polygons have been rasterized at the Sentinel
spatial resolution (10-m), obtaining 880 723 labeled pixels
for the Reunion island (respectively 814 436 labeled pixels
for the Dordogne site). Owing to the fact that the GT is
sparsely annotated, as can be observed (Fig.s 1 and 2), we
focus our efforts on patch-based multi-modal remote sensing
classification strategies instead of semantic segmentation ones
since the latter requires densely labeled GT data conversely to
the ones we dispose in our context.

III. FRAMEWORK

In this section we introduce our framework, named
MMCNNSD (Multi-Modal CNN with per source Self-
Distillation). Firstly, we supply an overview of the general
multi-modal architecture , then, we describe the new self-
distillation strategy we have introduced and finally, we intro-
duce the per source components we have adopted to manage
the different remote sensing data sources.

A. Multi-modal patch-based CNN

Fig. 3 depicts the proposed framework, MMCNNSD. In
our scenario, each geospatial location is described by means
of different and complementary information, each of them
coming from a different sensor.

The model has three branches, one for each of the input
sources: S1 SITS, S2 SITS and VHSR SPOT imagery. Each
branch is associated to an encoder network that extracts a
source specific representation: RS1, RS2 and RSPOT . Succes-
sively, the different per source representations are aggregated
together considering a late fusion schema [33] by summing
together the three per source representations with the aim
to obtain a multi-sensor representation (RM ) of the specific
geospatial location. Finally, the multi-sensor representation is
fed through two fully connected layers and an output layer
with the goal to obtain the final classification decision for the
considered geospatial location.

MMCNNSD leverages a self-distillation component [15],
[16] that supports the network to learn from itself. More
precisely, for each per source encoder we add an output layer
(auxiliary classifier) with the aim to forcing the extraction of
complementary and discriminative information from each of
the input modality. The per source output layers are trained to
mime the behavior of the final multi-modal classification as
showed in Fig. 3 with the goal to distill knowledge from deeper
layers (the output of our model) to shallow ones (the per source
encoder layers). While classical knowledge distillation [16] is
based on a teacher-student framework where the objective is
to distill/transfer the dark knowledge of the teacher model to
the student one, self-distillation [17] does not require a pair (or
a set) of distinct models since a model tries to distill/transfer
knowledge from itself, autonomously. To make a connection
with standard teacher-student frameworks, in our case, the
output of MMCNNSD (the final multi-modal classification)
can be considered as the teacher output while the per source
encoders represent the students models that have the goal to
mime the teacher behaviour. Here we introduce such a strategy
in the context of multi-modal remote sensing analysis. To the
best of our literature review [15], [16], this is the first time that
such kind of strategy is employed in a multi-source scenario
for image analysis and classification.

We formally define the loss of MMCNNSD as follows:

L = CE(Y,CL(RM )) + λ
∑

s∈{S1,S2,SPOT}

CE(CL(RM ), OUT (Rs))

(1)
where Y is the supervision provided by the labeled infor-

mation, CE(·, ·) is the standard Cross-Entropy loss function,
CL(·) is a neural network with two fully connected layers with
ReLU activation function and Batch Normalization followed
by an output layer with SoftMax activation and OUT (·)
is a fully connected output layer with SoftMax activation.
The λ hyper-parameter controls the trade off between the
cost involving the multi-sensor representation and the costs
concerning the self-distillation associated to the per source
output layers. While the model training involves both the
main classifier and the auxiliary classifiers associated to the
self-distillation strategy, at inference stage, only the decision
provided by the main classifier CL(RM ) is considered. The set
of parameters associated to the entire framework (per source
feature encoders, prediction and auxiliary classifiers) are learnt
end-to-end.
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Fig. 3. Overview of MMCNNSD framework. The architecture has three branches, each of them dedicated to an input source. Sentinel-1 SITS and SPOT data
are processed by means of 2D-CNN encoders while Sentinel-2 SITS is analyzed through a 1D-CNN encoder. Then, the per-source feature representations are
aggregated by the means of the sum operation in order to perform the final land cover classification. To this end, a main classifier associated to the aggregated
features and per-source auxiliary classifiers, supervised from the distillation of the main classifier, are employed.

B. Per Source CNN encoders

Due to the fact that the different sensors contain diverse and
complementary information, we design specific CNN encoders
for each of them.

For the S1 SITS data we consider a two dimensional
convolutional neural network (2D-CNN) with the goal to
alleviate possible issues induced by spatial speckle phenomena
that usually affects SAR signal [34]. To this end, the S1
SITS described in Section II is organized as a stacked image
with as many bands as the number of timestamps times 2
since S1 data have backscatter values with two polarizations:
VV and VH. Patches extracted from the stacked image are
then concatenated and constitute the input information for the
Sentinel-1 encoder branch.

For the S2 SITS data, according to recent literature on
land cover mapping [19], [35], we adopt a one dimensional
convolutional neural network (1D-CNN). Such model explic-
itly manages the sequential information of the SITS since
it performs multi-dimensional convolutions on the temporal
dimension. Here, only pixel time series information is consid-
ered.

For the VHSR SPOT image, we still consider a 2D-CNN
model with the aim to exploit as much as possible the available
fine scale spatial information. In addition, the SPOT image
has Panchromatic (PAN) and Multi-Spectral (MS) bands with
a resolution of 1.5 and 6 meters, respectively. With the aim
to manage such data at their native resolution avoiding as
much as possible intermediate resampling steps (e.g. pan-

sharpening), the 2D-CNN model for the SPOT image starts
processing the PAN information and, once feature maps at
the same resolution of the MS information are produced, the
MS bands are integrated in the analysis by concatenation.
In addition, manage PAN and MS at their original spatial
resolution allows to reduce the computational burden that can
be introduced if the MS bands are resampled at the same
resolution of the PAN information [6].

TABLE III
ARCHITECTURE OF THE MULTI-MODAL CNN ENCODERS. THE PER

SENSOR FEATURE REPRESENTATIONS ARE SUCCESSIVELY AGGREGATED
TOGETHER BY MEANS OF THE SUM OPERATION AND PROCESSED BY

FULLY CONNECTED LAYERS TO PERFORM THE FINAL CLASSIFICATION.
(FOR THE SAKE OF READABILITY AUXILIARY CLASSIFIERS ARE

OMITTED).

Sentinel-1 Sentinel-2 SPOT

3×3 Conv2D (128) 5×1 Conv1D (128)

7×7 Conv2D (128) on PAN

3×3 Conv2D (128) 3×1 Conv1D (128)

MaxPooling2D 3×3

3×3 Conv2D (256) 3×1 Conv1D (256)

3×3 Conv2D (256)

1×1 Conv2D (256) 1×1 Conv1D (256)

Concatenation with MS

GlobAvgPooling2D GlobAvgPooling1D

3×3 Conv2D (256)
MaxPooling2D 3×3
3×3 Conv2D (256)
1×1 Conv2D (256)
GlobAvgPooling2D

Sum of feature representations
Fully Connected (512) + ReLU + Batch Normalization
Fully Connected (512) + ReLU + Batch Normalization

Fully Connected Output Layer with SoftMax

To summarize, Table III reports the whole architecture
associated to the proposed framework. Conv1D and Conv2D
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represents one dimensional and two dimensional convolutions,
respectively. The associated value (128, 256, 512) is the
number of filters. Each convolutional layer is followed by
a ReLU activation function, a Batch Normalization and a
Dropout layer.

The top of the table (including the Global Average Pooling
layers) describes the per source encoders according to the
choice we have discussed above. Successively, the per source
representations produced by the pooling layers are aggregated
together by means of the sum operation and exploited to
provide the final land cover prediction. For the sake of clarity
and readability, in Table III we have voluntarily omitted to
report the auxiliary classifiers associated to the self-distillation
strategy. We remind that our framework manages the different
sensor information at their original spatial resolutions and,
therefore, it explicitly deals with the fusion of multi-scale
sensor information.

IV. EXPERIMENTS

In this section, we present the experimental settings and dis-
cuss the results obtained on the datasets previously introduced.

A. Experimental settings

First of all, we validated the architectural choices related
to our framework by assessing the behaviour of each sensor
encoder. For this evaluation, S1 and S2 SITS are analyzed
considering 1D, 2D and 3D-CNN. The 1D and 2D-CNN are
the same as in the proposed architecture (See Table III). As
concerns the 3D-CNN, it has the same number of convolu-
tional layers and filters as 1D and 2D-CNN. A kernel size of
(3× 3× 3) was employed for the first 3 convolutional layers,
as suggested in [18] which found it suitable for SITS data,
while the last layer is set up with a kernel size of (1× 1× 1)
similarly to 1D and 2D-CNN encoders. In addition, we used
a stride of 2 in the timestamp axis, i.e. (1 × 1 × 2), for the
second and third convolutional layers with the aim to further
explore the temporal signal. Lastly, a global average pooling
layer was employed to extract the feature representation before
classification.

Then, we evaluate the integration of multi-modal data via
the proposed framework. We also consider as competitor for
this evaluation an extension of the model introduced in [10],
named M3Fusion. The M3Fusion approach was originally
designed to perform land cover classification from S2 SITS
and a VHSR SPOT image. It processes input data through
dedicated streams (encoders) based on a Recurrent Neural
Network (RNN) block to manage S2 SITS and a 2D-CNN
branch for the SPOT image. In order to make a fair comparison
considering our setting, we have equipped this model with
an additional RNN stream especially dedicated to process S1
SITS.

To further assess the behaviour of the proposed framework,
we also perform ablation studies to disentangle the interplay
among the different input sources (the variants are named
MMCNNS1+S2SD and MMCNNS2+SPOTSD , respectively) as well
as the contribution of the per source auxiliary classifiers that
support the self-distillation strategy (this variant is named

MMCNNnoSD). This latter can be assimilated to a standard
late fusion procedure as reported in [3]. Additionally, we
consider two other baselines: the first one is a variant of the
proposed framework named MMCNNHardLabels that follows
studies on multi-source land cover mapping as [9], [10], in
which per source auxiliary classifiers are supervised from the
original (hard) labels; the second one named MMCNN10

SD is
a version of our framework which treats all input sources at
the same spatial resolution i.e. 10-m. Finally, we gauge the
effect of varying in our framework, the per source features
dimensionality and the λ hyper-parameter that controls the
self-distillation process.

As regards sensor input data, we extracted image patches
to describe each specific geospatial location. The Sentinel (S1
and S2) patch size was fixed to 9×9 while similarly to [6],
SPOT MS and PAN patch size were set to 8×8 and 32×32,
respectively. To fit the input requirements of the M3Fusion
competitor, the VHSR SPOT images were pansharpened on
both study sites and multi-spectral image patches of size
32×32 at the highest spatial resolution i.e 1.5-m were ex-
tracted. For the MMCNN10

SD baseline, the pansharpened images
were resampled to 10-m spatial resolution using the nearest
neighbor method and finally multi-spectral image patches of
size 5×5 (covering approximately the same spatial extent as
the native resolution image patches) were extracted. Note that
we have considered the 2D-CNN designed for the Sentinel
data in order to process the SPOT patches at 10-m spatial
resolution. Nonetheless, for compatibility purposes, a zero
padding was set up for the first convolutional layer.

The values of the dataset were normalized per band in
the interval [0, 1], considering the time series and the VHSR,
pansharpened and resampled images. The datasets were split
into training, validation and test set with a proportion of 50%,
20% and 30% of samples respectively. We imposed that pixels
belonging to the same ground truth polygon were assigned
exclusively to one of the data partition (training, validation
or test) with the aim to avoid possible spatial bias in the
evaluation procedure. The evaluated models were optimized
via training/validation procedure [36]. Their hyper-parameter
settings are reported in Table IV. For the settings of the
M3Fusion model, we adopted the same hyper-parameter
values as reported in [10].

TABLE IV
HYPER-PARAMETER SETTINGS OF THE EVALUATED APPROACHES

Hyper-parameter Setting or Value

Epochs 300
Learning rate 10−4

Optimizer Adam [37]
Dropout rate 0.4
Batch size 256

λ (for all the multi-modal approaches) 0.3

The assessment of the model performances was done con-
sidering test set and the following metrics: Accuracy (global
precision), F1 score (harmonic mean of precision and recall)
and Cohen’s Kappa (level of agreement between two raters
relative to chance). Since the model performances may vary
depending on the split of the data due to simpler or more
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complex samples involved in the different partitions, all met-
rics were averaged over five random splits of the dataset
following the strategy mentioned above. Experiments were
carried out on a workstation with an AMD Ryzen 7 3700X
CPU, 64 GB of RAM and RTX 2080 NVIDIA GPU. The
number of trainable parameters of the evaluated models and
the associated time costs are reported in Table V. The different
architectures were implemented using the Python Tensorflow
library. The code implementation of MMCNNSD is available
at https://github.com/eudesyawog/S1S2VHSR.

TABLE V
TRAINABLE PARAMETERS OF THE DIFFERENT MODELS AND ASSOCIATED

TIME COSTS OVER THE 300 TRAINING EPOCHS

Sensor Trainable parameters Training time
Reunion Dordogne Reunion Dordogne

S1
1D-CNN 0.62 M 0.62 M 0.37 h 0.40 h
2D-CNN 0.97 M 0.97 M 0.61 h 0.58 h
3D-CNN 1.80 M 1.80 M 7.54 h 8.40 h

S2
1D-CNN 0.62 M 0.62 M 0.38 h 0.37 h
2D-CNN 1.05 M 1.07 M 0.84 h 0.81 h
3D-CNN 1.82 M 1.81 M 6.35 h 6.48 h

SPOT 2.48 M 2.48 M 2.32 h 2.19 h

M3Fusion 12.6 M 12.58 M 15.37 h 15.80 h
MMCNNS1+S2

SD 1.20 M 1.20 M 0.96 h 0.93 h
MMCNNS2+SPOT

SD 2.71 M 2.70 M 2.71 h 2.53 h
MMCNNSD 3.28 M 3.29 M 3.39h 3.18 h
MMCNN10

SD 1.71 M 1.72 M 1.27 h 1.22 h

B. Per Sensor encoder assessment

The performances of the per sensor encoders at the two
study sites are reported in Table VI and Table VII, respectively.
As regards average results, we note first that leveraging tem-
poral or spatial dependencies for S1 and S2 exhibits different
behaviours. Employing 2D convolutions in the CNN instead
of 1D convolutions is clearly more effective for S1 while
obtained results are comparable for S2. This specific behaviour
comes from the fact that 2D convolutions reduces in turn
the spatial speckle noise [34] in the S1 data exploiting the
spatial context information available when input patches are
used. About the 3D-CNN, it achieves overall slightly lower
(e.g. for S1) or similar results (e.g. for S2) than the 2D-CNN
encoder. Only average results for S2 in the case of Reunion
island are slightly better than those of the 2D-CNN. Then, the
benefit here of leveraging simultaneously convolutions in both
spatial and temporal domains via the 3D-CNN is minimal,
especially regarding trainable parameters and training time
costs (See Table V). For the rest, SAR data (S1) is less
effective than optical ones (S2 or SPOT) for the land cover
mapping tasks. However, note the significance of the fine
scale spatial information provided by the VHSR SPOT data
on the Reunion island, which gives competitive performances
than those of S2 data, with respect to the Dordogne site.
Overall, the validation of per source CNN encoders suggests
that the 2D-CNN model is the most effective to deal with S1
SITS while the 1D-CNN seems more appropriate to manage
S2 SITS owing to a cheaper cost in terms of computational
training time. Hereafter, S1 and S2 refer to the single-modality
models with 2D and 1D-CNN, respectively.

TABLE VI
AVERAGE LAND COVER CLASSIFICATION PERFORMANCES CONSIDERING

THE PER SENSOR CNN ENCODERS ON THE REUNION ISLAND

Sensor F1 Score Kappa Accuracy

S1
1D-CNN 64.82 ± 1.32 0.587 ± 0.018 65.63 ± 1.64
2D-CNN 73.09 ± 2.62 0.684 ± 0.030 73.39 ± 2.66
3D-CNN 72.35 ± 2.94 0.673 ± 0.036 72.63 ± 3.16

S2
1D-CNN 87.98 ± 1.12 0.859 ± 0.017 88.09 ± 1.06
2D-CNN 87.41 ± 1.61 0.851 ± 0.021 87.41 ± 1.66
3D-CNN 88.62 ± 1.45 0.866 ± 0.017 88.66 ± 1.36

SPOT 88.35 ± 1.33 0.862 ± 0.017 88.35 ± 1.39

TABLE VII
AVERAGE LAND COVER CLASSIFICATION PERFORMANCES CONSIDERING

THE PER SENSOR CNN ENCODERS ON THE DORDOGNE SITE

Sensor F1 Score Kappa Accuracy

S1
1D-CNN 73.54 ± 2.96 0.644 ± 0.028 75.15 ± 2.76
2D-CNN 80.50 ± 2.17 0.730 ± 0.024 80.73 ± 2.21
3D-CNN 78.87 ± 3.12 0.709 ± 0.034 79.43 ± 2.88

S2
1D-CNN 85.97 ± 2.15 0.806 ± 0.025 86.04 ± 2.01
2D-CNN 85.90 ± 1.92 0.806 ± 0.018 86.05 ± 1.66
3D-CNN 85.29 ± 2.35 0.793 ± 0.024 84.88 ± 2.46

SPOT 81.75 ± 2.53 0.745 ± 0.028 81.39 ± 2.62

C. Multi-modal patch-based CNN assessment

The performances of the multi-modal models at the two
study sites are reported in Table VIII and Table IX, re-
spectively. Following average behaviour, we first note that
combining complementary sensor information systematically
ameliorates the land cover classification with respect to per
sensor performances. The integration of all available modality
via the proposed framework is the most efficient. Our frame-
work achieved the best performances on both study sites, more
than 94% (resp. 88%) of accuracy on the Reunion island (resp.
on the Dordogne site) and it also demonstrates its effectiveness
considering the M3Fusion competitor.

TABLE VIII
AVERAGE LAND COVER CLASSIFICATION PERFORMANCES CONSIDERING

THE MULTI-MODAL COMBINATION ON THE REUNION ISLAND

Sensor F1 Score Kappa Accuracy

M3Fusion 92.58 ± 0.51 0.912 ± 0.006 92.59 ± 0.50
MMCNNSD 94.34 ± 0.49 0.934 ± 0.006 94.38 ± 0.49

MMCNNS1+S2
SD 91.99 ± 0.42 0.906 ± 0.004 92.05 ± 0.30

MMCNNS2+SPOT
SD 93.07 ± 1.18 0.918 ± 0.014 93.12 ± 1.16

MMCNNnoSD 93.21 ± 0.79 0.920 ± 0.009 93.25 ± 0.77
MMCNNHardLabels 93.74 ± 0.94 0.926 ± 0.011 93.77 ± 0.96

MMCNN10
SD 93.87 ± 0.68 0.928 ± 0.008 93.91 ± 0.64

As regards the ablation study on the efficiency of the self-
distillation strategy (i.e. MMCNNnoSD vs MMCNNHardLabels
vs MMCNNSD), we note that this architectural component
contributes to the final land cover classification performances.
Firstly, we observe that the models with the auxiliary clas-
sifiers (MMCNNSD and MMCNNHardLabels) achieve better
classification results than the baseline model that does not
adopt such architectural component (MMCNNnoSD). In order

https://github.com/eudesyawog/S1S2VHSR
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TABLE IX
AVERAGE LAND COVER CLASSIFICATION PERFORMANCES CONSIDERING

THE MULTI-MODAL COMBINATION ON THE DORDOGNE SITE

Sensor F1 Score Kappa Accuracy

M3Fusion 87.16 ± 1.47 0.825 ± 0.017 87.48 ± 1.51
MMCNNSD 88.73 ± 1.80 0.845 ± 0.021 88.90 ± 1.68

MMCNNS1+S2
SD 87.09 ± 1.86 0.823 ± 0.020 87.33 ± 1.78

MMCNNS2+SPOT
SD 88.36 ± 1.70 0.840 ± 0.020 88.56 ± 1.62

MMCNNnoSD 87.87 ± 1.73 0.832 ± 0.020 87.94 ± 1.54
MMCNNHardLabels 88.20 ± 1.72 0.836 ± 0.021 88.18 ± 1.69

MMCNN10
SD 88.07 ± 1.73 0.837 ± 0.018 88.31 ± 1.70

to further investigate such a phenomena, with a major empha-
sis on the proposed framework, we depict in Figure 4 the be-
haviors of MMCNNSD and MMCNNnoSD over the established
number of training epochs considering their performances on
both training and validation sets. As can be noted, while
both models clearly fit the training set, the proposed approach
(MMCNNSD) exhibits superior performances on the validation
set underlying that the use of self-distillation strategy clearly
supports the model to better generalize on previously unseen
data.

Secondly, regarding the direct comparison between our
framework (MMCNNSD) and the strategy that uses the orig-
inal (hard) labels to supervise per source auxiliary classi-
fiers (MMCNNHardLabels), we can see that the use of self-
distillation systematically ameliorates, in terms of evaluation
metrics, the joint exploitation of multi-modal sources. This
behavior is inline with recent studies on knowledge distil-
lation [15], [16] where it is observed that the soft labels
produced by the teacher model (in our case the fused classifier)
carry on more useful and easy to exploit information for the
student network (in our case the auxiliary classifiers) than the
original (hard) label information thus, facilitating the student
network to mime the behavior of the teacher model.

Finally, by comparing the MMCNN10
SD baseline to the

proposed framework, we also notice on both study sites the
helpfulness of the fine scale information provided by the
VHSR data as well as the significance of integrating multi-
scale data at their native spatial resolution for the land cover
classification task.

Fig. 4. Learning history, considering Accuracy on training and validation
sets, of the proposed framework with and without self-distillation strategy.
The latter refers to the behaviour of the method named (MMCNNnoSD).

D. Effect of varying the framework hyper-parameters

In this evaluation, we analyse two main hyper-parameters
associated to the proposed framework. We evaluate how: (i)
the dimensionality of per source features extracted by the CNN
encoders and (ii) the λ hyper-parameter controlling the self-
distillation strategy influence the behaviour of the proposed
framework. We vary the former hyper-parameter considering
the set of values {64, 128, 256, 512} while the latter one is
evaluated according to the following values: {0.1, 0.2, 0.3, 0.4,
0.5}. Results are summarized in Fig.s 5 and 6, respectively.

Fig. 5. Land cover classification performances varying the dimensionality of
the per source features. Standard deviation is displayed as error bar. Trainable
parameters and time costs are shown beside.

The analysis on the dimensionality of per source features
shows that 256 features seem suitable for the proposed frame-
work on both study sites and the performance is relatively
stable (between 93% and 94% of F1 score on the Reunion
island and around 88% on the Dordogne site) with respect
to the considered range. Particularly, it is noteworthy that
the model can already generalize well with only 64 features,
which could reduce the number of trainable parameters and
the associated computational cost related to the training stage.

Fig. 6. Land cover classification performances varying the λ hyper-parameter
that controls the cost involving the self-distillation strategy. Standard deviation
is displayed as error bar.

As regards the assessment on the λ hyper-parameter, here
also, we note relatively stable performances on the two study
sites for values equal or greater than 0.2. This result underlines
that such hyper-parameter does not influence the behaviour of
MMCNNSD when it is varied among the considered range.

E. Per class analysis

The per class F1 score at the two study sites are shown
in Fig.s 7 and 8, respectively. In this analysis, we note that
leveraging complementary sources of information is fully ben-
eficial for almost all the land cover classes, particularly when



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2021.3119191, IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing

9

40

60

80

100

Sugarca
ne

Pastu
re and fo

dder

Marke
t g

ardening

Greenhouse
 cr

ops

Orch
ards

Wooded areas

Moor a
nd sa

va
nnah

Rocks
 and bare so

il

Relief s
hadow

Water

Urbanize
d areas

F
1 

S
co

re

S1 S2 SPOT MMCNNSD
S1+S2 MMCNNSD

S2+SPOT MMCNNSD M3 Fusion
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Fig. 8. Average per land cover class F1 score (standard deviation as error bar) considering the various combinations of the multi-modal data (i.e. S1, S2,
SPOT, MMCNNS1+S2

SD , MMCNNS2+SPOT
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all modalities are combined. Salient examples on the Reunion
island are the Greenhouse and shaded crops, Market garden-
ing, Orchards or Urbanized areas land cover classes. The F1
score of Greenhouse and shaded crops, for instance, improved
from 50% (with S2) to 75% (with MMCNNSD). Such land
cover especially benefits from the fine resolution information
provided by SPOT data (67% of F1 score). The benefit is
similar for Urbanized areas and Orchards classes which are
better distinguished with fine scale spatial information. On the
Dordogne site, Urbanized areas and crop classes especially
profit from the multi-modal combination. To go further with
the per land cover class analysis, we supply in Fig.s 9 and 10
the confusion matrices for both study sites. The trend observed
in the per class score analysis is confirmed by the confusion
matrices. The more complementary sources are combined,
the less confusions remain between land cover classes. Only
some minor misclassifications remain on the Reunion island
with the proposed framework, especially between Greenhouse
and shaded crops and Urbanized areas. On the Dordogne
site, the major confusions between Moor and Forest classes
are also alleviated. Overall, the simultaneous combination of
multi-sensor, multi-temporal and multi-scale information was
valuable for characterizing land cover classes carrying out not

only temporal dependencies, such as the ones related to crops
or natural vegetation, but also spatial patterns as evidenced
by the performance improvement associated to the Urbanized
areas land cover class.

F. Qualitative investigation of land cover maps
In Figure 11, we report some extracts from the land cover

maps produced on the Reunion island. We focused only on
this study site since it exhibits a more heterogeneous and
challenging landscape in terms of land cover classes than
the Dordogne site. We recall that all land cover maps were
generated at Sentinel spatial resolution (10-m). In addition,
owing to the fact that the models are patch-based, the border
pixels of the maps (i.e. 4 pixels in each direction since
considered Sentinel patch size is 9× 9) remain unlabeled. For
the sake of clarity, we only considered extracts of the maps
produced by considering MMCNNS1+S2SD , MMCNNS2+SPOTSD

and MMCNNSD. The extracts were selected following dis-
cussions we had with field experts and with the aim to be
representative of observations made in the per land cover class
analysis.

The first extract (Fig. 11a–d) depicts a part of Saint-Pierre,
a coastal urban area with sugarcane and orchards plantations.
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Fig. 9. Confusion matrices of the land cover classification considering the various combinations of the multi-modal data (i.e. S1, S2, SPOT, MMCNNS1+S2
SD ,

MMCNNS2+SPOT
SD , MMCNNSD , M3Fusion).

Misclassifications between Urbanized areas and Greenhouse
and shaded crops can be highlighted in MMCNNS1+S2SD ex-
tract while the introduction of fine scale spatial information
(cf. MMCNNS2+SPOTSD and MMCNNSD extracts) significantly
reduced this issue. The second extract (Fig. 11e–h) is located
within the Cilaos cirque, a landscape consisting of hamlets
with some market gardening activities surrounding. Here, the
MMCNNS1+S2SD map exhibits major misclassifications between
Rocks and natural bare soil class and Urbanized areas. This
artifact is still slightly noticeable in the MMCNNSD classifica-
tion, while S2 and SPOT combination (i.e. MMCNNS2+SPOTSD )
better deals with the Rocks and natural bare soil class. The
third extract (Fig. 11i–l) shows an area around Le Tampon,
a mixed urban and pasture landscape with some market
gardening. Beyond the confusions exhibited by MMCNNS1+S2SD

between Urbanized areas and Greenhouse and shaded crops,
we note a general overestimation of Orchards plantations
although minimized by MMCNNS2+SPOTSD and MMCNNSD.
The fourth extract (Fig. 11m–p) depicts the Belouve forest
which consists of a primary growth forest and forest planta-
tions. There is some minor inaccuracies in the forest detection,
misclassified with Orchards and Moor and savannah classes,
which are suppressed in the MMCNNSD map. Finally, the
fifth and last extract (Fig. 11q–t) focused on the Saint-Gilles
les Bains area. The landscape consists of orchards, savannah,
some sugarcane plantations as well as built-up. According to

field experts, there is a general underestimation of Moor and
savannah class which is classified as Wooded areas, although
MMCNNS2+SPOTSD combination, slightly alleviate this issue.
To wrap up, this qualitative investigation also validate the ben-
efit to combine multi-modal remote sensing data for land cover
mapping. Overall, MMCNNS2+SPOTSD and MMCNNSD land
cover maps are of a satisfying quality while MMCNNS1+S2SD

exhibits extensive errors. This fact is probably due to the noise
remaining in SAR data, which sometimes leads to inaccuracies
such as the overestimation of orchards areas, and the precious
information provided by the SPOT image that is especially
pertinent for the considered study area.

G. Visualisation of internal feature representations

In this last stage of our experimental results, we supply
a visualisation of the internal feature representation learned
by considering the various combinations of the multi-modal
data at the two study sites. To this end, we randomly chose
300 samples per land cover class in the test set and we
extracted their feature representation. Subsequently, we ap-
plied t-SNE [38] and reduced the feature dimensionality to
2 for visualisation purposes. Results are displayed in Fig.s 12
and 13, respectively. On both study sites, we can observe an
improved separability of the per land cover class representa-
tions as additional and complementary sensors information are
combined. As underlined before, S1 is less discriminative than
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Fig. 10. Confusion matrices of the land cover classification considering the various combinations of the multi-modal data (i.e. S1, S2, SPOT, MMCNNS1+S2
SD ,

MMCNNS2+SPOT
SD , MMCNNSD , M3Fusion).

optical sensors (i.e. S2 or SPOT) while the fine scale spatial
information carried out by SPOT is particularly relevant to
disentangle the per class feature visualisation on the Reunion
island. However, some land cover class representations are still
barely separable with single-modality data especially Orchards
and Wooded areas or Pasture and fodder and Market garden-
ing on the Reunion island (respectively Moor and Forest or
Orchards, Vineyards and Other crops on the Dordogne site).
Such ambiguities are successively alleviated by the combina-
tion of the multi-modal data, especially MMCNNS2+SPOTSD and
MMCNNSD which separate in a similar way the land cover
classes, while MMCNNS1+S2SD notably on the Reunion island
site is still affected by these confusions. Overall, the visu-
alisation of internal features representation is coherent with
the quantitative as well as qualitative findings we previously
discussed.

V. CONCLUSION

In this work, we have presented a framework, named
MMCNNSD, to deal with the task of multi-modal land cover
mapping. More specifically, MMCNNSD exploits, simultane-
ously, multi-temporal and multi-scale remote sensing data,
namely Sentinel-1, Sentinel-2 SITS and SPOT VHSR image,
for land cover mapping through a three branch patch-based
Convolutional Neural Network model that integrates a new
self-distillation strategy especially tailored for multi-source
analysis. The new knowledge distillation component allows

to effectively transfer knowledge from the final prediction to
the per source CNN encoders supporting the network to learn
from itself. All the process is performed end-to-end.

The results obtained on two real-world benchmarks, the
Reunion island and the Dordogne study sites, have highlighted
the quality of the proposed framework regarding both quantita-
tive and qualitative analysis. Furthermore, the obtained results
have also validated the importance to boost the representation
extracted by per source encoders combining auxiliary clas-
sifiers with self-distillation. To sum up, all the experimental
findings clearly support the hypothesis that complementary
sensor information are definitively valuable for downstream
tasks such as land cover mapping.

Possible future work can be related to extend our approach
to deal with possible temporal as well as spatial transfer. As of
now, our framework deals with a standard land cover mapping
setting where a map of a particular study site is derived by
learning a classification model from some per-class samples
that belongs to the same area. How to transfer a model learnt
on a particular area (resp. period of time) to another different
area (resp. period of time) is an active domain of research
considering multi-temporal mono-source strategies [39], [40]
while it is still more challenging and open to investigation
when multi-source data are involved.

The proposed framework can also be extended going further
with the exploitation of Sentinel-1 and Sentinel-2 data integrat-
ing for the former sensor, data coming from both ascending
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Fig. 11. Qualitative investigation of land cover maps produced by considering MMCNNS1+S2
SD , MMCNNS2+SPOT

SD and MMCNNSD . The VHSR SPOT
image is supplied as reference. Five areas are detailed, from top to bottom: Saint-Pierre, the Cilaos cirque, Le Tampon, the Belouve forest and Saint-Gilles
les Bains.
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Fig. 12. t-SNE visualisation of internal feature representation learned by considering the various combinations of the multi-modal data (i.e. S1, S2, SPOT,
MMCNNS1+S2

SD , MMCNNS2+SPOT
SD , MMCNNSD) on the Reunion island site.

and descending orbits and for the latter sensor, the rest of
Sentinel-2 bands, following a schema like the one we have
used for the PAN and MS bands of the SPOT image.
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