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Agricultural eco-design scenarios based on AGRIBALYSE® 

residual organic fertiliser inventories 

Abstract 

This work focuses on the assessment of the potential environmental benefits associated with the diversity of 

organic fertilisers available in the AGRIBALYSE database. Under the eco-design perspective, the shift from 

mineral to organic fertilisation regimes must not be over simplified, as fertilisation of each crop has an effect 

on the whole crop rotation. This work contrasts the environmental impacts of conventional crop rotations with 

equivalent eco-designed ones, featuring partial substitution of mineral by organic fertilisers at a level that the 

current yield is maintained. Two eco-design strategies involving AGRIBALYSE were devised. The first consists of 

retrofitting existing single crop processes by replacing conventional fertiliser inputs with newly available 

residual organic fertiliser processes. The second consists of eco-designing agricultural systems (i.e. technical 

itineraries representing crop rotations or crop sequences) by partially substituting mineral with newly available 

residues-based organic fertilisers. In both cases, it is necessary to adjust the fertiliser-related direct field 

emissions accordingly. In the second strategy, large amounts of organic fertilisers are input to replace mineral 

ones (tonnes vs. kg), and therefore overall impacts (i.e. impacts across impact categories) increase 

considerably, yet this effect is minimised when considering the alternative waste disposal pathways associated 

with the mineral fertilisation strategy (i.e. mineral fertilisation + disposal of the amount of organic residues 

necessary to deliver an equivalent level of fertilisation). The expanded functionality of a cropping system 

consuming organic waste-derived fertilisers (i.e. fertilisation + organic waste disposal) should be considered in 

comparative LCAs. 

Keywords: agricultural life cycle assessment; organic fertilisation; fertilisation strategy; crop rotation 

1 Introduction 

Eco-design is a systematic process-improvement approach that considers environmental aspects in design and 

development, with the aim to mitigate adverse environmental impacts throughout the life cycle of a product 

(ISO, 2020). It relies on the life cycle approach to guide sustainability choices, focusing on the most relevant 

steps and impacts (hotspots), avoiding burden shifts, and can be used in, virtually, any sector (including 

agriculture). It is a process-improvement approach. Although focusing on environmental sustainability, eco-

design must deal with economic constraints and opportunities to identify realistic improvement solutions. It 

can rely on full Life cycle assessment (LCA) tools or on simplified and more operational tools such as “checklists, 

guidelines, labels, production charts”. Those simplified tools must remain in line with LCA knowledge, and more 

broadly environmental science, to be considered in the eco-design framework.  

The sustainable growth of the agricultural sector is now clearly identified as a major challenge to be addressed, 

especially if the global production system intends to be within Earth´s planetary boundaries (Campbell et al., 

2017). Indeed, it accounts for about 20% of climate change impact, as it is the sector consuming the most 

water and whose practices have a strong effect on biodiversity, via both local/direct and indirect impacts (e.g., 

feed market). Increasingly aware of the sustainability challenges, and under the pressure of environmentally-

conscious consumers, the agricultural sector and the food systems are now looking for technical and 

organisational solutions. The main axes to answer these sustainability challenges are currently quite 
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consensual: sustainable production (with an important focus on agriculture), diet shifts, as well as reduction of 

food losses and waste generation (IPCC, 2019; Poore and Nemecek, 2018; Willett et al., 2019). 

Agricultural eco-design has been explored from multiple points of view (e.g., technological, agronomical, 

sociological, environmental, economic, etc.) (Czyrnek-Delêtre et al., 2018; Hill, 2014). In France, public and 

private bodies are supporting further development of eco-design. For agriculture, French eco-design initiatives 

benefit from the AGRIBALYSE research programme, developed since 2009 by a partnership of public bodies 

(ministries, the French environmental agency ADEME), research institutions (INRA, CIRAD) and private 

institutes (technical institutes, consultancies and cooperatives). AGRIBALYSE developed and continuously 

improves a life cycle inventory (LCI) database for agriculture (www.agribalyse.fr) , which includes the main 

agricultural products and processes relevant to the French context (Colomb et al., 2015; Wilfart et al., 2016), as 

well as methodological guidance on direct field emission modelling (Koch and Salou, 2016). Both the database 

and its underlying methodology facilitate the broadcasting of environmental information and developing eco-

design in the agriculture and food sector. In its first development period (2009-2013), the database mainly 

provided benchmark data (LCIs) for average and dominant agricultural production systems in France, based on 

national statistics, on a crop-by-crop basis. In the latest years, its focus has shifted to the modelling of systems 

with expected environmental benefits, to explore and highlight the potential of eco-design in farming systems. 

For instance, the database has been enriched with LCIs of organic farming systems (Nitschelm et al., 2020; van 

der Werf et al., 2018). Moreover, from 2019, the scope of the database expanded from farm gate to the 

consumer’s plate (Asselin-Balençon et al., 2020), opening wider eco-design options, including all foodstuffs’ 

stages. Finally, specific support for food companies has been developed by ADEME to engage in operation eco-

design strategies (Colomb et al., 2018), as formalised via the GreenGo programme (ADEME, 2020). 

Fertilisation is a key element in crop production, yet it is also a key driver for potential environmental impacts, 

affecting, among other impact categories, climate change, soil and water quality. On climate change, 

fertilisation (including fertiliser production and direct field emissions) may represent up to 40-50% of the total 

agricultural impact (Koch and Salou, 2016). Together with fuel consumption, it is one of the most relevant 

sources for potential impacts. To mitigate these impacts, some fertilisation improvement strategies may be 

employed, such as the inclusion of legumes in the crop rotations (providing natural N fixation in soils), using of 

precision/integrated agriculture (with a more accurate use of fertilisation inputs), and/or shifting towards 

organic fertilisation (thus avoiding the production of synthetic fertilisers) (Astudillo et al., 2015; Debaeke et al., 

2017; Rothé et al., 2019; Schröder et al., 2018).   

Under the eco-design perspective, the shift from mineral to organic fertilisation must not be over simplified: 

beyond the crop directly affected, it has an effect on the whole crop rotation, and, more broadly, on the farm 

system. Moreover, eco-design initiatives, including those based on participatory approaches (e.g., Rouault et 

al., 2020), must be grounded in sound agronomic considerations. Some trade-offs should also be identified, 

such as potential transfer of contaminants to the soil or yield reduction (Agegnehu et al., 2016; Houot et al., 

2014; Noirot-Cosson et al., 2016; Odlare et al., 2011; Walsh et al., 2012). Finally, organic fertiliser availability is 

limited and variable according to the region.  

LCA is increasingly used to estimate the environmental impacts associated with agricultural systems and their 

products. For instance, Web of Science (https://apps.webofknowledge.com/) shows a steady increase in annual 

publications featuring the keywords “LCA” and “Agriculture”, from 36 works in 2010 to 87 in 2018. Moreover, 

the recommendations of the European Commission on Product Environmental Footprint – PEF (EC, 2018) 

include specific guidance for agricultural systems.  
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Agricultural LCA depends on two key elements: agricultural background data and direct field emission models, 

both required to build agricultural LCIs. A recent project produced for AGRIBALYSE a set of LCIs representing a 

large number and variety of residual organic fertilisers and amendments (Avadí, 2020), i.e., products of 

agricultural interest resulting from organic waste treatments. Some treatments aim at dealing with the waste 

streams, and produce amendments and fertilisers as a secondary function. Others are primarily aimed at 

producing amendments and fertilisers. These types of treatment systems produce, respectively, residual 

organic amendments and fertilisers, and commercial organic amendments and fertilisers (Avadí, 2020). The 

availability of these organic amendments and fertilisers enables some aspects of eco-design, as it enables the 

ex ante modelling of cropping systems that partially or fully replace mineral fertilisers with organic ones, a key 

element of agricultural systems eco-design (Czyrnek-Delêtre et al., 2018; Grasselly et al., 2016).  

In this work, we focus on the assessment of the potential environmental benefits associated with the diversity 

of organic fertilisers available for agriculture. We present eco-design scenarios based on fertilisation regime 

changes, aiming to highlight the relevance of the AGRIBALYSE database for agricultural systems eco-design —a 

long term ambition of the AGRIBALYSE programme (Colomb et al., 2018; van der Werf et al., 2018)— and the 

challenges associated with agricultural systems eco-design. We moreover identify the conditions under which a 

substitution of mineral fertilisers by organic ones is environmentally suitable, thus contributing to 

cleaner/sustainable production in agriculture. We do so by comparing the environmental impacts of 

conventional crop rotations with equivalent eco-designed ones (featuring partial substitution of mineral by 

organic fertilisers at a level that maintains yields). The proposed strategy follows a true “eco-design/redesign” 

paradigm rather than a “substitution-based” one, as defined in Hill (2014). 

2 Material and methods 

2.1 Inventory data improvement 

Agricultural LCIs available in databases are usually built on a crop-by-crop basis. When practitioners use these 

inventories as background data in LCA studies, they either accept them as-is (for instance, as a proxy) or adapt 

them to fit the particular conditions of their study, most often by tweaking the inputs, yields and emissions 

depending on agricultural practices (Meron et al., 2020; Milà i Canals et al., 2011). 

Before addressing eco-design of agricultural inventories, inventory data improvement/adaptation should be 

discussed, as it is a common practice. Two of such data improvement strategies were identified (Fig. 1). 
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Fig. 1. Strategies for agricultural inventory data improvement with AGRIBALYSE (ITK: technical itinerary) 

For instance, AGRIBALYSE users may attempt to modify existing single crop processes by replacing generic 

organic fertiliser inputs, currently modelled as “dummy” or “empty” processes (i.e. processes without 

associated impacts, which do not incur in resource consumption and generate no emissions; a usual modelling 

device in LCA practice), with newly available residual organic fertiliser processes, which do include treatment 

and storage impacts. This data improvement strategy (Strategy D1 in Fig. 1) was explored on three single crop 

inventories (as described in section 2.3). Strategy D1 updates existing agricultural processes modelled at the 

crop level. It is common among LCA practitioners to modify existing database processes to adapt them to 

specific situations. For instance, an aquaculture system may consume, via aquafeeds, a local crop which does 

not exist in a reference database. In that case an LCA practitioner would likely modify an existing similar crop to 

the specific local circumstances, in order to include its impacts into the overall assessment of the foreground 

aquaculture system (Bohnes et al., 2018). Agricultural systems are modelled in AGRIBALYSE as individual crops 

representing national and other average practices, yet intrinsically associated with French crop rotations (i.e., 

by means of allocating fertilisers and their associated emissions to the associated representative crop 

rotations). When replacing dummy processes with new processes, the direct field emissions do not require, in 

principle, any update. The required LCI modifications associated with Strategy D1 thus include 1) replacement 

of generic dummy organic fertiliser processes, expressed in terms of their nutrient content (N, P or K) with 

specific ones expressed per kg of product, and 2) calculation of adjusted organic fertiliser doses based on the 

total nutrient (N, P, K) contents of the specific organic fertilisers. The LCIs were modified in SimaPro, and 

comparative life cycle impact assessments were computed for both the original and the modified single crop 

LCIs. 

Another data improvement approach that could be attempted by practitioners is to re-compute direct field 

emissions of existing agricultural processes by means of emission models different from those used by the LCI 
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database (Strategy D2 in Fig. 1). This strategy was not explored here, as it is the subject of a separate article by 

our team (Avadí et al., submitted).  

2.2 Strategies for agricultural eco-design with AGRIBALYSE 

Two key strategies for agricultural eco-design involving AGRIBALYSE were devised (Fig. 2). Strategy E1, a basic 

eco-design approach, consists of modifying existing single crop processes by replacing mineral fertiliser inputs 

with processes representing organic fertiliser. Strategy E2, an advanced eco-design approach, consists of eco-

designing agricultural systems —i.e. technical itineraries (ITKs) associated to crop rotations— by partially 

substituting mineral with selected newly available residual organic fertilisers.  

 
Fig. 2. Strategies for agricultural eco-design with AGRIBALYSE  

Strategy E1 would imply eco-designing new single crop processes by replacing mineral fertilisers with organic 

ones, a rather complex endeavour that would imply recalculation of direct field emissions and could imply 

updating yields and allocation factors —because the underlying crop rotation would change, as conventional 

and organic crop rotations are different to optimise interactions among crops and due to the mineralisation 

dynamics of organic fertilisers (Meier et al., 2015; Notarnicola et al., 2017)—. Despite probably being the most 

likely approach to be attempted by LCA practitioners, we did not explore Strategy E1 because the underlying 

crop rotation is not described, and it is thus impossible to be soundly adjusted from an agronomical point of 

view. We thus preferred to focus on Strategy E2, which directly and transparently addresses modification of a 

whole crop rotation in response to eco-design needs. 

Strategy E2 (eco-)designs new agricultural systems by partially replacing mineral fertilisers with organic ones. 

The redesign of whole crop rotations involves verification of the technical and economic soundness of the 
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fertiliser substitutions, which may alter yields and demand management changes. We used the dynamic 

agricultural model Syst’N (Parnaudeau et al., 2012) to modify existing crop rotations, validate the technical 

feasibility of the new rotations, and update direct field emissions.  

The replacement of mineral by organic fertilisation regimes in Strategy E2 was based on mineral N fertiliser 

equivalence coefficients (KeqN), as defined in COMIFER (2013) and informed by literature data (COMIFER, 

2013; Constant, 2011). Both the conventional and the new dominantly organic fertilised (i.e. eco-designed) 

systems were represented in Syst’N and the resulting scenarios simulated over 3-4 rotation lengths, to cross 

check for agricultural coherence and estimate direct field emissions (which are integrated into the LCIs). The 

use of crop models to design and validate agricultural systems is one of the main reasons for the existence of 

such models, as technical elements such as crop sequences and fertiliser rates are among the most important 

aspects of agricultural systems’ performance (Antle et al., 2017; Jones et al., 2017; McNunn et al., 2019). Once 

the ITKs were validated, the associated LCIs for both systems were constructed in the online multi-criteria 

sustainability assessment MEANS platform (Auberger et al., 2013; https://pfmeans.inra.fr/means/login.jsp) 

linked with SimaPro (PRé, 2012). Finally, comparative life cycle impact assessments were computed for both 

the original (called reference) and eco-designed crop rotation LCIs. 

MEANS’ life cycle assessment (LCA) component is heavily based on the AGRIBALYSE methodology (Koch and 

Salou, 2016) (e.g. choices and methods for direct field emissions estimation and allocation of fertilisers over 

the crop rotation) and data from AGRIBALYSE and ecoinvent (Wernet et al., 2016). It facilitates the creation of 

agricultural LCIs and the computation of environmental impacts via a back-office integration with SimaPro. 

Nonetheless, the direct emissions as computed in Syst’N were retained, as they were considered more 

accurate for the eco-designed ITKs (among other reasons, because Syst’N considers plant nutrient uptake and 

other key performance parameters). 

2.3 Comparative LCA of cropping systems 

LCA was conducted based on two functional units useful in agricultural system comparisons (Meier et al., 2015; 

Salou et al., 2016): 1 kg of product (only relevant for data improvement Strategy D1) and 1 ha of cultivation 

(relevant for both data improvement Strategy D1 and eco-design Strategy E2).  

In the case of individual crops, the 1 ha of cultivation considered the AGRIBALYSE accounting period (harvest to 

harvest). In the case of crop rotations, the functional unit represents the cultivation of 1 ha over a period 

covering a full rotation length. All LCAs feature a cradle-to-farm gate scope. Individual crops and rotations were 

selected based on data availability and the intention to represent the variety of French agricultural production 

and contexts. The selection of crops was based on their representativeness of French agricultural production 

and practices. 

For Strategy E2, we considered that for a comprehensive and fair comparison of alternative systems, the 

functional unit should be enlarged to include the disposal of organic waste —i.e. system expansion without 

substitution (Heijungs et al., 2021). Namely, the systems being compared are, in one hand an agricultural 

rotation using mostly mineral fertilisers plus the amount of organic waste equivalent to the organic fertilisers 

used in the alternative eco-designed system, and in the other hand an alternative eco-designed system where 

most of mineral fertilisers are replaced by organic fertilisers produced from organic waste. When agricultural 

systems include digestates as fertilising inputs, the allocation of impacts for the anaerobic digestion process 

ensures that only the impacts of producing digestate are included in the agricultural process. In the other hand, 

the eventual production of energy from biogas is not a constituency of the agricultural system or of the 
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enlarged agricultural + waste management system, and thus should not be considered. We followed the 

dominating French LCA dogma that no impacts are allocated to manure production (Koch and Salou, 2016; 

Nitschelm et al., 2020).  

Strategy E2 produced new LCIs representing, a priori, examples of agricultural systems eco-design 

(Andrianandraina, 2015; Czyrnek-Delêtre et al., 2018; Grasselly et al., 2016). 

The impact assessment was based on the ILCD 2011 Midpoint+ v1.0.9 method (EC-JRC, 2012), which was the 

set of methods more closely aligned with the PEF at the time of calculation. ILCD 2011 includes a single score 

based on equal weighting for all impact categories. ILCD 2011 estimates toxicity impact categories with the 

consensus toxicity model USEtox (Fantke (Ed.) et al., 2017; Rosenbaum et al., 2008). The characterisation factor 

for climate change of "CO2 in air" was changed from -1 to 0, because CO2 absorbed by plants and reemitted in 

the short term was not considered to represent carbon sequestration in annual or short cycle crops. SimaPro 

v8.5 was used to calculate the impacts. 

3 Results and discussion 

3.1 Life cycle inventories 

According with the last French survey on agricultural practices (AGRESTE, 2014), cereals and grasslands 

dominate the agricultural land use, with cereals occupying 34%, oily seed 8.7% and market vegetables 1.4%. In 

2010, the top 12 crops by mass of production included soft wheat and rapeseed: out of 138 million t of 

produce, sugar beet represented 28%, soft wheat 25%, forage maize 14%, maize grain 11%, barley 6%, potato 

5%, rapeseed 4%, sugarcane 2%, durum wheat 1%, triticale 1%, sunflower 1% and protein peas <1% (AGRESTE, 

2014). Consequently, and to represent the variety of French agriculture, three conventional crop inventories 

were selected from AGRIBALYSE v2.0 to illustrate Strategy D1: “Soft wheat grain, conventional, national 

average, animal feed, at farm gate, production/FR U”, “Rapeseed, conventional, 9% moisture, national average, 

animal feed, at farm gate, production/FR U”, and “Tomato, average basket, conventional, soil based, non-

heated greenhouse, at greenhouse/FR U”. The selected LCIs already feature organic fertilisers as inputs under 

the current AGRIBALYSE modelling, yet modelled as dummy processes that exclude their production impacts 

(the impacts of organic waste treatment), and which are declared in terms of their nutrient contents (e.g. 

“Organic or farm manure (empty process), as N/FR U”). 

Organic fertilisers, modelled in AGRIBALYSE as empty processes and declared in terms of their nutrient 

contents, were replaced by newly available LCIs featuring the associated impacts of fertiliser 

production/storage, including animal effluents, treated sewage sludge, composts and digestates. These 

fertilisers, described in Avadí (2020) and updated in Galland et al. (2020), are representative of French 

practices. For instance, according with the National Observatory of Mineral and Organic Fertilisation, in 2017, 

19.3 million t of animal effluents (dominated by cattle slurry, but including poultry manure), 1.8 million t of 

residual organic fertilisers (including digestates), and 123 000 t of commercial organic fertilisers (many of 

consist of enriched composts) were spread (ANPEA, 2018; Avadí, 2020). The fertilisers and associated emissions 

of these LCIs are summarised in Table 1. 

Table 1. Main fertilisation and emission features of three scenarios of fertiliser process replacement in individual crops 

inventories representing national averages from AGRIBALYSE (Strategy D1) 

  Soft wheat Rapeseed Tomato 

Yield kg/ha 7 100   3 243 159 100 
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Mineral fertilisers  

Average N fertiliser kg/ha (kg N/ha) 500.6 (175.0) 89.8 (29.2)  

Sulfonitrate kg/ha (kg N/ha)  107.4 (27.9)  

Ammonium sulphate kg/ha (kg N/ha)  66.5 (14.0)  

Urea (46% N) kg/ha (kg N/ha)  7.0 (3.2)  

Ammonium nitrate (33.5% N) kg/ha (kg N/ha)  113.1 (37.9)  

Solution 390 (30% N) kg/ha (kg N/ha)  156.8 (49.4)  

Average P fertiliser kg/ha (kg P2O5/ha) 53.8 (55.0)   

Monoammonium phosphate 
(10% N) 

kg/ha   3.0 

Single superphosphate kg/ha (kg P2O5/ha)   18.0 (3.6) 

Average K fertiliser kg/ha (kg K2O/ha) 71.5 (68.0)   

Potassium nitrate (13% N) kg/ha (kg K2O/ha)   48.0 (22.2) 

Potassium sulphate kg/ha (kg K2O/ha)   6.0 (1.8) 

Potassium dihydrogen 
orthophosphate 

kg/ha   3.0 

NPK 15-5-20 kg/ha   30.0 

NPK 15-15-36 kg/ha   24.0 

NPK 15-10-30 kg/ha   1500.0 

NPK 18-6-26 kg/ha   330.0 

NPK 4-8-8 kg/ha   1500.0 

Organic fertilisers (originally modelled as “Organic or farm manure (empty process), as [nutrient]/FR U”) 

Swine slurry kg/ha (kg N/ha) 794.3 (2.8 a) 550.6 (1.9a)  

Swine manure (with straw) kg/ha (kg N/ha)  64.2 (0.5)  

Cattle slurry kg/ha (kg N/ha)  383.4 (1.3)  

Cattle manure kg/ha (kg N/ha) 1020.0 (5.6 a) 2 846.0 (15.5a)  

Poultry droppings kg/ha (kg N/ha) 72.9 (2.8 a) 307.3 (11.7a)  

Poultry manure kg/ha (kg N/ha)  110.7 (2.3)  

Liquid sludge kg/ha (kg N/ha)  134.9 (0.2)  

Dewatered sludge kg/ha (kg N/ha)  134.9 (1.2)  

Dried sludge kg/ha (kg N/ha)  134.9 (5.4)  

Sugar beet vinasse kg/ha (kg N/ha)  211.9 (4.5a)  

Compost, of cattle manure kg/ha (kg N/ha)  121.3 (0.8)  

Compost, of green waste kg/ha (kg N/ha)  217.3 (1.7) 540.0 (4.2) 

Vegethumus (organic 
amendment <3% N) 

kg/ha (kg N/ha)   1653.0 (33.1) 

Total N (organic N) kg N/ha 186.2 (11.2) 208.6 (47.0) 396.3 (37.3) 

Total P2O5 kg P2O5/ha 55.0  3.6 

Total K2O kg K2O /ha 68.0  24.0 

Emissions associated to each crop 

Ammonia (NH3) kg/ha (kg N/ha) 12.4 (10.2) 19.7 (16.2) 28.3 (23.3) 

Nitrogen oxides (NOx) kg/ha (kg N/ha)   4.3 (2.0)  5.0 (2.3) 9.7 (4.5) 

Dinitrogen monoxide (N2O) kg/ha (kg N/ha)   4.3 (2.7)  4.9 (3.1) 6.9 (4.4) 

Carbon dioxide, from lime and 
urea (CO2) 

kg/ha  68.2  57.3 176.0 

Nitrate (NO3) kg/ha (kg N/ha)  135.1 (30.5)   141.7 (32.0)  425.9 (96.2) 
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Notes: a N quantities of organic fertilisers computed using AGRIBALYSE nutrient contents, otherwise computed 
using Galland et al. (2020) nutrient contents. Data on specific fertilising inputs were retrieved from MEANS 
InOut, because in AGRIBALYSE all fertilisers are reported exclusively in terms of their N, P and K contents. 
Nutrient quantities represent national means and not specific fertilisation strategies  

To illustrate Strategy E2, three conventional rotations were chosen, namely A) a leek-carrot-barley-cauliflower 

rotation receiving livestock effluents and COAF, B) a maize-wheat-rapeseed-wheat rotation receiving livestock 

effluents, and C) a field crops-sugar beet rotation receiving sewage sludge and digestate; the first two taking 

place in Brittany (Bretagne) and the third in the Picardy (Picardie) region. The dominantly mineral fertilisation 

regime of these rotations were substituted, while preserving yields, with dominantly organic fertilisation 

regimes. The nutrient contents of selected used fertilisers are summarised in Table 2, while the full list with 

uncertainty data is available in Galland et al. (2020). The fertilisers and associated emissions for these rotations 

are defined in Table 3 (full ITKs are presented in the Supplementary Material). 

Table 2. Nutrient contents of selected organic fertilisers 

Organic fertilisers C/N Dry 

matter 

(%) 

Total N 

(g/kg) 

NH4-N 

(g/kg) 

KeqN a P2O5 

(g/kg) 

K2O 

(g/kg) 

C (g/kg) IOMS b 

Swine slurry (Rotation 

A) 

3.4  3.6  3.5 2.5 0.42  2.1   2.7  11.9 50.0 

Swine slurry (Rotation 

B) 

3.4  6.8  4.5 2.5 0.42  2.1   2.7  11.9 50.0 

Cattle manure  19.0 19.9  4.8 0.9 0.16 2.3 5.9 90.1 65.0 

Poultry manure  12.4 64.1 21.7 3.0 0.31 15.3 19.0 269.5 42.3 

Digestate of green 

waste c 

18.0  26.5  5.9 1.9 0.73 2.7 5.1 102.8 91.0 

Dehydrated limed 

sewage sludge 

9.5  25.0  9.3 1.0 0.35 8.5 0.9 85.7 45.0 

Commercial organic 

fertiliser 7-6-8 

4.0  85.0  73.0 2.5 0.60 50.0 75.0 280.0 33.0 

Notes: a Coefficient of N fertiliser equivalence, representing the ratio between the amount of N provided by a mineral 

fertiliser of the ammonium nitrate type and the total amount of N provided by an organic fertiliser, which allows the 

same N absorption by the crop over its cycle (COMIFER, 2013). b Index of Organic Matter Stability, the proportion of 

organic matter that will likely contribute to the replenishment of C stocks in soil (Fuchs et al., 2014; Lashermes et al., 

2009). c In Syst’N simulations, liquid fraction of phase-separated digestate (total N: 1.3 g/kg; NH4-N: 0.8 g/kg) was used 

instead of raw digestate, considering an equivalent N fertiliser value. All values reported per kg WM (wet mass). 

Source: Galland et al. (2020). Detailed dataset of organic fertilisers characteristics available from Avadí and Paillat, 

(2020)  

Table 3. Main features of three fertiliser substitution scenarios for crop rotations, representing actual technical 

itineraries (Strategy E2) 

  Rotation A:  

(1) leek 
(2) carrot 
(3) barley 
(4) (late) cauliflower 

Rotation B: 

(1) mustard (catch crop) 
(2) maize silage 
(3) soft (winter) wheat 
(4) rapeseed 
(5) soft (winter) wheat 

Rotation C: 

(1) mustard (catch crop) 
(2) sugar beet 
(3) soft (winter) wheat 
(4) mustard (catch crop) 
(5) (spring) barley 
(6) soft (winter) wheat 
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Fertilisation strategy  Conventional Eco-design: 

“Organic” 

Conventional Eco-design: 

“Organic” 

Conventional Eco-design: 

“Organic” 

Yield 1 t/ha 50 50 N/A N/A N/A N/A 

Yield 2 t/ha 50 50 15 15 85 85 

Yield 3 t/ha 7.5 7.5 8 8 8 8 

Yield 4 t/ha 15 15 3.5 3.5 N/A N/A 

Yield 5 t/ha   8 8 7 7 

Yield 6 t/ha     8 8 

Mineral fertilisers               

Ammonium nitrate 
(33.5% N) 

kg/ha 1254  1313 418 955 478 

NPK 18-46-0 kg/ha   111 111   

Solution 390 (30% N) kg/ha     1000 333 

Organic fertilisers (doses are presented per individual crop in the rotation)  

Commercial organic 
fertiliser 7-6-8* 

t DM/ha  1.3 (1) 
1.0 (2) 
1.0 (4) 

    

Cattle manure t WM/ha  51.5 (2) 
4.4 (4) 

40 (2) 40 (2)   

Swine slurry m3/ha  50.4 (3)  40 (3) 
22 (4) 
40 (5) 

  

Dewatered sludge t/ha      18 (2) 

Digestate of green 
waste 

t/ha      11 (3) 
13 (5) 
11 (6) 

Emissions            

Ammonia (NH3) kg/ha 0 10.9 4.9 24.3 14.6 14.6 

Nitrogen oxides 
(NOx) 

kg/ha 10.8 18.9 16.7 15.5 0.62 26 

Dinitrogen monoxide 
(N2O) 

kg/ha 1.9 2.4 1.3 1.3 1.4 1.3 

Carbon dioxide, from 
lime and urea (CO2) 

kg/ha 0 0  0 196.2 65.4 

Nitrate (NO3) kg/ha 757.3 956.6 1010 1045 230.3 248 

Notes: *Organic fertiliser based on manure compost enriched with rendered animal products and press cakes (Avadí, 2020). 

3.2 Life cycle impact assessment 

A comparison of the relative impacts of mineral and organic fertilisers, per t of product, is beyond the scope of 

this work. Such comparisons are available in the literature (e.g. Hasler et al., 2015; Hospido et al., 2010; Quirós 

et al., 2015; Skowrońska and Filipek, 2014) including on French fertilisers (e.g. Avadí, 2020; Déchaux and 

Pradel, 2016). 

The impacts of all individual crops inventories considered in Strategy D1 (Table 1) after the substitution of 

dummy organic fertiliser processes with new processes featuring production impacts are practically identical, 

both per kg product and per ha. It implies that the contribution of organic fertilisers’ production is marginal. 

Single scores increased 0.5% for soft wheat, 1.7% for rapeseed and 0.7% for tomato. In the case of rapeseed, 

which features relatively higher inputs of organic fertilisers, for certain impact categories such as climate 
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change, ionizing radiation, terrestrial eutrophication and resource depletion (biotic, abiotic and water), the 

relative change exceeds 10%. The main reason behind these small variations is the fact that organic fertilisers 

with high associated impacts (e.g. treated sludge) are input in small amounts (in the order of hundreds of kg, as 

shown in Table 1), because the modelled processes represent national averages and thus combine (as a 

weighted mean) a variety of organic fertilisation practices. 

For Strategy E2, the amounts of organic waste required to deliver the necessary organic fertilisation in the 

alternative eco-designed “organic” rotations, as well as their most common disposal pathways, are detailed in 

Table 4. These rotations are not fully organic, as they include some mineral fertilisation, but rather organic 

fertiliser-dominated. According to a recent review (Loyon, 2017), about 11% of animal effluents are treated in 

France, thus we retained storage + spreading (Loyon, 2018) as the alternative pathway for this waste stream. 

As of today, the vast majority of liquid and dewatered sewage sludge are either spread in soils (76% of liquid 

and 36% of dewatered), composted (14% and 37%) or incinerated (3% and 23%) (Pradel, 2019) , thus we 

retained storage + spreading as the alternative pathway. No specific data on green waste and biowaste was 

available, other than the indication than in the last ten years around 30% of municipal solid waste was 

incinerated (ADEME, 2018), 20% of biodegradable municipal waste is landfilled (ETC/SCP, 2013) and about 10% 

of green waste is collected —separately from municipal solid waste— and valorised via shredding and use as 

mulch, composting or anaerobic digestion (FranceAgriMer, 2015). We, therefore, retained landfilling and 

incineration as alternative pathways. 

Table 4. Organic waste streams and business as usual disposal pathways associated with the organic fertiliser 

consumption of organic rotations 

  Rotation A Rotation B Rotation C Alternative 
disposal 
pathway 

Fertilisers Units Organic 
fertilisers 

Organic waste Organic 
fertilisers 

Organic waste Organic 
fertilisers 

Organic waste 

Commercial 
organic 
fertiliser 7-6-8 

t/ha 3.3 manure: 0.38 
wool residues: 

0.11 

    storage + 
spreading 

Cattle manure t/ha 56 56 40 40   storage + 
spreading 

Swine slurry m3/ha 50 50 102 102   storage + 
spreading 

Dewatered 
sludge 

t/ha     18 raw sludge: 
225 

storage + 
spreading 

Digestate of 
green waste 

t/ha     36 green waste: 
53 

landfilling 
or 
incineration 

 

In Strategy E2, large amounts of organic fertilisers (tens of t/ha) are input to replace mineral ones (hundreds of 

kg/ha) (Table 3), and therefore overall impacts increase considerably (Fig. 3), yet this effect is minimised when 

considering the alternative waste disposal pathways associated with the mineral fertilisation strategy (system 

expansion). Nonetheless, the choice of not allocating impacts to the production of animal effluents, rather 

consensual amongst the French LCA community, plays a role in limiting the impacts of these materials as inputs 

to agriculture. In contrast, the FAO initiative Livestock Environmental Assessment and Performance (LEAP) 

Partnership (FAO, 2018) suggests allocating impacts to manure (based on heat energy content or economic 

fertiliser value), because it is a useful co-product as energy feedstock or fertiliser. 
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Fig. 3. Relative single scores for three rotations (mineral vs. organic fertilisation), per ha. Percentages represent the 

overall variation in impacts for the Mineral fertilisation with respect to the Organic fertilisation with and without 

considering the alternative waste disposal pathways, as represented by the single score (excluding toxicity impact 

categories, as they tend to dominate due to limitations in the underlying models) 

These important differences (if the alternative waste disposal pathways associated with the mineral 

fertilisation strategy are not considered) are driven by the replacement of mineral fertilisers by animal 

effluents in Rotation A and Rotation B, and by dewatered sewage sludge and digestate in Rotation C (Fig. 4). In 

Rotation C, the large increase (>400%) in climate change with respect to the mineral fertilisation is due to the 

input of 18 t of dewatered sewage sludge, which required the treatment of 12.5 t of raw liquid sludge per t of 

dewatered sludge (based on their relative DM content), where the direct methane emissions during stocking of 

liquid sludge are in the order of 2.19 kg CH4/t (Avadí, 2020; Pradel, 2016; Richard and Pradel, 2014). These 

organic waste treatment impacts are not considered in the AGRIBALYSE dummy processes representing organic 

fertilisers. This dramatic increase is reduced to 1% when the alternative waste disposal pathways associated 

with the mineral fertilisation strategy is included. When the cumulative impacts of the sewage sludge 

treatment (storage and thickening of liquid sludge) are removed, impacts drop considerably for most impact 

categories, and still more when all impacts of sludge treatment are removed (Fig. 4c, representing the current 

situation in AGRIBALYSE processes), yet such impacts should always be considered and its exclusion is 

presented only to highlight their importance.
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Fig. 4. Relative endpoints for three rotations (mineral vs. organic fertilisation), a) Rotation A: leek-carrot-barley-cauliflower, b) Rotation B: catch crop-maize-wheat-

rapeseed-wheat and c) Rotation C: catch crop-sugar beet-wheat-catch crop-barley-wheat. Percentages in c) represent the overall variation in impacts per impact 

category, highlighting the contribution to impacts of including organic waste processing, with respect to the mineral fertilisation scenario including the alternative 

waste disposal pathway 
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A contribution analysis of Rotation C (Fig. 5), excluding the alternative waste disposal pathways, shows that the 

key contributors to impacts are mineral fertilisers and soil works for the mineral fertilisation strategy and the 

provision of organic fertilisers (including treated sewage sludge, which features high cumulative impacts) for 

the organic fertilisation strategy. If the cumulative impacts of treating sludge are not considered (e.g. if 

dewatered sludge is considered as a waste stream with zero impact, or if dewatering impacts are allocated to 

the wastewater treatment system), the impacts are dominated by the anaerobic digestion process. 

 

Fig. 5. Contribution analysis of Rotation C: catch crop-sugar beet-wheat-catch crop-barley-wheat 

3.3 Feasibility and environmental impacts of improved agricultural inventories and eco-designed 

“organic” cropping systems 

In principle, the substitution of mineral fertilisers by organic ones reduces environmental impacts when the 

nutrient contents of organic fertilisers are known (so that fertiliser doses can be accurately calculated), and 
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et al., 2013). Potential shortcomings of and recommendations on substitution have been widely discussed in 

the literature (Hanserud et al., 2018; Pradel and Déchaux, 2016; Vadenbo et al., 2017). In our opinion, the 
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modelled system, which in the case of agricultural recycling of organic waste, includes fertilisation of crops and 

disposal of organic waste. Several practitioners have followed this approach (e.g. Corbala-Robles et al., 2018; 

Martínez-Blanco et al., 2009; Mattila et al., 2012; Nakatani, 2014; Suh and Rousseaux, 2002).  

Strategy D2, as described in Avadí et al. (submitted), would modify direct field emissions, sometimes 

significantly, depending on the emissions modelling methods used. It is more difficult to justify, especially if the 

underlying crop rotation (relevant for various direct field emission models) is unknown. We do not recommend 

it under such conditions. Strategy E1, which would constitute a basic eco-design approach, is neither 

recommended if the underlying crop rotation is unknown. We insist that such a single crop-based fertiliser 

substitution would reduce the credibility of the agricultural inventory as representative of a real-world system. 

The elaborated data improvement Strategy D1 and eco-design Strategy E2 are not comparable, as they respond 

to two different sets of LCA needs. Strategy D1 is a very simplified approach to adapt existing single crop 

inventories to specific situations, be it by replacing dummy organic fertiliser processes with more complete 

ones (as in our example) or to replace at the crop level mineral fertilisers with organic ones (Strategy E1). For 

the latter purpose, careful analysis of the impacts of a fertilisation regime change on yields and emissions 

(including recalculation), as well as of the fertiliser replacement rationale, should be performed. AGRIBALYSE is 

a key source of cropping systems inventories, useful for agricultural eco-design initiatives. It should 

nonetheless be kept in mind that processes representing national averages, such as those in AGRIBALYSE and 

other reference databases such as ecoinvent (Wernet et al., 2016), World Food LCA Database (Nemecek et al., 

2020) and Agri-footprint (Blonk Consultants, 2019), do not represent actual ITKs of crops, but a weighted mean 

of various practices.  

Strategy E2 is more complex, and an advanced approach to eco-designing crop rotations by partially replacing 

mineral fertilisers with organic ones. Such an endeavour demands the use of a dynamic crop model to validate 

the agronomical soundness of the eco-designed system (i.e. the sequence of crops and associated fertilisation 

needs), as well as to recalculate the direct field emissions associated with the reformulated fertilisation regime. 

As it has been shown at the regional/territorial scale (Nitschelm et al., 2018), crop models allow to take 

account of more specificity and variability in system assessments with LCA.  

These complexities should be considered not only by LCA practitioners, but also by other decision-makers 

engaged in cleaner production in agriculture. 

4 Conclusion 

The described strategies illustrate the two most common approaches that LCA practitioners would follow to 

adapt existing agricultural LCIs, at the single crop or crop rotation levels, to particular agricultural situations 

featuring organic fertilisation. If single crop inventories representing national averages are modified, it is 

unlikely that the additional impacts of organic waste treatment would significantly contribute to the crop’s 

production impacts. If crop rotations are to be eco-designed by replacing conventional fertilisation strategies 

with a dominantly organic fertilisation one, it is recommended to use an agricultural model to validate the new 

rotation, because substitution of fertilisers is a rather complex endeavour demanding careful calculation of 

equivalences and interactions among crops. The inclusion of impacts of treating organic waste may have a 

considerable contribution to impacts, due to energy-intensive processes (e.g. sludge dewatering) and the large 

amounts of material that would need to be spread to replace mineral fertilisation. Moreover, the expanded 

functionality of a cropping system consuming organic waste-derived fertilisers (i.e. fertilisation + organic waste 

disposal) should be considered in comparative LCA. 
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All these refinements in agricultural LCA modelling contribute to a cleaner agricultural production, as they in 

principle enable more accurate comparisons of alternative agricultural systems, especially at the rotation level. 
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Figure captions 

Fig. 1. Strategies for agricultural inventory data improvement with AGRIBALYSE 
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Fig. 2. Strategies for agricultural eco-design with AGRIBALYSE  

Fig. 3. Relative single scores for three rotations (mineral vs. organic fertilisation), per ha. Percentages represent 

the overall variation in impacts for the Mineral fertilisation with respect to the Organic fertilisation with and 

without considering the alternative waste disposal pathways, as represented by the single score (excluding 

toxicity impact categories 

Fig. 4. Relative endpoints for three rotations (mineral vs. organic fertilisation), a) Rotation A: leek-carrot-barley-

cauliflower, b) Rotation B: catch crop-maize-wheat-rapeseed-wheat and c) Rotation C: catch crop-sugar beet-

wheat-catch crop-barley-wheat. Percentages in c) represent the overall variation in impacts per impact 

category, highlighting the contribution to impacts of including organic waste processing, with respect to the 

mineral fertilisation scenario including the alternative waste disposal pathway 

Fig. 5. Contribution analysis of Rotation C: catch crop-sugar beet-wheat-catch crop-barley-wheat 

 




