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Abstract—The situation of our food and agricultural system, 

facing the effects of the climate change and linked to the rise 

of both global population and needs is more than worrying. 

The need of production can no longer be solved by the 

excessive exploitation of our soils which has only led to the 

degradation of lands. This paper presents multidisciplinary 

researches that combine research on new indicators (such as 

redox potential which could be considered as key measure 

for agroecology and state-of-art in photonics which can 

miniaturize Near InfraRed spectrometer associated to 

advanced AI research in chemo metrics. They can 

altogether provide, at low-cost, measurements useful to 

drive the farms towards agroecological practices. Results 

will be presented on analysing 1000 samples of rapeseed 

measurements which lead, for the first time, to determine 

potential redox by spectrometry combined with the use of 

deep learning approaches. 

Index Terms—agroecology, AI, NIR, redox potential (Eh 

spectrometry 

I. CONSERVATION AGRICULTURE: AN AGRONOMIC

BASE FOR AGROECOLOGY 

The situation of our food and agricultural system, 

facing the effects of the climate change and linked to the 

rise of both global population and needs is more than 

worrying. The need of production can no longer be 

solved by the excessive exploitation of our soils which 

has only led to the degradation of lands, one-third of the 

planet’s soils are now concerned according to the FAO, 

and worse to the irreversible loss of arable lands.  

Conservation Agriculture proposes a resilient, 

production system. It is based on the consideration of the 

soil health and is led by three principles (Fig. 1): the 

reduction of tillage, the diversification of crops and the 

longest possible soil cover. 

Manuscript received May 25, 2021; revised November 23, 2021. 

Figure 1. Three principles of agroecology. 

Conservation Agriculture intends to regenerate 

degraded lands, meaning bringing back life in soils. By 

focusing on the organic matter’s presence in soil which is 

connected to the biological activity, these agricultural 

techniques aim to intensify the fertility circle. 

Mushrooms and soil fauna, especially earthworms, play 

indeed a key role in the organic matter accumulation and 

carbon sequestration which enable a plant to grow by 

finding the necessary nutrients. The more you feed with 

vegetal residues the life of soil, the more you gain fertility, 

and therefore performance of your farm.  

A living soil enables healthy plants to grow, with a 

reduced use of fertilizers and pesticides, and produces 

quality vegetables. With those practices farmers can 

maintain or increase their crop yield and simultaneously 

stop the use of fungicides, insecticides and reduce 

herbicides up to 80%.  

Agroecology will enlarge the concept of Conservation 

Agriculture, find real alternatives to develop organic 

conservation agriculture, pay attention to recreate a link 

between consumer and producers. 

Such changes in agricultural plots give rise to 

completely modified agro-ecosystems both in their 

thermodynamic dynamics and in their responses (biotic 

and abiotic) to the actions of farmers (pesticides, tillage, 

compaction). 

The need to measure to drive the transition: 

It is essential to provide to agriculture stakeholders 

measurement solutions that are simple to use, but 
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complete in the results obtained. Agroecology must 

therefore move from an empirical appreciation of plots as 

is traditionally done in agriculture, to an easy 

measurement of the biotic and abiotic parameters of plots 

for the purpose of understanding and progress. Also, 

today traditional indicators, even often measured in 

laboratories, are not enough to understand new 

agroecological environment related to living soils and its 

impact on the full chain. New indicators have to be 

identified such the potential redox described here after. 

II. REDOX POTENTIAL: THE INNOVATIVE MEASURES

TO DRIVE AGROECOLOGY 

Soil health or quality has been defined in many ways 

that usually include various aspects of physical and 

chemical soil properties and some biological indicators. 

Thus, various indicators proposed to assess soil health 

[1]-[4] all reflect the importance of soil organic matter, 

nutrient cycle, biological activity and soil structure in soil 

health. Interestingly, these parameters both impact and 

are impacted by soil redox potential (Eh, assessing the 

availability of electrons) and pH (assessing the 

availability of protons), and it was proposed to assess soil 

health through Eh and pH [5]. Eh and pH signaling and 

homeostasis are also regarded as key processes on almost 

all aspects of plant biology [6], [7], and as for soil health, 

the various methods developed to assess plant 

stress/health, as chlorophyll fluorescence, photo-

oxidative stress markers (including photosynthetic 

pigments, PSII efficiency, ROS, reactive carbonyl species, 

antioxidant systems) are all related to Eh and pH. Thus, it 

was proposed to use Eh-pH also as indicators of plant 

health [8]. 

These same parameters are related to, and can explain 

fundamental processes not only in soils and plants, but 

more generally in biology, including also animals/human 

as reflected in the increasing recognition of the 

importance of Eh and pH homeostasis in health [9]-[11]. 

Thus, an Eh-pH perspective could become a very 

powerful tool to develop a “one health approach” [12], 

addressing and encompassing the many interactions 

between environment (soil, climate, etc.), plants, 

microorganisms and animals. 

However, measurement of these parameters based on 

electrochemistry, face several difficulties especially 

redox potential. Variations in the methodology and 

instrumentation for measuring the associated voltages 

often lead to imprecise and inaccurate estimates of redox 

potential [9] and electromagnetic fields can dramatically 

perturb Eh measurement [10]. Furthermore, even when 

these constraints are overcome, electrochemical 

measurements are time consuming and fastidious, which 

strongly limits the possibility to use such measurements 

to drive the design and the implementation of 

agroecological practices. Hence, there is an urgent need 

to develop innovative measurement tools for in situ rapid 

and reliable measurement of Eh and pH in plants and 

soils. 

III. MEASURING REDOX POTENTIAL: OPERATIONAL

DIFFICULTY 

Measures on the field (Fig. 2) were made in 

partnership with the enterprise Ver de Terre Production 

which is recognized in France to lead the open source 

diffusion of agroecology knowledge and pilot farmer 

portraits. This French agroecological farms ecosystem 

allowed to quickly find a high variability of farm 

practices from conventional agriculture to no-till farming 

with carbon-rich soils. A campaign of measurement has 

therefore been done on wheat and rapeseed, spanning 

several months, from December 2019 to June 2020. 

Around 1200 leaves of wheat and 650 leaves of rapeseed 

have been measured from several farming management 

systems. First NIR spectra were done (see more info in 

Section VI), then, redox potential was measured directly 

by inserting a platinum electrode into the foil as described 

in [8]. Once these measurements were made, a mortar and 

pestle then a syringe were used to extract the juice, on 

which the pH was measured with a Laquatwin pH 22 

meter. 

The collected data were directly sent to the NIR sensor 

with the dedicated application (see part VI). 

Although accurate, the method applied for the redox 

measurement has the following drawbacks: 

- The equipment used for the measurement of the ORP

being extremely sensitive to electromagnetic disturbances, 

care must be taken to analyse the samples collected in 

areas free from such disturbances. 

- The electrodes used for the redox potential

measurement being sensitive to temperature variations, it 

is necessary to accompany each measurement point with 

a temperature reading, which will subsequently make it 

possible to correct the measurement affected in the field. 

- The redox potential measurement may vary slightly

with the pressure exerted by the platinum electrode on the 

sheet. 

- The redox potential measured on a sheet varies

greatly during the day. We observed a plateau from 11 

a.m. to 4 p.m. which makes it possible to compare the

different modalities among themselves [8].

Figure 2. Measuring redox potential in the field. 
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IV. THE “REDOX” SCANNER: TOOL OF THE FUTURE

As introduced in previous section, Redox potential (Eh) 

is not easy to measure on day-to-day practices also due to 

electromagnetic sensitivity where measurements can 

differ even taken at few cm in distance. While some 

measurement kit exists [13], few farmers actually use it 

and that prevents to acquire the information needed to 

drive the farms towards greener practices. Usual 

measurements are done in laboratories sometime using 

laboratory spectrometer. With the recent miniaturization 

of spectrometers on MEMS chip [14], we decided to 

conduct some research to explore the feasibility to 

develop a portable and low-cost spectrometer with the 

challenge to measure new indicators such as Eh. We set a 

multi-disciplinary research team with agronomist, 

electronics and photonics specialists to work on the 

hardware integrating a Near Infra-Red (NIR) 

spectrometer and Data Scientist to interpret the light 

spectrum with AI-based chemometrics.  

V. THE NIR SPECTROMETRY

The spectroscopy is not new and first industrial 

applications began in the 1950s. Many laboratory 

spectrometers are available on the market but they are 

often quite bulky and expensive. What is new is the 

miniaturization of the technology which allow small 

handheld device together with cost reduction to be 

affordable to end-users (e.g. farmers). We present here 

the potential of spectrometry in the light band of Near 

Infra-red. Near-Infrared Spectroscopy (NIRS) [15] is a 

spectroscopic method that uses the near-infrared region of 

the electromagnetic spectrum (from 780 nm to 2500 nm). 

Near-infrared spectroscopy is widely applied in 

agriculture for determining the quality of forages, grains, 

and grain products, oilseeds, coffee, tea, spices, fruits, 

vegetables, sugarcane, beverages, fats, and oils, dairy 

products, eggs, meat, and other agricultural products. It is 

widely used to quantify the composition of agricultural 

products because it meets the criteria of being accurate, 

reliable, rapid, non-destructive, and inexpensive [16]. 

Near-infrared spectroscopy is based on molecular 

overtone and combination vibrations. There is absorption 

of light energy when the frequency of the radiation hitting 

the molecular bound is equal to the frequency of vibration 

of this bond. We can therefore link a wavelength to a 

given bond ex 1900 nm and H-OH of the water molecule. 

The molecular overtone and combination bands seen in 

the near-IR are typically very broad, leading to complex 

spectra; it can be difficult to assign specific features to 

specific chemical components. For each product we get a 

spectra with level of light absorbance per wavelength (see 

example Fig. 3) The interpretation of the spectra is the 

chemometrics science, where innovative approach using 

AI techniques have recently emerged and which have be 

used in this project. 

Figure 3. Near-infrared spectrum of liquid ethanol. 

VI. THE AI BASED CHEMOMETRICS

Because of the complexity of measuring the redox 

potential, we have looked at other ways of getting an 

accurate value for this quantity. Given the current trend 

and success of the NIR spectroscopy in agriculture, it 

made sense to attempt inferring the redox potential value 

from a NIR scan. 

A campaign of measures has therefore been done on 

rapeseed, spanning several months, from December 2019 

to June 2020. 

Two quantities were measured on wheat and rapeseed 

leaves: 

• Redox potential, using a standard redox potential

measurements kit,

• And leaves absorbance, measured using a NIR

sensor. The sensor used was based on the Texas

instrument NIR scan module [17], of which the

spectral wavelength goes from 900nm to 1700nm.

Several scans (from 2 to a dozen) were done for

each sample, and therefore several scans were

associated with the same redox potential

measurement.

A scan is basically made of 256 data points

(absorbance value at a specific wavelength).

The distribution of the redox potential for the rapeseed 

is shown below (Fig. 4). 

Figure 4. Redox potential distribution. 

62

Journal of Advanced Agricultural Technologies Vol. 8, No. 2, December 2021

©2021 Journal of Advanced Agricultural Technologies



This distribution is changing across the season/months 

as shown below (Fig. 5): 

Figure 5. Monthly variation of the redox potential distribution. 

The collected data has been cleaned, particularly we 

have retained only two scans (chosen randomly) per 

sample, to avoid any bias due to the different number of 

measurements per redox potential value. 

After cleaning, we had a set of around 650 samples for 

rapeseed. 

The challenge was then to understand if there exists a 

relationship between a 900nm-1700nm absorbance scan 

and the redox potential value. And if we could find this 

relationship with a good enough precision so that it can 

be used. 

A. Traditional Approaches, PCR & PLSR

The first obvious solutions were to use traditional

approaches, i.e. algorithms that have already been used in 

the context of NIR spectroscopy and gave correct results. 

PCR (Principal Components Regression) and PLSR 

(Partial Least Squares Regression) were two good 

candidates as suggested by numerous scientific papers 

describing the use of these two algorithms for NIR 

predictions, as for instance [18]. 

PCR and PLSR are dimensionality reduction 

algorithms and therefore appropriate to our high 

dimensional data (256 wavelength points for each 

sample). 

Both algorithms work by transforming the explanatory 

variables into a number of components and performing a 

linear regression using these components. The main (and 

significant) difference between these two algorithms is 

that PCR is using only the explanatory variables for the 

transformation whereas PLSR using both the explanatory 

variables and the response variable (e.g. the redox 

potential value). 

We’ve performed regressions with different 

configurations, particularly with regards to how the data 

were pre-processed. We applied: 

1) None: no pre-processing, i.e. using using raw data,

2) StdScl: standard scaling (removing the mean and

scaling to unit variance),

3) SavGol: Smoothing using the Savitzky-Golay [19]

method (order 3, derivative 1),

4) SavGol-StdScl: Savitzky-Golay smoothing 

followed by standard scaling, 

5) Outliers-SavGol-StdScl: Removing outliers,

Savitzky-Golay smoothing followed by standard

scaling.

Datasets have been split into a training set and a test 

set with a 0.2 ratio (20% of the dataset is reserved for test 

set, i.e. for estimating the performance of the algorithms. 

The test set is never used for training). 

To compare the performance of each model, we used 

the following metrics: RMSE (Root Mean Standard 

Error), MAE (Mean Absolute Error) and R2 (R-Squared). 

The number of components for both PCR and PLSR 

have been determined by cross validation on the train 

dataset: 

• A regression is performed with growing number of

components [1, 130],

• Performance of the regression is evaluated by

computing the RMSECV,

• The number of components to perform the final

regression is the one that gave the best (lowest)

RMSECV.

The results of our tests for PCR and PLSR are 

summarise in the flowing Table I: 

TABLE I.  METRICS RESULTS PCR & PLSR ON TEST DATASET 

PCR PLSR 

Raw data R2: -0.10 

RMSE: 26.26 

MAE: 21.16 

R2: 0.66 

RMSE: 14.46 

MAE: 11.77 

Standard scaling R2: -0.26 
RMSE: 28.03 

MAE: 22.32 

R2: 0.68 
RMSE: 14.04 

MAE: 11.60 

Savitzky-Golay R2: 0.27 
RMSE: 21.29 

MAE: 16.52 

R2: 0.71 
RMSE: 13.62 

MAE: 10.81 

Standard scaling + 

Savitzky-Golay 

R2: 0.02 

RMSE: 24.76 
MAE: 19.79 

R2: 0.71 

RMSE: 13.53 
MAE: 10.34 

Outliers + Standard 

scaling + Savitzky-
Golay 

R2: 0.172 

RMSE: 21.33 
MAE: 16.53 

R2: 0.67 

RMSE: 13.47 
MAE:11.01 

The following observed vs predicted plots show the 

best results obtained for PCR and PLSR (Fig. 6 & Fig. 7). 

Figure 6. Redox potential predictions using PCR (SavGol). 
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Figure 7. Redox potential predictions using PLSR (SavGol). 

B. Successful Results Using Deep Learning

The results obtained with PCR and PLSR are good, but

there is definitively room from improvements. 

Both PCR and PLSR being linear regression 

algorithms, they may not be capturing non-linear 

relationships between the explanatory variables and the 

response variable. It therefore made sense to attempt 

improving results by using Deep Learning algorithms 

which are, by nature, non-linear.  

We’ve chosen to use an MLP (Multi-Layer Perceptron). 

MLP algorithms are based on the Perceptron invented in 

the late fifties by Frank Rosenblatt [20]. It is a type of 

artificial neural network composed of multiple layers of 

perceptron having a non-linear activation function. The 

number of layers can vary as can the number of 

perceptron per layer. An MLP having a minimum of 3 

layers, an input layer, and hidden layer and an output 

layer. 

We’ve tried different architecture for the MLP 

(different number of layers, number of neurons 

(perceptrons + non-linear activation function) per layer, 

regularization techniques to avoid overfitting), the best 

results obtained are listed below (Table II):  

TABLE II.  METRICS RESULTS MLP ON TEST DATASET 

MLP 

Raw data R2: -0.09 

RMSE: 25.79 

MAE: 20.17 

Standard scaling R2: 0.89 

RMSE: 8.02 

MAE: 6.16 

Savitzky-Golay R2: 0.65 

RMSE: 14.66 

MAE: 10.86 

Standard scaling + 
Savitzky-Golay 

R2: 0.91 
RMSE: 7.31 

MAE: 5.09 

Outliers + Standard 

scaling + Savitzky-
Golay 

R2: 0.84 

RMSE: 9.15 
MAE: 5.92 

These results show that the MLP definitively give 

superior results than PCR/PLSR with a best RMSE found 

being 7.31 mV. 

The observed vs predicted plot for the best MLP 

results is shown below (Fig. 8): 

Figure 8. Redox potential predictions using MLP (SavGol-StdScl). 

C. Other Quantities Related to the Redox Potential

Given these good results with the redox potential

quantity, we then followed up by looking at predicting 

other quantities of the redox potential framework, namely 

pH and Conductivity. 

We used the same rapeseed dataset and similar MLP 

architecture. The distribution of both pH and 

Conductivity are shown below (Fig. 9 & Fig. 10): 

Figure 9. pH distribution. 

Figure 10. Conductivity distribution. 
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We again achieved good results predicting pH and 

Conductivity. Best results are shown in the table below 

(Table III): 

TABLE III.  METRICS RESULTS MLP 

pH Conductivity 

Standard scaling R2: 0.79 

RMSE: 0.084 

MAE: 0.057 

R2: 0.77 

RMSE: 0.63 

MAE: 0.42 

Savitzky-Golay R2: 0.8 

RMSE: 0.084 

MAE: 0.056 

R2: 0.76 

RMSE: 0.65 

MAE: 0.44 

Standard scaling 
+ Savitzky-Golay 

R2: 0.91 
RMSE: 0.055 

MAE: 0.035 

R2: 0.91 
RMSE: 0.40 

MAE: 0.26 

Outliers + 
Standard scaling 

+ Savitzky-Golay 

R2: 0.92 
RMSE: 0.05 

MAE: 0.031 

R2: 0.89 
RMSE: 0.4 

MAE: 0.24 

The observed vs predicted plots for the best MLP 

results for pH and conductivity are shown below (Fig. 11 

& Fig. 12): 

Figure 11. pH predictions using MLP (Outliers-SavGol-StdScl). 

Figure 12. Conductivity predictions using MLP (SavGol-StdScl). 

VII. RESULTS AND LOOK AHEAD

With this multi-disciplinary approach, we succeeded to 

cope with the challenge of measuring redox potential 

with a remarkable accuracy, in an easy way with a first 

prototype of an affordable handheld scanner (Fig. 13). 

We will now start several validation campaigns to 

confirm the accuracy of the data models and to acquire 

data for a broad range of new products such as tomatoes, 

potatoes, grapes, etc. 

Figure 13. Measures in fields with the handheld scanner already 
working. 
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