

Medium-Throughput methods for Screening and Selection:

Predicting Cooking Quality of Boiled Cassava

ISTRC-AB symposium 20-24/09/2021

Thierry TRAN, Cassava program Alliance of Bioversity & CIAT / CIRAD

Co-authors

X. ZHANG, H. CEBALLOS, J.L. MORENO, J. LUNA, M.A. OSPINA, A. ESCOBAR, S. SALAZAR, N. MORANTE, J. BELALCAZAR, D. DUFOUR, L.A. BECERRA LOPEZ-LAVALLE

Outline

- Quality traits are time consuming to evaluate for breeding and selection.
- Typically, they are not part of routine screening of large numbers of clones.
- Screening focuses on agronomic traits: Yields, tolerance to pests and diseases, plant architecture, etc.
- Nevertheless, there is increasing recognition that quality traits are important for longterm adoption of improved varieties.
- → Case study of boiled cassava.

Outline

- Cooking quality is an important acceptability criteria for boiled cassava, including cooking time and texture perception (softness, etc.).
 - Desirable: Short cooking time, associated with soft texture
- Current methods are time-consuming, up to 60 min/sample.
- Faster methods are needed to integrate cooking quality criteria in the selection process and increase adoption rates.
- Water absorption (WAB) is faster (30min), repeatable and can predict cooking time.
- NIRS is even faster (5 min) and can classify clones into short- and long-cooking groups.

Stakeholders

Consumers

Processors

Local Seed Providers

Countries

Target Countries

Benin

Côte d'Ivoire

Cameroon

Nigeria

Uganda

Spillover Countries

Colombia

Ghana

Kenya

Mozambique

Tanzania

Variation of Cooking Time in a Diverse Panel

- Cooking time of 36 genotypes harvested at 4 different ages (8 to 11 months)
- Some clones are stable and predictable in cooking time (CT), but others are highly variable.
- Short-cooking clones also tend to be softer.
- CT is a key acceptability criteria: Cassava should not take too long to cook!
- Landraces for boiled cassava cook in 15-30 minutes (Colombia)
- → Target for breeding: Less than 30 minutes (Colombia)

Evaluation of Cooking Time

- Conventional method by prodding pieces with a fork until soft, and recording the time.
 - Slow, up to 60 min for long-cooking genotypes.
 - Somewhat subjective / operator effect.
 - Requires individual evaluation of several pieces, then calculation of average.
- Need faster, more objective method
- → Water absorption during boiling
- → NIRS

Water Absorption Correlates with Cooking Time

- Diversity of cooking times and water absorptions among cassava genotypes
- Short-cooking genotypes tend to have high water absorption, and vice-versa.

High Correlation between WAB and CT

Dataset from Dec. 2019 – Jan. 2020 harvests of 36 genotypes

Water absorption at 30' shows significant correlation with cooking time (r² = 0.63).

WAB is more discriminant at 30 min cooking

WAB30: r = -0.78

WAB20: r = -0.47 to -0.68

WAB10: r = -0.43 to -0.54

Water absorption at 30 min shows better correlation with cooking time.

Water Absorption Protocol

Half-cylinder pieces 6cm long and at least 5cm ∅

- 8 pieces from 4 to 6 different roots mixed and boiled together.
- Record the weight before boiling (t = 0') and after 30 minutes.
- WAB30 = Change in weight between t=0' and t=30', expressed as % of weight at t=0'

- Faster than fork method: 30 min for all genotypes.
- Simple weight measurement, no subjectivity.
- Stable: Evaluation of several pieces together, reducing variability.
- **Repeatable**: R² = 0.91 between replications
- Tran et al., 2021. Correlation of cooking time with water absorption and changes in relative density during boiling
 of cassava roots. International Journal of Food Science and Technology. https://doi.org/10.1111/ijfs.14769

Replications over two years confirm the correlation

Cooking time $(min) = -1.79 \times WAB30(\%) + 56.51$

Combined 2020+2021 dataset:

Cooking time $(min) = -1.46 \times WAB30(\%) + 53.98$

- Dataset from Jan.-March 2021 confirms the stability of the correlation over 2 years
- Correlation stable for different ages of the plants at harvest (9 to 11 months)
- Able to screen out long-cooking genotypes, for which the correlation can be considered linear.
- 50 samples/day

Implement Water Absorption in Breeding

- Selection of short-cooking clones among F1C1 biofortified cassava at CIAT.
 - Population: F1C1 with 3196 clones.
 - Selected: 389 clones advanced to CET.
 - 4 selection criteria: WAB, DM, BCC, TCC.

High Throughput Phenotyping using Near Infrared Spectroscopy (NIRS)

Prediction and screening of desirable food quality traits

High throughput method for cooking time of boiled cassava by NIRS

Classification of genotypes into two classes: ≤ 30 min (C1) and > 30 min (C2)

F1 scores vs predicted scores for the learning set

F1 scores vs predicted scores for the validation set

Overall 80% correct prediction.

1st demonstration that NIRS

can predict quality traits

From \ To	C1	C2	Total	% correct
C1	19	4	23	82.6%
C2	3	9	12	75.0%
Total	24	11	35	80.0%

Acknowledgements

CIAT Cassava Program Post-harvest Quality Lab team Field team

RTB Flagship 4 - CA4.2

John BELALCAZAR, Larry MORENO, Jorge LUNA, Alejandra OSPINA, Andrés ESCOBAR, Cristian DUARTE, Sandra SALAZAR, Nelson MORANTE, Hernan CEBALLOS, Xiaofei ZHANG, Dominique DUFOUR, Luis Augusto BECERRA

Alliance

