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Ecological phenomena operate at different spatial scales and are not uniform across 
landscapes or through time. One ecological theory that attempts to account for scaling 
and spatiotemporal variances is hierarchical patch dynamics. It introduces a hierarchi-
cal patch network with smaller spatiotemporal scales being nested within larger scales. 
However, few studies have modeled its presence within animal population dynam-
ics. Locusts are an excellent model for investigating the spatiotemporal hierarchy of 
animal population dynamics, due to their high migratory capacity, large geographic 
ranges that extend across widely differing environments, and available long-term data 
on distributions. Here, we investigated the influence of preceding vegetation growth 
on desert locust Schistocerca gregaria and Australian plague locust Chortoicetes termin-
ifera outbreaks on three spatial levels (species range > geographic region > land unit) 
and between seasons. Both species are dryland herbivores with population dynamics 
linked to habitat productivity pulses after rain. We used NDVI data (MODIS imag-
ery) as a measure of vegetation growth in hierarchical generalized additive models at 
different scales. Locust outbreaks were either preceded by vegetation growth between 
78 and 32 days (Australian plague locusts) or 32 and 20 days before (desert locust) the 
observation. Although prior vegetation growth characterized outbreaks of both spe-
cies, the temporal pattern of NDVI differed between spatiotemporal levels. All model 
selection criteria selected for a similar spatial hierarchy for both species: geographic 
region > land unit which supports the hierarchical patch dynamics paradigm. Further, 
it illuminates important timing differences between geographic regions and land units 
for preceding vegetation growth and locust outbreaks which can help locust manag-
ers identify when and where outbreaks occur. By acknowledging the spatiotemporal 
patterning of locust abundance, we account for heterogeneity of population dynamics 
throughout species ranges. Our findings demonstrate the importance of incorporating 
spatiotemporal variation in population models of insects and other animals.
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Introduction

The spatiotemporal dynamics of populations has been a 
central theme in ecology for over a century (Grinnell 1917, 
Davidson and Andrewartha 1948, Andrewartha and Birch 
1954, Macarthur 1958, Hanski 1998). However, there 
remains wide scope for investigating and understanding the 
abiotic (e.g. climate, geological variances) and biotic (e.g. 
food availability) factors affecting the dynamics of each spe-
cies (Council 2001, Sutherland et al. 2013, Padilla et al. 2014, 
Stacey 2017). Numerous researchers have shown that eco-
logical phenomena operate on multiple spatiotemporal scales 
(Senft et al. 1987, Wiens 1989, Levin 1992, Wu and Loucks 
1995, Pierson and Turner 1998). For example, caribou and 
elk populations are distributed by multi-scale resource selec-
tions: from individual and herd home ranges to the entire 
species range (Johnson 1980, Johnson et al. 2004, Coe et al. 
2011, Decesare et al. 2012). Schooling fish and krill organize 
into three levels: individuals congregate in schools or swarms 
which are concentrated into patches linked to mesoscale 
environmental features, and finally these patches are aggre-
gated in areas that reflect habitat constraints at range bound-
aries (Murphy et al. 1988, Fauchald et al. 2000, Fauchald and 
Erikstad 2002, Fauchald and Tveraa 2006). Since vegetation 
and consequently animals are heterogeneously distributed 
because of spatiotemporal variation in climatic and other 
abiotic factors (Watt 1947, Greig-Smith 1979, Condit et al. 
2000, Ives et al. 2008), a spatiotemporal hierarchy of animal 
population dynamics must be acknowledged.

The hierarchical patch dynamics (HPD) paradigm allows 
for linkages between spatial and temporal scales through a 
nested model of patches within patches (Kotliar and Wiens 
1990, Wu and Loucks 1995). This paradigm can capture 
the inherent complexity of landscape level analyses which 
have emergent properties that arise across different scales 
(Newman et al. 2019). HPD can integrate multiple scales 
whereas most current approaches that attempt to address 
scale, model the levels independent of each other. In a review 
of multi-scale habitat selection studies, McGarigal et al. 
(2016) found only 20% (173 out of 859) were quantitative 
and met their most basic definition of being multi-scale which 
was modeling multiple levels independently. This can be 
problematic because many animal populations do not act on 
single spatiotemporal levels. Here we model the hierarchical 
nature of outbreaks of two locust species (Fig. 1): the desert 
locust (Schistocerca gregaria, Forskål 1775) and the Australian 
plague locust (Chortoicetes terminifera, Walker 1870).

Locusts are grasshoppers that go through periodical 
population irruptions (i.e. outbreaks) which influence eco-
system functioning (Barbosa et al. 2012) and also pose sig-
nificant issues to food security globally (Cullen et al. 2017). 
Therefore, it is important to understand locust population 
regulation. The majority of locust species live within variable 

dryland ecosystems which are characterized by the resource-
pulse paradigm in which ecosystem productivity dramatically 
increases with pulses of resources usually connected with 
weather patterns (Noy-Meir 1973, 1974, Whitford 2002, 
Schwinning and Sala 2004, Morton et al. 2011). Specifically, 
precipitation leading to vegetation growth supports increases 
in locust populations (Chapman and Joern 1990). Most fore-
casting and predictive models have therefore been driven by 
some combination of preceding climate including precipita-
tion, soil moisture and vegetation growth, such as the nor-
malized difference vegetation index (NDVI) derived from 
earth observation satellites (Cressman 2013, Deveson 2013, 
Piou et al. 2013, Wang et al. 2019, Mangeon et al. 2020).

Several locust species are suitable models for examining 
scaling issues in animal population dynamics. This is because 
locust outbreaks develop in response to regional ecological 
conditions across very large geographic ranges. For example, 
using an occupancy modeling approach, Veran et al. (2015) 
showed that Australian plague locust outbreak probability 
changes spatially and a hierarchical modeling approach can 
aid in predicting outbreaks. Similarly, desert locust outbreak 
probability likely varies spatially since this species can out-
break anywhere from West Africa to India (Uvarov 1977), an 
area encompassing enormous variations in abiotic and biotic 
variables. Vegetation, which is important for locust popula-
tions to build, changes in structure, nutrient availability and 
community composition between geographical areas and sea-
sons (Watt 1947, Greig-Smith 1979, White 1983). Therefore, 
accounting for multiple spatial levels via the HPD in a single 
modeling framework could support hypotheses about locust 
plague ecology that are untested at local to global scales.

For this study, the spatiotemporal hierarchy of locust out-
breaks are broken into four biologically relevant levels (Fig. 1; 
larger pictures can be found in Supporting information). The 
‘species range’ level is the entire range where outbreaks of each 
locust species have been observed. At this level, the important 
factors are migration and large-scale climatic factors (e.g. El 
Niño Southern Oscillation, Indian Ocean Dipole, Southern 
Annular Mode and climate change). The second level involves 
large geographic areas that experience similar climatic condi-
tions (e.g. seasonal rainfall zones). The third level includes 
bioregions or ecoregions (hereafter termed land units) with 
similar abiotic and biotic conditions (e.g. soil characteris-
tics, rainfall, vegetation structure, etc.). Further, there is an 
independent temporal level of season, as all spatial levels vary 
based on the time of the year due to changing temperature 
and rainfall. Each level poses a bottleneck which could con-
strain locust breeding and population increase. Therefore 
plagues (large-scale outbreaks) can develop when favorable 
habitat conditions occur over multiple regions throughout 
multiple seasons.

In this study, we investigate how changes in preceding 
vegetation growth predicts nymphal outbreaks of two locust 
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species that occur on different continents using three, nested 
spatial (species range > geographic region > land unit) levels 
and temporally through seasonality (Fig. 1). Since preceding 
herbaceous vegetation productivity is assumed essential for 
nymph growth and survival to adulthood, we expect it will 
be an important factor determining outbreaks. Due to the 
spatiotemporal variation of biotic and abiotic variables we 
expect the specific relationships between preceding vegeta-
tion growth and outbreaks to be different for each species. 
However, we expect that the nested spatiotemporal hierarchy 
will emerge as a crucial characteristic for any outbreak.

Methods

Locust outbreak data source

Data for both species were obtained from survey and man-
agement operations (e.g. reported outbreaks for control 
via pesticide spraying) databases. We chose to analyze only 
nymph data as their presence more closely reflects prior prox-
imal habitat conditions. Since adults are highly mobile and 
can migrate over long distances, effective locust plague man-
agement is focused on predicting and preventing nymphal 

Figure 1. The hierarchical structure of Australian plague locust (A)–(D) and desert locust (E)–(H) ecology. The hierarchy is as follows: spe-
cies range (A, E), geographic regions which vary based on large scale climatic patterning (B, F), land unit which vary based on abiotic and 
biotic conditions (C, G). Lastly, seasonality (D, H) is an important temporal effect on all levels from species range to land unit. For clarity, 
we have included individual pictures within the Supporting information. Pictures are both under Creative Commons 3.0 license with credit 
given within.
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outbreaks to prevent populations from becoming adults 
(Therville et al. 2021).

As a result of discrepancies in density categorization and 
identification between observers, and the low detection prob-
ability of nymphs at low densities, we decided to identify 
probable non-outbreaks (e.g. ‘0’) and outbreaks (e.g. ‘1’) 
similar to Veran et al. (2015). Outbreaks are characterized 
by high density, gregarious nymphs. This binary threshold 
differed between species because data collection differed as 
discussed below.

Australian plague locust
Australian plague locust data between the years 2000 and 
2017 (~ 185 000 survey or report records) was provided by 
the Australian Plague Locust Commission and the state agri-
cultural agencies of Queensland, New South Wales, South 
Australia and Victoria. Records from each agency were 
adjusted to the same nymph density class schema (Deveson 
and Hunter 2002). The data structure is georeferenced points 
with ordinal categorical response values for both adult and 
nymph densities. The value ranges for nymphs were: 0 = nil, 
1 = < 5 m2, 2 = 5–30 m2, 3 = 30–80 m2, 4 = > 80 m2. Point 
distributions can be seen in Fig. 1A and a larger picture can 
be found in Supporting information. We used a binary data 
schema by selecting density categories 0–2 as non-outbreaks 
(e.g. ‘0’) and categories 3–4, that exhibit gregarious behavior, 
as successful nymph outbreaks (e.g. ‘1’).

Desert locust
Desert locust outbreak data was provided by the Food and 
Agriculture Organization (FAO) of the United Nations (FAO 
2020). FAO stores and cleans (e.g. checks for errors and stan-
dardization) the data coming from the affected countries that 
conduct ground surveys with trained officers and generalized 
common standards of information reporting. This dataset 
spanned 19 years from 2000 to 2019, with a total ~340 000 
records. The data structure is georeferenced points that iden-
tify whether solitarious, transient or gregarious locusts were 
present based on morphological characteristics of the individ-
uals observed in each location (Cressman 2001). Distribution 
of points can be seen in Fig. 1E with a larger map found in 
Supporting information. If transient or gregarious nymphs 
were present, the observation was classified as a successful 
outbreak. Non-outbreak observations were classified if there 
were solitarious or no nymphs identified. This approach is 
similar to other studies analyzing desert locust reproduction 
successes (Piou et al. 2017, Kayalto et al. 2020).

From points to gridded data

We centered all data points within either a 5 × 5 km grid for 
desert locusts or a 1 × 1 km grid for Australian plague locusts 
and collected data from that entire area to reflect nymph 
mobility, gregarization and scale of NDVI importance for 
population outbreaks. The desert locust is considerably larger 
than the Australian plague locust and nymphs can walk up 
to 7–12 km (Ellis and Ashall 1957, Coppen 1999) whereas 

Australian plague locusts can walk a maximum of 2 km from 
the hatching site before becoming adults (Hunter et al. 2008). 
Given that gregarization happens at local scales (Collett et al. 
1998) and the importance of local habitat conditions on 
nymph growth (Veran et al. 2015), the grid sizes are appro-
priate trade-offs. Lastly, whereas spatial scale of importance 
for NDVI resolution has not been reported for Australian 
plague locust, Piou et al. (2013) found that averaged NDVI 
of 0.25 × 0.25 km and 0.75 × 0.75 km were not as good of 
predictors as 1.25 × 1.25 km and that vegetation quantity 
(e.g. number of NDVI pixels above 0.14) is an important 
predictor for presence/absence of desert locust at a scale of 8 
× 8 km. Given these factors and understanding that nymph 
mobility varies widely with landscape structure which varies 
largely between the Australian, African and southwest Asian 
drylands (Maestre et al. 2021), we selected 5 × 5 km grid 
for desert locusts and 1 × 1 km grids for Australian plague 
locusts. Grid size selection should be based on current litera-
ture and future research endeavors should consider carefully 
what grid size is used as there is not one correct size.

Biological relevant spatial level sourcing

All levels (zone, land unit and season) were selected to best 
reflect the spatiotemporal variation within each species 
range (Table 1). For the Australian plague locust, we used 
the major rainfall classification zones as the geographic 
region level which are six large climatic zones based on sea-
sonal rainfall distribution (<www.bom.gov.au>) (Fig. 1B; 
Supporting information). For land unit, we used the Interim 
Biogeographic Regionalisation for Australia (IBRA) ver. 7 
dataset (<www.environment.gov.au/land/nrs/science/ibra>) 
(Fig. 1C; Supporting information). For seasonality, there are 
few records from winter months because the bulk of the pop-
ulation are in dormant eggs stages, as such we left winter out 
of the models. Seasons were separated by the following dates:

• Spring: 2 September–1 December
• Summer: 2 December–29 February
• Autumn: 1 March–1 June
• Winter: 2 June–1 September

For the desert locust, we used the outbreak area model 
as suggested by Uvarov (1928) (Fig. 1F; Supporting infor-
mation) for the geographic region level. There are two cat-
egories at this level which are recession and invasion zones. 
These zones represent desert locust ecology where they per-
sist throughout generations in the recession zone and peri-
odically swarm and outbreak in the invasion zones. For the 
land unit level, we used the World Wildlife Fund’s Terrestrial 
Ecoregions of the World (Fig. 1G; Supporting information) 
(Olson et al. 2001). The bioregions and ecoregions used for 
each species differ slightly. The Australian bioregions were 
constructed with vegetation characteristics in mind. The 
World Wildlife Fund’s Ecoregions are constructed from simi-
lar soil characteristics and topography and have a more gener-
alized approach to acknowledging major vegetation structure. 
To ensure that smaller levels were assigned one single category 
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for each higher level, we assigned each observation grid and 
land unit the category in which it overlapped the most with.

Since the species range encompasses a large geographic 
area, traditional seasons are not applicable in this situation. 
Instead, we used a temporal grouping that reflected large scale 
migration trends of this species (Symmons and Cressman 
2001) (Fig. 1F, Supporting information). This led to the fol-
lowing seasonal division:

• Spring: 1 April–30 June
• Summer: 1 July–30 September
• Autumn: 1 October–31 December
• Winter: 1 January–31 March

Remotely sensed data preparation

The normalized difference vegetation index (NDVI, Pettorelli 
2013) is an established method for estimating vegetation 
amount and condition from multispectral scanners. The index 
is calculated as a ratio of the contrast between the surface 
reflectance infra- (NIR) and visible-red (Red) wavelength and 
the sum of these two bands (NIR − Red/NIR + Red), which 
indicates the amount of actively photosynthetic material 
covering the pixel. We used 8-day averaged MODIS (Terra 
Surface Reflectance 8-Day Global 250 m, MOD09Q1 v006) 
imagery captured between 2000 and 2019, collected from 
Google Earth Engine (Gorelick et al. 2017). This allowed us 
to account for variances in imagery based on cloud coverage, 
low view angle, aerosols and other potential image collection 
biases. Because locust plagues do not occur in and rarely go 
into urban areas, we did not need to exclude urban areas. In 
general, in the habitat of both species, high values of NDVI 
represent food plants and when averaged into ecoregions/
bioregions, this land cover type only represents a negligible 
proportion of the total area.

We used the fixed 1 × 1 km and 5 × 5 km grids established 
for the locust data to resample the 0.25 × 0.25 km pixels from 
sequential MODIS composite images. For all observation 
grids, we sampled 10 prior, 8-day interval images and calcu-
lated the mean and standard deviation for all pixels within or 
touching each grid cell. The total number of pixels in each 
cell varied slightly over time because of image navigation and 

registration. Composite image median dates were used to cal-
culate the number of days prior to the locust observation. 
Since image overpass and locust observation dates did not 
frequently align, the 10th prior image was not always exactly 
80 days before. The main fixed effects used in all models are 
the NDVI value and days before locust observation.

Model construction

To understand the hierarchical relationship between land 
units, geographic zones and seasons, we used a combination of 
hierarchical models and generalized additive models (GAM), 
known as hierarchical generalized additive models (Wood 
2017, Pedersen et al. 2019). Briefly, GAMs allow the relation-
ship between the dependent and independent variables to be 
described by smoothing curves (e.g. splines). These curves 
allow for the estimation of non-linear trends whereas tradi-
tional linear models can only at best estimate polynomial rela-
tionships. The flexibility of GAMs allows for an easy extension 
into hierarchical modeling where smoothed relationships can 
vary between groups (Pedersen et al. 2019). In our study, we 
fitted hierarchical GAMs (family: binomial, link: logit) to 
nymph density data with the variables listed in Table 1. We 
constructed two dimensional smoothers (Wood et al. 2016) 
for both NDVI values and the number of days prior to locust 
observation dates and latitude and longitude. This allowed 
us to create probability heat maps from the modeled results 
(Fig. 3B). The inclusion of latitude and longitude allowed us 
to account for spatial autocorrelation (Clayton et al. 1993) 
in the locust survey datasets that, if left unaccounted, would 
bias the results for both Australian plague locust (Moran’s 
I: observed: 0.18, expected: 0, p-value: < 0.001) and desert 
locust (Moran’s I: observed: 0.06, expected: 0, p-value: < 
0.001). We ensured spatial autocorrelation was low by map-
ping residuals for each species (Supporting information).

Model validation and selection
Overall, models were first validated using diagnostic Q–Q 
plots. Basis dimensions were insured large enough to cap-
ture nonlinear trends while accounting for computational 
time (Wood 2017; Supporting information) before mod-
els were selected. We used null space penalization to test 

Table 1. Variables used in this study with structure and source.

Species Variable Structure Source

Australian plague locust Outbreak occurrence (response) Binary APLC database
NDVI (predictor) Proportion MODIS
Days before (predictor) Integer, −78 to 0 MODIS
Geographic zone (random effect) Factor Australian Government BOM
Land unit (random effect) Factor Australian Government DAWE
Season (random effect) Factor n/a

Desert locust Outbreak occurrence (response) Binary FAO database
NDVI (predictor) Proportion MODIS
Days before (predictor) Integer, −78 to 0 MODIS
Geographic zone (random effect) Factor CIRAD
Land unit (random effect) Factor World Wildlife Federation
Season (random effect) Factor n/a
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whether there were nonlinear or linear trends in the model 
(Marra and Wood 2011, Wood 2017). Since there can be 
discrepancies between different model selection criteria 
(Pedersen et al. 2019), we reported four metrics: Akaike 
information criterion (AIC), Bayesian information criterion 
(BIC), the deviance from an out-of-sample (OOS) dataset 
(e.g. cross-validation) termed OOS deviance as discussed 
by Pedersen et al. (2019), and area under the receiver oper-
ating characteristic curve (AUC). For OOS deviance, we 
built models using 70% of the dataset, termed the train-
ing set. We then quantified predicted deviance from known 
outbreak and non-outbreak data using the remaining 30% 
of the dataset, termed the validation set. This deviance can 
be interpreted similarly as residual sum of squares for a lin-
ear regression with lower values meaning a better fit model 
(Wood 2017, Pedersen et al. 2019). Receiver operating char-
acteristic curves (ROC) for the final models are shown in 
Supporting information.

Hierarchical structure
To confirm the levels selected (geographic zone, land unit 
and season) were biologically relevant, we constructed 
models with all combinations of the three levels and 
selected as discussed above (Model validation and selection 
section). Since we were not yet concerned about spatiotem-
poral hierarchy, we constructed all models under the same 
framework (model G; Fig. 2) and used only 70% of the 
data to increase computational speed. Therefore, it is not 
advisable to compare selection criteria values between these 
models and the final hierarchical model testing (Supporting 
information).

We tested the validity of our hypothesized spatial structure 
(species range > geographic zone > land unit) after confirm-
ing that including all biologically relevant levels performed 
better than any subset. To do this, we constructed six dif-
ferent models with varying structures including all biologi-
cal levels following the protocol of Pedersen et al. (2019). 
Briefly, we constructed a model with no hierarchy (model 
N), a model with only a global level (model G), a model 
with global and similarly smoothed (e.g. all groups share a 
common penalty) group level trends (model GS), a model 
with similarly smoothed group level trends only (model S), a 
model with global level and differently smoothed group level 
trends (model GI, e.g. all groups have an independent pen-
alty), and a model with only differently smooth group level 
trends (model I). Due to the nested relationship of model GS 
and model S, specific interactions between geographic zones 
and land units cannot be assessed via p-values. For models 
GI and I, specific interactive terms can be assessed. Models 
are visually explained further in Fig. 2. Once all models were 
constructed, we selected the models with AIC, BIC, OOS 
and AUC criteria as discussed in Model validation and selec-
tion section.

Statistical and GIS software used
Remotely sensed imagery collection and preparation were 
done using QGIS (Team 2020) and in the python environ-
ment with GeoPandas (Jordahl 2014). Statistics were con-
ducted in R (<www.r-project.org>) within the tidyverse 
framework (Wickham 2018). All models were constructed 
and selected using the mgcv package (Wood 2017) and vali-
dated with the gratia package (Simpson 2019).

Figure 2. Hierarchical model structure used to test the spatiotemporal nature of locust outbreaks. Top: shows the varying hierarchical level-
ing between model design. Bottom figures graphically show the differing model design. Black dashed lines represent global trend and grey 
solid line represents group level trends. The model GS and S have similar smoothed group level trends (all group-level trends have a shared 
penalty) whereas model GI and I have different group level trends (group-level trends have individual penalties). Bottom figures are from 
Pedersen et al. (2019) and are under Creative Commons 3.0 license.
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Results

Biologically relevant level selection

For both species, each of the selection criteria yielded models 
that included all geographic scales and season, although there 
were ties with models that left out some levels (Supporting 
information). For the desert locust, AIC, BIC, OOS deviance 
selected to include all levels: geographic zone, land unit and 
season while AUC selected for two models: all levels and geo-
graphic zone and land unit only models (Supporting infor-
mation). For the Australian plague locust, AIC, BIC, OOS 
and AUC selected to include all levels.

Overall hierarchy selection

Overwhelmingly, all criteria selected either model GS (global 
and group level) or model S (group level trends with no global 
trend) for both species (Supporting information). This indi-
cates that regardless of the relationship between preceding veg-
etation growth and outbreaks, the responses of both species 
were spatially structured in that the inclusion of zone and land 
units increased model fit. However, model selection results 
differed between model GS and model S for both species 

(Supporting information). For the Australian plague locust, 
AIC and BIC selected for model GS (Supporting information) 
whereas OOS selected model S and AUC was tied between the 
two models. For the desert locust, AIC and OOS both selected 
model S, whereas BIC selected model GS and AUC was tied 
between model S and model GS (Supporting information). 
OOS deviance values for each level are given in the Supporting 
information. The model summaries for model GS and model 
S for both species can be seen in Table 2. Summaries for the 
four other models can be seen in Supporting information.

Species range view

At the overall species range level, nymph outbreaks were dis-
tinct from non-outbreaks in terms of preceding NDVI values 
resulting from vegetation growth (Fig. 3, Table 2, Supporting 
information). However, the two species show clearly differing 
responses. Australian plague locust outbreaks are preceded by 
vegetation growth between 78 and 32 days before the observa-
tion (Fig. 3A–B). On the other hand, desert locust outbreaks 
were characterized by weaker albeit significant vegetation pulses 
between 32 and 20 days before the observation (Fig. 3C–D).

Geographic region view

Outbreak response to preceding vegetation growth varied 
between geographic regions (Fig. 4, 5, Table 2, Supporting 
information). For the Australian plague locust, vegetation 
pulses up to 32 days prior were associated with summer 
outbreaks in summer-dominant rainfall geographic zones 
(Fig. 4A–C), whereas outbreaks in all other zones required 
longer preceding vegetation growth (Fig. 4D–E). For the des-
ert locust, outbreaks in both invasion and recession zones were 
characterized by short prior vegetation pulses (Fig. 5, Table 2, 
Supporting information). However, NDVI values before out-
breaks were higher in the invasion zone than in the recession 
zone (Fig. 5) Further, vegetation in the invasion zone was drier 
in outbreak episodes compared to non-outbreaks (Fig. 5A).

Land unit and season levels

Due to the large number of land units separated into three or 
four seasons each, we are unable to explicitly report on all find-
ings. However, each land unit is given a summary page within 
the Supporting information with both trend lines (Fig. 3A) 
and modeled results for model GS and S (Fig. 3B) reported 
(Supporting information). There are notable differences in 
outbreak response to vegetation both between and seasonally 
within land units. Regardless of these differences, there are two 
overarching patterns: long preceding vegetation growth and 
pulses in vegetation growth (for selected examples see Fig. 6).

Discussion

We modeled the incidence of locust outbreaks for two species 
(Australian plague locust, Chortoicetes terminifera and desert 

Figure 3. Global pattern for the Australian plague locusts (A), (B) 
which are characterized by long preceding vegetation growth 
between 78 and 32 days before outbreaks and desert locust (C), (D) 
which are characterized with vegetation pulses 32–20 days before 
outbreaks. Left: NDVI trends for outbreak and non-outbreak 
observations over time. Vertical red line is the observation date, 
black lines represent hypothesized nymph hatching date. Right: 
Modeled outbreak probability for preceding NDVI. We did not 
include succeeding NDVI values into models.
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locust, Schistocerca gregaria) using hierarchical generalized 
additive models (GAMs) driven by NDVI as an indicator 
of herbaceous vegetation productivity. Our study uses the 
hierarchical patch dynamics (HPD) framework to account 
for the spatiotemporal variation of locust swarms and dem-
onstrates that model performance is improved by the inte-
gration of biologically relevant scales. This is shown in two 
taxonomically distinct locust species where the relationship 
between preceding vegetation growth and outbreaks varies 
spatiotemporally (Fig. 3, 4, 5). However, regardless of their 
inherent ecological differences, adding biologically relevant 
spatiotemporal hierarchy greatly improved model fit in both 
species (Supporting information). This suggests that when 
making large scale conclusions about the ecological causes 
of locust swarms, and likely other mobile animals, spatial 
hierarchy should be considered. The relationship between 
preceding vegetation growth and locust outbreaks likely var-
ies between these species due to the large climatological dif-
ferences between their respective ranges in Africa, Southwest 
Asia and Australia and their distinct ecologies reflecting their 
adaptations to those differences. Further modeling could 
assess other important variables such as temperature and 
nutrition which have impacts on the organismal to landscape 
levels for locusts.

For locust management, our study reinforces the impor-
tance of prior rainfall-induced vegetation growth on the like-
lihood of outbreaks. The results support the current strategies 
of using plant productivity measures such as NDVI to direct 
surveys and increase the probability of detecting nymph out-
breaks to allow for possible proactive intervention (Pedgley 
1973, Cressman 2008, 2013, Deveson 2013). Further, it 
highlights the spatiotemporal structuring of outbreaks which 
is important for forecasting efforts globally. For example, 
locust managers can use the land unit summary figures 
(Supporting information) to help decide where and when to 
send surveyors throughout the locust season. Surveying for 
locusts is costly due to the wide area of potential habitat and 
the limited resources available. Our study provides a helpful 
aid to better inform and increase the effectiveness of these 
crucial surveys. Further, our use of HPD and hierarchical 
generalized additive models allows for spatiotemporal varia-
tion to be directly modeled and identified. Therefore, the 
methods and findings provide a useful tool in understanding 
and predicting the spatiotemporal variation of population 
dynamics broadly.

Preceding vegetation growth and locust outbreaks

It is well documented that preceding vegetation growth 
is an important predictor of acridid population dynamics 
(Chapman and Joern 1990). The environments of both spe-
cies are arid and semi-arid lands characterized by the resource 
pulse paradigm, meaning that primary productivity and her-
bivore response is driven largely by variable rainfall events 
(Noy-Meir 1973, 1974). In these habitats in dry conditions, 
nymph populations will be unable to develop into adults, 
which is the breeding and migratory stage. However, few Ta
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researchers have statistically investigated the daily temporal 
dynamics of this relationship. Our study generalizes the find-
ings of previous studies that used NDVI binned or averaged 
into discrete time ranges in both species (Deveson 2013, 

Piou et al. 2013). Additionally, we show there are important 
differences between preceding vegetation growth and out-
break responses at different spatiotemporal levels which were 
not accounted for statistically in previous studies.

Figure 4. Australian plague locust geographic region pattern for raw (A)–(E) and modeled probability (F)–(J) for the relationship between 
preceding vegetation growth and outbreaks. Two patterns emerged: long preceding vegetation growth in uniform and winter geographic 
regions (D, E, I, J) and vegetation pulses in arid summer and summer dominant regions (A–C, F–H). Top: raw NDVI trends for outbreak 
and nonoutbreak observations over time. Vertical red line is the observation date, black lines represent hypothesized nymph hatching date. 
Bottom: Modeled outbreak probability for preceding NDVI. We did not include succeeding NDVI values into models.

Figure 5. Desert locust geographic region level pattern for raw (A), (B) and modeled probability (C), (D) for the relationship between pre-
ceding vegetation growth and outbreaks. Both regions are characterized by vegetation pulses. Top: raw NDVI trends for outbreak and non-
outbreak observations over time. Red line is the observation date, black lines represent hypothesized nymph hatching date. Bottom: 
Modeled outbreak probability for preceding NDVI. We did not include succeeding NDVI values into models.
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Spatiotemporal variation between preceding vegetation and 
outbreaks

Regardless of species and spatiotemporal level, two major pat-
terns between vegetation growth and outbreaks emerged: long 
preceding vegetation growth (> 32 days before) and vegeta-
tion pulses (~ 32 days before). The vegetation pulses occurred 
around the time of the hypothesized hatching date for the 
nymph outbreak which is two to three weeks before outbreak 
observation (Fig. 3). This is supported by model criteria select-
ing model GS and S (similar smoothed relationships between 
levels) over model GI and I (differently smoothed relation-
ships between levels) (Fig. 2, Supporting information). Most 
of the desert locust models at all levels had vegetation pulses 
whereas the Australian plague locust levels had both patterns. 
These patterns are a product of climatic differences between 
the habitat and each species’ ecology. The majority of the desert 
locust habitat is hyper-arid and hot and given the wide geo-
graphic distribution, winter does not halt population growth 
(Uvarov 1977, Ceccato et al. 2007). As such, responses to 
brief vegetation pulses are therefore prominent. The Australian 

plague locust’s environment has on average a higher mean 
annual precipitation and experiences a cold winter which halts 
population growth for part of the year (Wardhaugh 1986, 
Hunter et al. 2001). Long preceding vegetation growth is asso-
ciated with bioregions within the winter and uniform domi-
nant rainfall zones which is in the southern half of the species 
range (Supporting information). This indicates that late winter 
and early spring temperature and rainfall-induced vegetation 
growth is important for nymph survival. Within the summer 
and arid rainfall zones in the northern half of the species range, 
the shorter preceding vegetation pulse is prominent (Fig. 4). 
Outbreaks in these areas happen later in the season and vegeta-
tion growth following rainfall is needed for successful breeding.

While we did not explicitly model adult migration and 
behavioral ecology, it is important to recognize that the pres-
ence of nymphs indicates prior adult oviposition choices. 
Without egg laying in the localized area, there would be 
no nymphs to consume the available vegetation. Both spe-
cies conduct wind-assisted migrations which increases the 
chances of breeding in habitat areas with recent rain (Dingle 

Figure 6. Four land unit examples for Australian plague locust (A), (C) and desert locust (B), (D) relationship between preceding vegetation 
growth and outbreaks. Both species are characterized largely by either pulses (A, B) or long preceding (C, D) vegetation growth trends 
depending on land unit. Red line is the observation date, black lines represent hypothesized nymph hatching date.
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2014). There are migratory differences between species based 
on large-scale climatic patterning. It is important to note that 
these migratory trends for both species are generalized. It is 
common for both species to migrate in response to disturbed 
weather associated with regional weather systems rather than 
prevailing wind patterns (e.g. trade winds and westerlies). 
Often, but not always, such systems are associated with an 
increased rainfall probability. Given the erratic nature of rain-
fall in semi-arid regions, locusts are believed to be adapted 
to use these systems to transport them to areas of potentially 
more favorable vegetation growth conditions with accompa-
nying increased egg and nymph survivorship chances (Farrow 
1990). Our modeling demonstrates episodes where rainfall, 
adult migration and vegetation growth all occur at the appro-
priate timing to produce a nymph outbreak.

For the Australian plague locust, any migration events 
southward in autumn (into winter dominated rainfall regions) 
and northward in late spring (into summer dominated rain 
regions) have increased probability of successful breeding 
(Clark 1970, 1971, Farrow 1979, Deveson and Walker 2005, 
Deveson et al. 2005). After southward migrations in autumn, 
most laid eggs go into diapause (a period of suspended devel-
opment) due to the onset of winter and colder temperatures, 
which delays hatching until spring. Native temperate-climate 
grasses remain green throughout winter and into spring 
due to lower temperature and decreased evaporation which 
explains the long preceding vegetation growth prior to out-
breaks in these areas (Fig. 4D–E). Northward migrations 
relocate locusts into the summer dominant rainfall zones in 
early summer which corresponds with the commencement 
of the wet season. Therefore, any nymphal outbreaks in this 
region are preceded by vegetation pulse (Fig. 4A–C).

For the desert locust there are two large-scale migration 
trends in West Africa and the Red Sea area. In West Africa, 
migrations usually follow the inter-tropical convergence zone 
(ITCZ) with southward in winter/spring and northward dis-
placements in summer (Rainey 1963, Pedgley 1980). In the 
Red Sea area, winter migrations from the Middle East occur 
to the Indo-Pakistan and the Red Sea’s western shores areas. 
Summer migrations then head back towards the Middle East. 
Overcoming cooler temperatures for desert locusts is not as 
important as compared to Australian plague locusts due to 
being in a hotter climate. The important factors for outbreaks 
to occur is recent rainfall and vegetation pulses. Therefore, 
most of the desert locust hierarchical levels demonstrated the 
vegetation pulse pattern. While both the invasion and reces-
sion zone demonstrate this pulse, outbreaks in the invasion 
zone on average were greener than those in the recession zone 
(Fig. 5). This is partly because the invasion zone has a higher 
mean annual precipitation than the recession zone.

Trajectory migratory modeling of pests like locusts is a 
large field of study (Parry 2013) and there is great potential 
to couple our findings with this type of modeling. We hope 
that this study spurs interest in coupled trajectory and habitat 
quality indices (like NDVI) modeling of insect outbreaks.

The smaller deviations seen between all spatiotemporal 
levels are likely the result of other environmental variables 

in particular vegetation. Vegetation communities differ con-
siderably in their composition among the Australian biore-
gions (Thackway and Cresswell 1995) and among the African 
ecoregions (Olson et al. 2001) considered in this study. Thus, 
the occurrence, extent and intensity of outbreaks will be 
influenced by the unique composition of plant communities 
within the specific land unit, and how these communities 
are distributed to the changes in available soil composition, 
nutrients, temperature and precipitation (Van der Werf et al. 
2005, van Huis 2007, Hassler et al. 2010, Mao et al. 2014). 
These deviations could lead to interesting hypotheses about 
the spatiotemporal population dynamics at higher trophic 
levels. Importantly, populations in our study responded dif-
ferently to the same precipitation regime in different regions 
due to vegetation productivity being spatially variable.

We show here that if a spatial hierarchy is not modeled 
(e.g. model N) important trends are masked. As such, when 
we include spatial hierarchy in the modeling process, overall 
fit is improved. When modeling large scale animal popula-
tion dynamics, it is important to not only identify the bio-
logically relevant spatiotemporal hierarchy of the system 
but also include the hierarchy in statistical model building. 
Interestingly, model selection criteria identified model S 
(without global level) for desert locusts and model GS (with 
global level) for Australian plague locusts. Since the desert 
locust species range encompasses a considerable geographic 
area with enormous abiotic/biotic variation and winter does 
not halt production, it makes sense that there would not be a 
common trend shared between the zones and land units. For 
Australian plague locust outbreaks to occur, there must be 
long preceding vegetation growth in the winter rainfall domi-
nated areas since each locust outbreak season is suspended 
during the winter months with the onset of colder tempera-
tures. Therefore, the global level pattern of this species is one 
of long preceding vegetation growth and model selection cri-
teria selected for model GS.

Additional environmental factors and hierarchical levels for 
outbreaks
There are a plethora of factors that influence population 
dynamics in addition to the ones mentioned in the section 
above (Spatiotemporal variation between preceding vegeta-
tion and outbreaks section). We did not include these factors 
because this would likely introduce concurvity – the non-
parametric equivalent of multicollinearity that in GAMs can 
lead to variation in the effects of independent variables being 
underestimated (Morlini 2006) plus overcomplicate the mod-
els. One important variable to consider is annual treatments 
(e.g. pesticide spraying) for both species which likely influ-
ences the yearly population dynamics seen. Whereas NDVI is 
widely used for vegetation monitoring and mapping there are 
other indices that may be better for areas with sparse vegeta-
tion like precipitation. Going into the future, including scale-
relevant measures of these variables would increase model 
fit and provide insight into other factors that induce locust 
swarms. Due to the nature of these datasets, we were unable to 
recognize smaller hierarchical levels such as within-land unit 
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abiotic/biotic variation, microhabitats and smaller temporal 
scales (e.g. days and weeks). Within land unit there could be 
differences between populations (Mangeon et al. 2020) and 
microhabitats. For microhabitats, temperature and soil mois-
ture likely play an important role in regulating individual 
locust performance and work is currently underway at this 
scale (Kearney and Porter 2009, Kearney et al. 2014).

Hierarchical patch dynamics: integrating ecology on 
multiple scales

The hierarchical patch dynamics paradigm is a way to account 
for emergent properties that arise because of interactions at and 
between different scales (Newman et al. 2019). In this study, 
we show that breaking down species range trends into discrete 
biologically relevant levels reveals patterns and processes that 
are not apparent at other scales. If this spatiotemporal varia-
tion is not accounted for, species population dynamics mod-
eling will be limited. Spatiotemporal variation is clearly an 
important aspect for locust swarms, and this is also likely the 
case for a broad range of animals. There is a need for explic-
itly integrating ecological phenomena across multiple scales 
(Carpenter and Turner 2017). Hierarchical generalized addi-
tive models allow for information to be shared between levels 
(Pedersen et al. 2019) and could increase both the theoretical 
and practical applications of the HPD theory. This approach 
provides a useful tool for integrating ecology at multiple scales. 
We hope this study spurs further research in explicitly account-
ing for spatiotemporal variation within population dynamics.
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