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Abstract. In this abstract, two methods for integrating textual data
and textual features into ingestion processing are summarized. The first
method involves integrating all features, including textual features, into
dedicated frameworks, such as by using machine learning techniques.
In the second method, text and textual features, such as keywords, are
used to explain results returned by heterogeneous data mining. In this
context, it is necessary to link data (e.g., databases, images, etc.) and/or
obtained results with textual data (e.g., documents and keywords).

Keywords: Data mining - Text mining - Natural language processing -
Data integration - Image analysis

1 Context

Big data is traditionally characterized in terms of three Vs, i.e., volume, variety
and velocity. The SONGES! (Heterogeneous Data Science) project was focused
on the variety criterion. The project addressed the following research question:
how can textual data be exploited to process heterogeneous data (e.g., databases,
images, and video)? This abstract presents a discussion of this issue, which was
studied in the SONGES project and is now being studied in the MOOD? (Moni-
toring outbreak events for disease surveillance in a data science context) project.

In the following subsections, two methods are summarized that could be
implemented to incorporate textual features into heterogeneous data ingestion
tasks.

2 Integration of textual features with heterogeneous data

Heterogeneous data can be used to predict prices and stock market trends [17,
11], perform person identification [8], analyze food security [4], monitor health
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information [18], etc. Recently, different types of features, such as textual and
visual content-related features, have been considered in fake news detection ap-
proaches [15, 1].

The aforementioned applications can be performed using ingestion process-
ing by integrating different features, including textual features (see Figure 1).
For instance, events from web news and user sentiment from social media can be
used to improve stock market predictions [17]. In this paper, the authors propose
a coupled matrix and tensor factorization scheme to implement heterogeneous
information integration and multitask learning simultaneously. In [3], the extrac-
tion of different features from multisource heterogeneous data, including trading
transaction data, comments from user discussion boards, and news events, is
proposed.

Heterogenous texts

Fig. 1. Integrating textual data into a heterogeneous data ingestion pipeline.

Other approaches based on visual analytics [9] integrate textual data into
heterogeneous data ingestion pipelines [5].
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3 Using textual features to explain data and results

Methods based on machine and deep learning approaches using heterogeneous
data produce good results [16, 4]. However, the results are challenging to explain
[2]. In this context, mining textual data associated with heterogeneous data can
be used to gain qualitative insights. For instance, many heterogeneous satellite
images are currently available that require analysis [12]. Image-text matching
based on spatial information [6] improves information retrieval and image anno-
tation techniques [13]. Thus, a more global data context is provided that may
be useful for experts involved in land-use planning [10].

In summary, mapping a text (e.g., news, tweets, and articles) using additional
data (see (a) in Figure 2) can be useful in expert analysis and annotation tasks.
Another challenge (see (b) in Figure 2) is to highlight textual features (e.g.,
keywords) to explain results obtained by mining heterogeneous data (satellite
images, databases, etc.). For instance, data mining algorithms can predict food
insecurity or health problems in a country over a given period, and text mining of
media and/or social media data can highlight discriminative keywords to provide
explanations [14, 7].
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Fig. 2. Using textual features in a data ingestion pipeline.
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