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General abstract 

 
In Southern Africa, human populations living in communal lands located at the edge of 

protected areas have significantly increased in recent years (Cleland and Machiyama, 2017; 

George Wittemyer et al., 2008). This burst in human population increases contacts between 

wildlife, people, and their livestock in areas where they have to coexist (Bengis et al., 2002; De 

Garine-Wichatitsky et al., 2013). As a result, interface areas face a growing number of 

human/wildlife coexistence related issues (J. Andersson et al., 2017) and among them, the risk 

of pathogen transmission between wild and domesticated species (Caron et al., 2013; Miguel et 

al., 2013; Olival et al., 2013). During the last decade or so, the number of emerging or re-emerging 

human diseases has significantly increased, and of these, 75% have a zoonotic origin. Ungulates 

have a particular proximity to humans and are considered as one of the main groups of species 

responsible for zoonotic diseases (Caron et al., 2013). Spatial proximity between populations has 

been clearly identified as one of the crucial risk factors in the transmission between species 

(Roche et al., 2012). However, the nature, frequency, and localization of these contacts between 

wild and domesticated ungulates remain largely unknown.  

 

In this context, the present thesis, which is part of the TEMPO (TElédétection et Modélisation 

sPatiale pour la mObilité animale) project, aims to 1) Characterize the environmental variables, 

at a landscape scale, that potentially influence the movements of one wild ungulates species (the 

buffalo – Syncerus caffer caffer) and one domesticated ungulates species (the cattle – Bos taurus 

& Bos indicus) at three different interfaces located in Southern Africa (Hwange National park, 

Gonarezhou National Park, North Kruger National Park), 2) Develop a mechanistic model to 

simulate the movements of the two focal species, at the individual and herd scales, in relation 

with the surface water seasonality and the type of landcover representative of their respective 

environments, 3) Determine the nature, frequency and localization of the contacts between the 

two focal species and the role played by environmental variables and herder behaviours, in this 

instance, by combining the developed mechanistic movement models to apprehend the risks of 

pathogen transmission.  

 

The environmental variables have been characterized at the landscape scale using supervised 

and non-supervised classifications on a temporal series of Sentinel-2 satellite images to produce 

monthly surface water maps and one landcover map with a 7 elements typology at 10 meters 

spatial resolution for each of the three study sites. These environmental variables have then been 



 

xx 
 

integrated into a spatialized mechanistic movement model based on a collective motion of self-

propelled individuals (Grégoire & Chaté, 2004) to simulate buffalo and cattle movements and 

contacts in response to the surface water seasonality and the type of landcover. To spatialize the 

movements and contacts models, the domain specific language Ocelet has been used (Degenne 

& Lo Seen, 2016b). Telemetry data collected at the three study areas in previous studies (Miguel, 

2012; Valls Fox, 2015) have been used as reference data to design, calibrate and validate the 

movement and contact models. 

 

Sentinel-2 classification results highlighted strong space and time variabilities of water 

availability in the three study areas. The landcover classified maps accurately reproduced the 

specificities in landscape compositions of the three study areas, thus reinforcing the relevance 

of a comparative analysis of the developed site’s specific movements and contacts models. By 

only taking surface water into account, the mechanistic movement models showed a positive 

and significant correlation between observations/simulations movements and space-use of 

buffalo’s and cattle herds despite overestimating the presence of buffalo individuals at proximity 

of the surface water. Contacts patterns and their accuracies differed according to the study area. 

The quantity and quality of available environmental data (i.e., surface water and landcover), 

especially the anthropogenic water sources located in communal areas, strongly impacted the 

models’ ability to accurately reproduce the contacts observed through the collected telemetry 

data. 

 

It is clear, however, that combining remote sensing and spatial modelling offers possibilities to 

develop simple models to simulate animal movements and contacts in direct relation with the 

environment with only few parameters to be efficient. These models can integrate 

heterogeneous spatial data while being scalable, making dynamic observations at different 

spatiotemporal scales possible and reproducible in other ecological contexts with different focal 

species. The potential for the integration of an epidemiological model into a spatialized animal 

movement model in direct relation with the environmental variables to understand the risk of 

pathogen transmission is there. However, it needs to be further developed, tested, and studied 

to be fully operational and potentially be used and integrated into an “EcoHealth” approach 

(Charron, 2012). 
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1.1 The human/domestic animal/wildlife interface: places of 

interaction, places of emergence 

 

 

1.1.1 Current trends (Anthropocene / Global changes) and wildlife-

livestock interface 

 

 

The world's population has grown steadily since the appearance of Homo sapiens and which, 

despite some irregularities over the ages, now exceeds seven and a half billion people (UN - 

World Population Prospects 2019). Population growth was particularly rapid during the 20th 

and the 21st centuries, even if the global rate of population growth is starting to decline. As a 

result, human activities engendered an exponential expansion of human settlements and 

associated activities that have drastically altered wild habitats, threatened biodiversity and 

provoked profound modifications to interfaces among animals and humans (Vicente et al., 

2021). 1000 years ago, less than 4% of the world’s ice-free and non-barren land area was used 

for farming (E. C. Ellis et al., 2010). Today, in comparison, half of what is considered habitable 

area (70% of the global land area) is used for agriculture and livestock farming purposes (FAO, 

2021).  

 

The removal of primary vegetation, as concomitant consequence of land transformation by 

human activities (anthropization), impacted wildlife abundance, distribution, and behavior. In 

parallel and since pre-industrial times, the number of livestock husbandry practices have been 

increasing and have directly determined wildlife-livestock interface organizations and 

structuration (Ottichilo et al., 2000). Currently, wildlife is becoming less abundant, and 

populations are more fragmented and isolated (Kaplan et al., 2009). For most large mammals, 

the cumulative impact of human activities on the environment has driven most species into 

severe declines and regional extinctions, a trend that is currently undergoing for many of the 

planet’s animal species (Ripple et al., 2015).  

 

Globalization has resulted in the multiplication of trade in livestock, other animals and their 

associated products (e.g., ivory for the use of traditional medicine), the relocation of farming 

centers, industrialization and uniformization of farming process, and unprecedented speed, 

volume, and reach of global exchanges of goods, knowledge and people (Vicente et al., 2021). 

The so-called “Livestock Revolution” initiated in the 1970s, in response to world population 

increase, urbanization, higher incomes, and demand for animal products expanded rapidly to 
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developing countries. The world’s meat production nearly doubled from 1980 to 2004 (FAO 

2006). This revolution implied a progressive replacement of traditional farming systems by 

intensive ones. In these intensive farming systems, large numbers of genotypically similar 

animals are bred under concentrated confinement with rapid population turnover (Pearson, 

2005), which raises environmental concerns due to the large amount of waste, gas emissions, 

elevated need for feed (e.g., soy) and biodiversity loss (both vegetal and animal). In low-income 

country rural areas, the proximity of increasingly concentrated smallholder farming 

communities to intensified, industrial farming systems is growing as their respective land is 

degrading in quality (e.g., fertility) and in quantity (e.g., surface area) (Barbier & Hochard, 2018). 

Today, diverse types of production farming, ranging from free-range to outdoor paddocks and 

finally, intensive farming, are ecologically and epidemiologically connected (Vicente et al., 

2021). As human societies need to adapt continuously to the changing environmental, climatic, 

social, economic, market and trade conditions, farmers expand cultivated areas, encroach 

natural areas, intensify production and close integration of crops and livestock (C. A. Jones & 

Sands, 2013), often in proximity to wildlife. In Africa for example, the pressures induced by 

human activities such as progressive intensification of agriculture and the concomitant 

ecological fragmentation of natural habitats, the hunting and the consumption of bush meat, 

the capture of wildlife that is shipped to live animal markets (e.g., wet markets), and the farming 

of game animals in proximity to traditional livestock and humans, have had important 

consequences on the pattern of contacts between wild and domestic species at the landscape 

scale (e.g., the link between deforestation and Ebola outbreaks that has been observed in West 

and Central Africa (Rulli et al., 2017). Agricultural intensification and ecological fragmentation 

also have a negative effect on biodiversity, modifying the diversity of interactions between 

organisms (e.g., Lyme disease) (Wood & Lafferty, 2013). Moreover, these changes have been 

implicated as drivers of some recent emerging disease events that had important impacts on 

human livelihoods and health at global, regional and local scales (Allen et al., 2017; K. E. Jones 

et al., 2008).  

 

The subsequent alteration in habitats, changes in host communities, diversity, and functional 

interactions are increasing the potentiality of contact rates and, as a result, the susceptibility, 

and/or exposure of pathogens. Adding these trends to the effects of the globalization (i.e., 

growing worldwide human population, global trade, and ease of travel) and the need to assess 

the complex and constantly evolving mechanisms of wildlife, livestock, and humans’ 

interactions at different spatial and temporal scales has never been so vital. Wildlife/livestock 

(W/L) interfaces concentrate many challenges in coherent spaces that also operate on much 

larger scales. In this instance, W/L interfaces are in the “front line” and give the tempo of the 
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global changes that are currently taking place everywhere on the globe with different frequency 

and intensity.  

 

The W/L interface concerns areas of smaller spatial and more fragmented scales which, when 

considered as a whole, potentially covers vast territories. Indeed, W/L interfaces have evolved 

in terms of spatial extent and complexity, shifting from a few centers of domestication amongst 

pristine natural habitats to a world dominated by humans and their domestic species pressuring 

the remaining patches of natural habitats (Caron et al., 2021). Currently, the W/L interface is 

considered as the physical space in which wild and livestock species overlap in range and 

potentially interact (Huyvaert et al., 2018). In turn, W/L interfaces are reciprocally structured 

and shaped by interactions and contacts occurring within their delineations. Contacts and 

interactions can be continuous or discontinuous in time and direct or indirect in space. For 

example, indirect contacts can occur through the exposure of aerosols, feces, urine, saliva or 

nasal discharge as well as through natural reservoirs such as soil, water or forage. The W/L 

interface spatial and temporal organizations are subject to changes, changes that are closely 

related and function of landscape structuration and composition, climate variables (e.g., 

precipitation, temperature) as well as human interventions (Jori et al., 2019). Indeed, the W/L 

interface is the result of complex interactions between natural ecosystems within which 

livestock production takes place (Ostrom, 2009). It cannot be envisioned and apprehended 

without considering the human socioeconomic systems and their relative influences on natural 

ecosystems. Therefore, the W/L interface should be thought of as the wildlife-livestock-human 

interface because the focus is on the interaction between “natural” and “human-influenced” sub-

systems (Caron et al., 2021). The W/L interface concept implies to step away from a conventional 

line of thought in which conservation and human activities are represented by separate, 

competing sectors of society. The W/L interface concept supposes integrated approaches at the 

landscape scale (Sayer et al., 2013) with local citizens empowered to benefit from wildlife and 

livestock together while enhancing the resilience and virtue of entire social-ecological systems 

(Biggs et al., 2012; Ostrom, 2009). 

 

The W/L interface is constituted of four main component compartments of the biosphere 

(Figure 1.1): wildlife and peri-domestic wildlife, livestock, human societies that are all localized 

in the anthropized area of interfaces. All these compartments are in constant interaction with 

each other within a fluctuating environmental gradient that strongly influences the ecological 

and epidemiological dynamics of these interfaces. Four indicative gradients can be considered 

when taking into account the human interactions perspective: i) “pristine” ecosystems with 

human incursion to harvest wildlife and other resources; ii) ecotones and fragmentation of 

natural ecosystems (farming edges, human incursion to harvest natural resources, i.e., wood); 
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iii) evolving landscapes characterized by rapid intensification of agriculture and livestock, 

alongside extensive and backyard farming; and iv) managed landscapes that consist of islands of 

intensive farming, highly regulated, and farmland converted to recreational and conservancy 

uses (C. A. Jones & Sands, 2013).  

 

 

Figure 1.1: This figure schematizes the wildlife-livestock-human interface and its different compartments 
(wildlife, peri-domestic wildlife, livestock, human societies) according to the transition from pristine 
natural ecosystem to highly human-modified landscape (based on Jones et al. 2013). 

 

Due to the constant interactions of these different compartments, the W/L interface has a proper 

ecosystem that can potentially impact multiple sectors and levels of a given territory 

(Vercauteren et al., 2021). For instance, when located at boundaries between land uses with 

different management objectives, W/L interactions can impact every land use management and 

compromise their development objectives. Here lies potential conflict between protected areas 

managers who aim to conserve biodiversity and its ecological functions and communal areas 

stakeholders dedicated to agricultural activities to produce food and economic benefits (Caron 

et al., 2021). Such conflicts can take many forms: for example in Africa, crop raiding by elephants 

or predation of livestock by wild carnivores (Kuiper et al., 2015a; Lamarque et al., 2009), illegal 

use of natural resources and/or mismanagement of plant successions and soil fertility in grazing 

ecosystems (P. Lindsey et al., 2015) or disease transmission (Caron, Miguel, Gomo, Makaya, 

Pfukenyi, Foggin, Hove, & de Garine-Wichatitsky, 2013). These conflicts possibly stimulate 

human intervention as local people living in interaction with wildlife have different positive and 

negative representations of wild animals, associated with their cultural and individual 

experience (Guerbois et al., 2012). This interplay of ecological and human factors 

(socioeconomic and anthropogenic), reinforced by livestock and wildlife share and/or 
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competition for natural resources (e.g., water, forage, cover), increase opportunities for 

pathogen transmission (Vicente & VerCauteren, 2019). Even if consequences of W/L interactions 

depend on the composition and structuration of ecological communities at the W/L interface, 

cascading effects on community composition, trophic relationships, and pathogen dynamics are 

increasingly recognized (Becker et al., 2015; De Vos et al., 2016; Ostfeld, 2009). These issues are 

directly impacting wildlife, livestock, and human health, requesting a better understanding of 

the holistic functioning of these W/L interfaces. It is particularly true for the ungulates Wildlife-

Livestock interactions in Africa. 

 

 

1.1.2 Ecological drivers of ungulates Wildlife-Livestock interactions in 

Africa 

 

 

The African continent needs to reconcile the exponential growth of its human populations and 

the preservation of its conservation areas in the years to come (Chape et al., 2005; Wittemyer et 

al., 2008a). Sub-Saharan Africa’s population was 1.14 billion in 2020 (World Bank) and could 

reach 2.12 billion by 2050 (Ezeh et al., 2020). Africa is a continent where more than 4 million 

km² of land is protected (Chape et al., 2005) and where a wide diversity of large herbivores and 

large carnivores still exist (Fritz, De Garine-Wichatitsky, et al., 1996; Fritz & Loison, 2006). It is 

also a continent where competition for space is frequently accompanied by habitat 

fragmentation. Indeed, the strong growth of cultivated areas, the intensification of livestock 

activities and the expansion of urban areas are exacerbating pressures on W/L interfaces located 

at the periphery of protected areas (Craigie et al., 2010). Combined with the consequences of 

climate change, which are projected to intensify in the years to come (WMO, 2020), this 

anthropogenic pressure poses a significant threat to the sustainability of African ecosystems and 

particularly at the W/L interfaces (Vicente et al., 2021). 

 

Many interfaces, interactions occur in the context of anthropized resources (e.g., plantations 

ecosystems), natural resources (e.g., wildlife) and a mix between natural and anthropized 

resources. In African W/L interfaces, natural resource preference can be considered as one of 

the key predictors of W/L interactions. Domestic and wild herbivores, for example, have a 

phylogenetic proximity that induced similar resource requirements and thus, potential resource 

competition. Even if dietary niche partitioning can condition resource competition between 

animal species, large herbivores consume several shared forage resources. Indeed, most of the 

literature provides evidence for potential competition via dietary overlap (Breebaart et al., 2002) 

and emphasizes that dietary overlap is greater for animal species with similar body size (e.g., gut 
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capacity, bite size, food intake rate, and feeding site selection) (Kartzinel et al., 2015). Domestic 

animal species such as cattle, for instance, are more likely to compete with similar size ruminant 

grazers such as African buffalo than browsers (e.g., kudu), non-ruminant grazers (e.g., 

wildebeest), very large herbivores (e.g., elephant), or small herbivores (e.g., duikers). However, 

empirical studies on foraging between herbivores of different body sizes, and the nature of the 

interspecific interactions between these herbivores does not always match theoretical 

expectations (Stears & Shrader, 2020). Larger grazers can compete with smaller grazers by 

reducing food availability, especially during the dry season in tropical areas (Arsenault & Owen-

Smith, 2002), or through more long-term negative effects via habitat modification (Prins, 

2000). Conversely, small herbivores can potentially outcompete larger herbivores by reducing 

the availability of high-quality forage in areas where resources can be scarce according to season 

(Illius & Gordon, 1987). If competition influences W/L interactions, facilitation can also play a 

role in mechanisms that may increase or decrease the likelihood of direct or indirect 

interactions. Some wildlife species such as the wildebeest can select areas grazed by livestock 

contrary to the buffalo that tend to avoid such areas (Tyrrell et al., 2017a). Facilitation may lead 

animal species to share forage patches and use these patches successively to allow post-grazing 

regeneration (Odadi et al., 2011a) or high-quality grass regrowth thus positively easing forage 

accessibility for smaller grazers (Western & Gichohi, 1993).   

 

When natural resources (e.g., pasture, surface water) are abundant and widely distributed, free 

ranging wild animals tend to avoid areas frequented by livestock due to direct competition, as 

described above, or simply because of fear of humans (Connolly et al., 2021; Riginos et al., 2012). 

However, the behavioral response by wildlife to the proximity of strongly anthropized areas 

differs according to animal species and locations. In savanna W/L interfaces found in Zimbabwe 

for instance, African buffalo completely avoid communal areas whereas elephants sometimes 

enter these territories for crop raiding (Guerbois et al., 2012). These differences in behavior 

imply a diversity in frequency, temporality, and location of interactions between wildlife and 

livestock. On the contrary, when natural resources are limited, localized areas where resources 

can be found become potentially favorable to the aggregation of many animal species. In arid 

and semi-arid areas, animal species spatial distribution is constraint by the location and 

availability of this natural resource (Ogutu, Reid, et al., 2014). Seasonal variability encourages 

resource-driven patterns and intensify potential interactions when the resource becomes scarce 

due to the limited distance that animal species can travel and therefore, their ability to reach 

other resource points potentially still available (Valls-Fox et al., 2018). However, this analysis 

must be nuanced. When natural resources are sparsely distributed, animal species or group of 

animal species that have a limited movement radius around their core home range can use 

different resource points that are too far apart for them to interact (Borchering et al., 2017). 



  CHAPTER 1 – General introduction  

8 
 

Furthermore, as natural resource density potentially increases, animal species can adopt flexible 

behavior and decide to avoid interactions.  

 

Predation also potentially impacts animal species interactions at W/L interfaces as it is likely to 

affect habitat use of certain species, notably herbivores (Valeix et al., 2009), as well as the 

benefit/risk for livestock owners to conduct their herd in areas considered frequented by wild 

carnivores (Kuiper et al., 2015b). It has been demonstrated that in some areas, certain animal 

species attract predators in territories frequented by livestock, creating a de-facto 

spatiotemporal avoidance between species in relation with carnivores’ activities and their 

favored prey type (Miguel, Grosbois, Fritz, Caron, de Garine-Wichatitsky, et al., 2017). The level 

of predation dictates livestock herder strategies at the W/L interfaces, thus influencing the use 

of protected areas by the livestock when the constraints in communal areas allow it (e.g., 

availability of crop residue for the cattle).  

Ultimately, interspecific interactions between animal species at W/L interfaces depend on 

animal species density (Bhola et al., 2012), season (Odadi et al., 2011a), predation (Valeix et al., 

2009), the biology of the interacting species (Økland et al., 2009) and animal community 

composition (Landi et al., 2018). As wildlife continues to experience increased pressure from 

livestock (Ottichilo et al., 2000), understanding the nature and processes that rule interspecific 

interactions between different animal species at the W/L interface scale can ensure a potential 

virtuous management and coexistence of mixed wildlife and livestock as well as the mitigation 

of disease transmission risk and conflicts in these complex ecosystems. 

 

 

1.1.3 Anthropogenic drivers of Wildlife-Livestock interactions 

 

 

W/L interactions are dependent on the management of wildlife populations inside and outside 

protected areas for recreational and associated economic activities by human societies. 

Livestock, when not released alone in the wild, is entirely tied to farmers who adjust their 

management practices to constantly evolving demographic, economic, local knowledge, and 

socio-cultural parameters. These adjustments in livestock management practices are not 

without direct and indirect consequences for W/L interactions. They have evolved in contrasted 

ways and at different paces between industrialized and developing countries in recent decades 

(J. A. Andersson et al., 2013) with one general trend however, a recognition of the importance of 

integrated cross-sectoral management of animal health and an inclusion of environmental and 

wildlife conservation agencies in decisions (Binot et al., 2015). 
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The emergence of the conservation paradigm at the end of the nineteenth and the beginning of 

the twentieth century (Olival et al., 2013) have led to the creation of reserves and national parks 

that in turn, generated land use boundaries around the protected “natural landscape”, and 

human rights’ abuse, social and environmental inequities in regards to citizens who have been 

excluded from their land after decades, centuries and sometimes millennia of presence 

(Lankester & Davis, 2016b). These land use boundaries produced virtual W/L interfaces that 

would evolve according to the socio-ecological context, resulting in different regulations being 

applied on each side of the boundary. On the protected side, the control of human activities 

(e.g., tourism, limited natural resource collection, cattle grazing) and environment alterations 

through the creation of infrastructures (e.g., water holes, roads, camps) durably modified the 

wildlife-livestock-human interactions at local, regional, and continental scales. For example, 

logging roads in Central African forests played an important role on increasing wildlife trade in 

Central African forests (Burivalova et al., 2014). In Southern Africa, African buffalo populations 

have been negatively impacted by the human footprint within protected areas (Naidoo, Preez, 

et al., 2012). To try to mitigate human-wildlife conflicts at the W/L interface scale, other types 

of protected areas (e.g., controlled hunting zones, forest reserves) have been put in place around 

the core of national parks. These controlled and monitored territories are expected to act as 

buffer to partially absorb human activities and conversely decrease human-wildlife conflicts 

inside national parks that negatively affect surrounding rural areas. To complement this 

approach, a newer model has been envisioned, first in Southern Africa and now progressively 

expanding in East Africa, the creation of “TransFrontier Conservation Areas” (TFCAs). TFCAs 

interconnect protected areas (under different land uses) and rural landscapes with the intention 

to integrate biodiversity conservation and local rural development in the heart of their respective 

functions (Cumming et al., 2013). TFCAs promote wildlife population connectivity while 

encouraging the development of a more socio-ecosystemic centric approach to landscape 

management. However, health issues in these interconnect areas have already been highlighted 

as potential threats (Garine-Wichatitsky et al., 2013; Osofsky & Cleaveland, 2005) despite 

potential positive ecological, social, and economic outcomes in the long term. Even if strict land 

policies on animal movement controls (e.g., fencing) have sometimes locally solved the problem 

when they have been strictly applied (Thomson, 1995), the lack of sustainability of these control 

options and the indirect costs they induce have raised concerns for decades among 

conservationists (e.g., Taylor and Martin, 1987). TFCAs remain a viable option nevertheless, as 

it has been proven that the best maintained fences cannot restrain the movements of all wild 

animals anyways (Dion et al., 2011). 

 

Traditional livestock systems and rangelands can’t cope with the increase in human populations 

in general and demands from a more and more urbanized population across the world. Land 
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grabbing for crop agriculture (Borras & Franco, 2013), irrigation schemes (Houdret, 2012), 

conservation (Balehegn, 2015), and hydroelectric or extractive industries (Martinez-Alier, 2014), 

largely promoted by State and private actors are drastically affecting rural communities 

dependent of agricultural and pastoral activities (Davis et al., 2014). As a result, less and less 

land are available for livestock and many negative impacts (e.g., drought, crop failure) driving 

the socioeconomic decline of rural communities potentially increase pressures on wildlife. 

Pastoralists often have no choice but to diversify livelihoods and practices while expanding their 

sphere of influence in preserved areas, and inevitably settle down, if not permanently, at least 

on a more frequent basis by shifting to agro-pastoralism or mixed livestock and cropping land 

use when possible. More sedentary livestock and associated land degradation, which was 

uncommon in nomadic systems, further reinforce the vulnerability of these ecosystems. With a 

fundamental shift from traditional livestock, not only will there be more pathogens circulating 

but more virulent variants will undoubtedly emerge (De Garine-Wichatitsky et al., 2021). This 

will lead to economic loss and increased costs for control for human societies, and more impacts 

of pathogens on wildlife. 

 

 

1.1.4 The risk of pathogen transmission favored by the increase in contact 

between different animal species 

 

 

Direct and indirect interactions between different animal species potentially result in the 

transmission of pathogens from wildlife to livestock, and from livestock to wildlife in space and 

time (Nugent, 2011). Most pathogen transmission events remain undetected at the W/L interface 

and when they are detected, it is difficult to assess when and where exactly they have happened 

accurately (Voyles et al., 2015).  

 

In pathogen transmission event, wildlife can act as maintenance hosts for diseases, exacerbating 

the circulation of pathogens and their circulation within W/L interfaces (Bengis, Kock, & 

Fischer, 2002). Livestock can be directly impacted through increased mortality and reduced 

productivity that, in turn, can affect human societies via economic losses associated with cost of 

control, loss of trade, decreased market values and food insecurity (Dehove et al., 2012). Animal 

species  respective roles and relative importance are extremely difficult to quantify and 

disentangle in a system associating wildlife and livestock (Lefevre et al., 2010). This diversity of 

species included in host communities implies complex and dynamic mechanisms of W/L 

interactions who are dependent on seasonal dynamics, strains circulations, virulence according 
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to the inter-specific contacts, intra and inter-specific contact rates and frequency of contacts 

(Miguel, 2012a).  

 

On the other end, pathogen transmissions have the capacity to directly impact wildlife by 

disturbing whole species’ health, affecting biodiversity, engendering changes in animal 

behaviors and population compositions or, in the most extreme cases, causing community 

collapse with multiple extinctions (Williams et al., 2002). Inventory of known livestock 

pathogens revealed that 77% are capable of infecting multiple host species, including wildlife 

(Cleaveland et al., 2001). This potential of pathogen transmission from livestock to wildlife can 

be amplified as we know that W/L interfaces are dynamic and bidirectional with pathogens 

circulating freely within and between wildlife and livestock species (Bengis, Kock, & Fischer, 

2002). Indeed, most wild animal species are sympatric using shared resources (e.g., pasture, 

surface water), are in direct interaction with similar vectors and are exposed to human negative 

effects on their habitats (e.g., shifts in farming practices, land use changes, deforestation, 

encroachment into pristine habitats) (Perry et al., 2013).  

 

Successive pathogen transmission events between sympatric hosts can as well occur over time 

(de Garine-Wichatitsky et al., 2013) via large scale movements (i.e., regional, continental, and 

intercontinental movements). For instance, in the Great Limpopo TFCA, pathogen and 

subsequent disease transmission risks across this W/L interface exist and can occur both ways 

threatening cattle and wildlife population (Caron et al., 2016). These patterns of pathogen 

circulation reinforce the risk of potential transmissions to humans as a great number of these 

circulating pathogens are zoonoses (Jones et al., 2008). Humans have evolved in proximity of 

animals for a long time, especially with domestic animals with whom they exchange pathogens 

frequently through diverse transmission modes (e.g., contact via animal husbandry activities, 

animal consumption) (Cleaveland et al., 2001). Of course, direct, and indirect interactions 

between humans and wildlife are less common but exist. Wildlife represents a direct source of 

pathogens which can lead to pathogen jumps and result in disease developments within the 

host. For these phenomena to occur, livestock species can perfectly play the role of “bridge” 

between humans and wildlife (Caron et al., 2015).  

 

The consequences of pathogen transmission favored by W/L livestock interactions for the 

currently globalized human societies can be terrible for humans (in terms of health, political, 

social, and economic aspects), as the on-going severe acute respiratory syndrome coronavirus 2 

(SARS-CoV-2) pandemic is demonstrating us (at the time of writing this manuscript), but also 

for the animal well-being in the case of some pathogens. Until recently, wildlife wasn’t 

considered as impacted by pathogens and researchers, managers as well as the general public 
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were not as aware and equipped to apprehend and to measure such risks (de Garine-Wichatitsky 

et al., 2014). Therefore, our ability to model W/L interactions and the associated potential 

disease transmissions at the W/L interface is crucial in order to better apprehend the functioning 

of these complex ecosystems, thus improving our capacities to counter the constant increase of 

these phenomena more efficiently (Gibb et al., 2020). 

 

 

1.2 Rural Zimbabwe, a land of contrasts and upheaval 

 

 

Access to, the use of, and the global apprehension of natural resources have changed over the 

years in Zimbabwe, thus shaping the structures and organizations of its contemporary W/L 

interfaces. Three representative periods of natural resource conservation and utilization can be 

identified in that regard, namely the precolonial period, the colonial period, and the post-

independence period (Muboko & Murindagomo, 2014).  

 

 

1.2.1 History of biodiversity conservation and the relationship with 

wildlife in Zimbabwe (Pre-colonial and colonial periods) 

 

 

In Precolonial Zimbabwe (before 1890), societies, large and small, were mainly farming 

communities practicing agriculture and pastoralism in a subsistence-oriented economy that 

included trades. Several multi-ethnic empires succeeded one another according to periods of 

expansion and isolation. In this period of time, access to natural resources was mostly governed 

by traditional beliefs, taboos, and customs (Chenje et al., 1998; Kwashirai, 2007). Specific areas 

were believed to be hosts to some spiritual forces and thus were considered as sacred sites where 

visiting, hunting, collecting fruits, extracting firewood, and any other natural products were 

prohibited activities (Chemhuru & Masaka, 2010). While the sacredness of some sites is difficult 

to establish and formally prove, the fact that such myths helped protect natural environments, 

as some areas remained intact, is clear. Traditional societies enforced wildlife conservation by 

discouraging indiscriminate killing of animals, as such acts were punishable by the spirits 

conveyed through control mechanisms of traditional taboos, totems, and customs (Kwashirai, 

2007). Historically in Zimbabwe, intensive cattle productions were clustered along the edges of 

the Matabeleland plateau close from the line of maximum possible extension of the tsetse fly 

(genus Glossina), vector of human and animal trypanosomiases (Garlake, 1978). This settlement 
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configuration allowed herding extension in additional areas during the time of the year when 

the fly was not dangerous for humans and livestock. Seasonal transhumance was necessary in 

order to extend the grazing range and supposedly to alleviate pressures such as lack of political 

control of the plateau, demands on the land by population or cereal agriculture, exhausting of 

grazing areas condensed on the plateau by intensive herding practices, and seasonal loss of 

nutrition of the plateau grasses (Garlake, 1978). In the 19th century, the population densities were 

far less than what they are today (37 inhabitants per km² in 2018, source: The World Bank), the 

human habitats were more fragmented across the land, and land-tenure system functioned as a 

mechanism of social control (Cousins et al., 1992). 

 

During the colonial period (from 1890 to 1980), colonialism gradually disrupted the traditional 

structuration of societies by introducing Christianity, mercantilism, and capitalism, thus 

favorizing the  emergence of new identities, new commodities, new languages, new ideologies, 

new political and economic outlooks, and new relationship to the environment. The British 

colonial administration progressively introduced protective and command type natural resource 

and wildlife conservation legislations to preserve a once plentiful wildlife population which had 

been severely endangered by the great rinderpest epidemic of 1896-1897 (Onselen, 1972) as well 

as by intensive exploitation by slave traders, hunter explorers, prospectors, and adventurers 

(Child, 2008). In 1929, the Game and Fish Preservation Act gave the governor of colonial 

Zimbabwe the ability to control the exploitation of wildlife and resulted in the creation of several 

natural reserves that correspond, for some of them, as the current National Parks (e.g., Hwange 

National Park) (Bond & Cumming, 2006). Wildlife populations increased drastically as a result 

of such law and began, at the same, to threaten human settlements and commercial cattle 

ranching by competing for grazing and harboring pests and diseases (G. Child, 2008). In 1930, 

the Land Apportionment Act (Jennings, 1935) divided the entirety of the land into European 

settler’s areas and African native reserves. The application of this act gradually led to the 

emergence of a landholding structure where only 4,800 large-scale “European-colonial” 

commercial farmers occupied 11.2 million hectares of land amongst the most fertile while one 

million communal-area families occupied only 16.3 million hectares located in marginal 

agricultural areas (Chenje et al., 1998). In 1975, the Parks and Wildlife Act gave responsibility for 

wildlife to the private landowner (Murombedzi, 2010). The purpose was to protect wildlife 

populations within  protected areas due to the deterioration of migration routes, to reduce 

wildlife management costs, and to reinforce the colonial government authorities in involving 

the private sector to the wildlife management to avoid personal interests (Duffy, 2000).  The 

Parks and Wildlife Act was not extended to communal areas and local populations but to 

designated administrative authorities responsible to manage communal lands. This uneven 

system resulted in disastrous disequilibrium. Natural resources in the “European-colonial”-
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owned areas were largely underutilized contrary to those in communal areas, where high poverty 

levels and taxation resulted in overexploitation of natural resources despite imposed use 

restrictions (Chigonda, 2018).  

 

Rural population lost access to wildlands as protected areas were established and as a result, 

have been deprived legal access to wildlife on their own land. The appropriation by the central 

government of natural resources facilitated the emergence of individual entrepreneurship, 

suppressing all collective sense of proprietorship (Murphree, and Cumming, 1990). These 

restrictive and uneven laws, as well as the development and multiplication of land conversions 

for agriculture, mining, and human settlement set the foundation for the increasing of W/L 

interfaces and the associated socioeconomic and ecological challenges currently occurring in 

Zimbabwe. 

 

 

1.2.2 Complex interactions between different actors in contemporary 

Zimbabwe. Social, economic, and political contexts (post-colonial period) 

 

 

Independent Zimbabwe attempted to maintain the principle of state of control of the wildlife 

estate. Indeed, private wildlife ranching has been established during the 1970s but started to 

really flourish after independence in the 1980s up to the late 1990s. The Lancaster House 

Agreement signed in 1979 set the necessary conditions for the management of wildlife by farms 

in the large-scale commercial farming sector, even if it failed to establish a successful wildlife 

industry at the country scale (Bond & Cumming, 2006). However, the growth in live game sales 

and tourism in the 1990s have resulted in an increase in allocating resources to the management 

of wildlife by large farms (Wolmer et al., 2004). This trend was further encouraged by the decline 

in commercial meat prices, severe droughts in the early 1990s, the collapse of the Zimbabwean 

dollar and a broader shift towards export-oriented agriculture (Lindsey et al., 2009). As a result, 

significant changes in land use occurred, ranchers destocked cattle in favor of wildlife and 

livestock production systems became the formation of wildlife conservancies. Prior to 2000, 

there were 669 game farms and conservancies registered with a combined area of 2.5 million 

hectares and constituting at least 20% of the country’s commercial farmland (about 5% of the 

country) (Feresu et al., 2010). Consequently to the wildlife ranches and conservancies paradigm, 

the National Parks and their management became irrelevant to the local development effort to 

prevent threats on animal species and the isolation of their respective habitats (e.g., fencing of 

National Parks). Adding factors such as population growth, poverty, corruption, weak 

enforcement, and a lack of representation and viable local market economies have contributed 
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to the fragmentation of ecosystems around protected areas (Metcalfe, 2013). In 1992, the Land 

Acquisition Act was put in place, enabling the government to acquire any land for resettlement 

(Wels, 2003). This law enforcement severely hampered the wildlife ranches and conservancies 

paradigm as it was considered by the government as a menace to food security. Indeed, wildlife 

ranches and conservancies were developing in areas suitable for both commercial and 

subsistence crop production (Duffy, 2000) and were perceived as perpetuating a racially 

unequal distribution of land and resources (Chigonda, 2018). Resulting from the application of 

the Land acquisition Act, a radical switch to wildlife farming took place, reorganizing the land 

use, the wildlife conservation and the livelihood of communities bordering protected areas.  

 

The Communal Areas Management Program for Indigenous Resources (CAMPFIRE), that have 

been initiated in the early 1980s in areas not suitable for arable agriculture, illustrates the 

attempt of the government to initiate institutional changes by delegating some authorities to 

local communities in communal areas (Murombedzi, 2010). The CAMPFIRE program aimed at 

deriving revenues from wildlife through the taxation of safari operators and hunting 

concessions. The revenues received by district councils and wildlife producer wards (i.e., 

municipal districts) were expected to provide the financial incentive for individuals, households, 

natural resource cooperatives and village companies to participate in the common management 

of wildlife at the local scale (Gandiwa et al., 2013). From 1989 to 2001, the program earned a 

total of US$ 20.3 million, increasing from US$ 350 000 in 1989 to US$ 2 million in 2001 (Child 

et al., 2003). However, even if few wards with low human population densities and endowed 

with higher wildlife populations produced annual household cash dividends (although merely 

supplementing crop and livestock production revenues) (Mutandwa & Gadzirayi, 2007), the 

CAMPFIRE program reconciled parks and local communities within a wider regional plan. The 

local communities, their respective authorities (councils), and the Ministry of Environment 

(parks, forests, and natural resources agencies) had finally a common framework for joint actions 

via the CAMPFIRE program. This framework made holistic management of natural resources 

possible in communal lands and offered opportunities to educate communities on the 

importance of the natural processes of the ecosystem by empowering them with responsibility 

for its costs and rents (Metcalfe, 2013). The softening of the "hard edge" (i.e., fencing 

surrounding National Parks) between communal lands and National Parks by the CAMPFIRE 

program had always been an underlying objective, but relationships between people and parks 

remained asymmetrical most of the time and could not be considered as a genuine meeting of 

land users and authorities. 

 

Today, Zimbabwe has 232 protected areas covering 106,838 km² (UNEPWCMC & IUCN, 2019) 

where strict conservation and preservation are implemented in some areas and sustainable use 
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is established in others (Figure 1.2). Zimbabwe includes parts of seven transboundary 

conservation areas, namely Chimanimani TFCA, Great Limpopo Transfrontier Park and 

Conservation Area, Greater Mapungubwe TFCA, Kavango-Zambezi TFCA, Lower Zambezi-

Mana Pools TFCA, Mosi-oa-Tunya Victoria Falls Transboundary World Heritage Site and 

ZIMOZA TFCA. Zimbabwe is part of the Biodiversity and Protected Areas Management 

(BIOPAMA) program that aims to improve the long-term conservation and sustainable use of 

natural resources in African, Caribbean and Pacific (ACP) countries, in protected areas and 

surrounding communities.  

 

These large-scale sharing initiatives should eventually enable the reestablishment of a true spirit 

of stewardship by local communities via the process of institution-building for wildlife and 

natural-resource management. This may prove to be all the more valuable as the balance 

between the inherent needs of already weakened human societies and the preservation of an 

increasingly pressured wildlife is changing with the consequences of climate change. Even if the 

CAMPFIRE program has not worked since 2000 due to the Zimbabwe’s economic and political 

situations,  the will to relaunch it by adapting it is however present. 
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Figure 1.2: Figure extracted from the “State of protected and conserved areas in Eastern and Southern 
Africa” (IUCN ESARO, 2020). It summarizes the demographical, geographical and conservation states of 
Zimbabwe. 

 

 

1.2.3 A changing climate that upset an already fragilized balance at the 

W/L interface 

 

 

Zimbabwe already experiences a changing climate. The country lies in a semi-arid region where 

rainfalls are limited as well as spatially and temporally variable. The temperatures fluctuate via 

altitudinal and seasonal gradients and are particularly prone to variations. At the country scale, 
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climate change increases the frequency and intensity of heavy rainfall events while exacerbating 

drought effects in space, time, and amplitude. The increase of intensity of mid-season dry-spells 

illustrates this phenomenon (Unganai, 2009). According to the Zimbabwe Meteorological 

Service, daily minimum temperatures have risen by approximately 2.6°C over the last century, 

while daily maximum temperatures have risen by 2°C during the same period of time (Brown, 

2012). These occurring changes in rainfall and temperatures are not without consequences as 

shown by declining water resources, fall in agricultural productivity, biodiversity loss, 

geographical spread of pathogens and volatile weather and climatic disasters (e.g., flood and 

drought) at the country scale (Brazier, 2015).  

 

In Zimbabwe, more than 70% of crop farming practice is rain fed (Zimbabwe Human 

Development Report, 2017), making agriculture, food security, and nutrition highly sensitive to 

changes in rainfall and temperatures associated with climate change. Currently, we can already 

observe shifts in agricultural farming regions, with consequential loss in productivity (Chikodzi 

et al., 2013; Mugandani et al., 2012). The expansion of more arid environments makes it difficult 

for most food and cash crops to grow, especially for highly sensitive crops such as maize (a staple 

crop), tobacco (the major cash crop), wheat, corn and soya beans that are cultivated in 

Zimbabwe. The areas suitable for maize production are projected to decrease by 2080, while 

spatial suitability of crops such as cotton and wheat is expected to increase in some areas 

(Zimbabwe National Climate Change Response Strategy, 2015). This agricultural reconfiguration 

will potentially produce socio-economic turmoil and migration of consequent populations in a 

country already affected by endemic poverty and shortages in necessary goods. As a result, W/L 

interfaces composition and sustainability will evolve all the more so as climate change heavily 

impacts livestock and wildlife through the decline of plant productivity associated with arid 

environment and through surface water scarcity. In the short and medium term, this shortage 

in natural resources will likely directly and indirectly affect animal species home range, 

interactions, adaptation efforts and exposure to pathogens within their respective environments. 

For example, the drought experienced in 2014/2015 and 2015/2016 seasons have forced cattle 

herds to move over larger areas in search of water and forage in six of the Zimbabwe’s ten 

provinces, thus aggravating the spread of foot-and-mouth disease (FMD) through an increase 

rate of contacts with wild and domestic animal species (Chanza & Gundu-Jakarasi, 2020). Even 

if climate change is not uniformly experienced across all of Zimbabwe, small-scale subsistence 

farmers, whose operations are not covered by irrigation schemes, national parks and peripheral 

communal land located in semi-arid regions of Zimbabwe (agro-ecological regions IV and V) are 

more likely to be negatively affected, making them more vulnerable than they already are (Jiri 

et al., 2017). Currently, where communities used to easily access water through shallow wells, 

they now need to dig deeper to tap up available water (Chanza, 2018).  
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Facing already fragmented and degraded landscapes, as well as new barriers consisting of urban 

settlements, agriculture, and inhospitable land, wildlife will have very little room to maneuver 

in order to adapt to the drastic changes that are taking place in every level of the ecosystems 

(i.e., biotic, and abiotic). If some animal species will be able to survive and even thrive, others, 

such as large mammals, will likely experience more difficulties to adapt. In this context, W/L 

interfaces will have an important role to play as they display interaction dynamics that can favor 

scientists, amongst others, in understanding the responses of certain animal species to these 

changes. By focusing analysis and observations on these W/L interfaces, the characterization of 

human societies actions and influences on the evolution of the functioning of these particular 

ecosystems in a context of climate change and increased anthropisation can bring potential 

capacities of assessment and projection. These assets can be a definite advantage in preserving 

and/or enhancing the resilience of these ecosystems.  

 

 

1.3 In a context of increased contact between wild and domestic animal 

species at interfaces: the choice of two focal species 

 

 

The African buffalo (Syncerus caffer) and cattle (Bos taurus & Bos indicus) (Figure 1.3) are 

keystone species for conservation and production systems in W/L interfaces in Zimbabwe. The 

African buffalo is one of the “Big Five” (P. H. Williams et al., 2000) and is an important member 

of the ungulate guild who shapes habitat heterogeneity in and outside protected areas where the 

human presence is low (Estes, 2012). Cattle, in subsistence farming communities, provide 

draught power, source of protein, cash incomes, safety net and social status (Baudron et al., 

2012). Buffalo and cattle are both grazer ungulates, close phylogenetically, sharing common 

resources (i.e., forage and water) (Hoffmann, 2002), and are thus likely to overlap in range and 

compete for resources, particularly in environments where natural resources are spatially 

segregated (e.g., savannas) (Odadi et al., 2011). Both species rely on their behavior and the 

management of the land use by humans to cope with constrained access to natural resources 

(e.g., access to artificial water, forage intake by the herder) (Kaszta et al., 2018). Their shared use 

of space increases the likelihood of direct and indirect interactions which, in turn, promotes the 

risk of pathogen transmission (Caron et al., 2013), a threat to farmers and biodiversity 

conservation (Caron et al., 2013). In the context of this thesis, we have decided to focus on those 

two particular species in order to deploy our methodology and follow up on several previous 

studies (Miguel, 2012; Perrotton, 2015; Valls Fox, 2015) that have focused on these two animal 

species and the different problematics associated with their interactions. 
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Figure 1.3: On the left, two buffalo (Syncerus caffer caffer) – photo taken by Ikiwaner. On the right, one 
nguni cattle (Bos taurus) specimen – photo taken by Bernhard Bekker 

 

 

1.3.1 The African buffalo (Syncerus caffer) 

 

 

“The scientific name Syncerus caffer is derived as follows: Sun (Greek) together; keras (Greek) the 

horn of an animal: a reference to the closely abutting bases (or boss) of the horns in adult male 

Cape buffalo. Cafer (Latin) means "of Caffraria/Kaffraria", the country of the Kaffirs (Africa).” – 

Brent Huffman 

 

 

1.3.1.1 Intrinsic behaviors of one of the subspecies (Syncerus caffer caffer) 

 

 

The African buffalo (Syncerus caffer) is a ruminant mammal belonging to the Bovidae family 

(Figure 1.4) and is the existing largest and most massive of the African bovids. The African 

buffalo is currently considered as a single species despite displaying important morphological 

variations such as body size, weight, fur color, horn shape, and length according to geographical 

locations. Four subspecies form the entire African buffalo population: Cape buffalo (Syncerus 

caffer caffer), forest buffalo (Syncerus caffer nanus), West African savanna buffalo (Syncerus 

https://commons.wikimedia.org/wiki/User:Ikiwaner
https://stock.adobe.com/fr/contributor/111326/bernhard-bekker?load_type=author&prev_url=detail
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caffer brachyceros) and Central African savanna buffalo (Syncerus caffer aequinoctialis) (East, 

1999). The population density of these subspecies is unevenly distributed throughout the African 

continent. The highest population densities are found along the African Rift, in East Africa 

(Figure 1.5).  

 

In this thesis, we are focusing our interest on the Cape buffalo as this specific subspecies is the 

only representative of the Syncerus caffer species in southern Africa, and more particularly in 

Zimbabwe, our defined study area. The social structure of the Cape buffalo has been closely 

studied, even if most of the studies are often descriptive (Prins, 1996; Ryan et al., 2006; Sinclair, 

1977). Cape buffalo live in large herds containing 50 to 500 animals (Cornélis et al., 2014) and a 

number of smaller social groups made up of several females and their most recent offspring (up 

to two years of age). The herd structure tends to maintain cohesion in order to provide 

protection for weakened individuals even if complex fusion-fission dynamics exist within herds 

(Wielgus, 2020). Bachelor groups containing as many as a dozen or so males, along with groups 

of similarly aged juveniles are also found within the herd substructure. Adult males either 

associate with a female group or distance themselves apart from the herd in a small unit of 

similar older males. In some instances, old males can be solitary, living away from the herd from 

which they originate (Grzimek, 1990). Where and when large and rich pastures are present, 

temporary aggregations of 2,000 to 3,000 buffalo can potentially form from several smaller 

herds (Kingdon, 2015). However, contrary to the smaller herds, these large groups lack social 

cohesion and occur occasionally. Cape buffalo tend to be non-migratory, usually inhabiting an 

exclusive home range that can vary in size (Figure 1.4) and are specific to one herd (Nowak & 

Walker, 1999). In southern and eastern Africa though, Cape buffalo herds can periodically 

subdivide due to fission (splitting) - fusion (merging) dynamics but within the herd’s usual 

home-range (Prins, 1996; Ryan et al., 2006). 
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Figure 1.4: Main taxonomy, physical, distribution and status, behavior, and ecology as well as reproduction 
and development characteristics of the buffalo (Syncerus caffer caffer).  

 

Cape buffalo are usually active throughout the day, spending 18 hours per day moving and 

foraging (Nowak & Walker, 1999). Grazing occurs as the herds move through their home range 

on a circuitous route and is most frequent in the late afternoon and during the evening (Nowak 

& Walker, 1999). Drinking usually occurs during the early morning and at dusk (Nowak & 

Walker, 1999) and at least once every 24 hours when surface water is available (Cornélis et al., 

2011a). During the hottest time of the day, Cape buffalo tend to rest and ruminate, although in 

areas with high human disturbance such as the W/L interfaces, Cape buffalo can switch from 

continuous grazing to night-time foraging to avoid other wild and domesticated species 

(Kingdon, 2015). The average speed of travel is 5.4 km per hour, although Cape buffalo can run 

up to 57 km per hour for short distances (Nowak & Walker, 1999).  
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Figure 1.5: Map representing the buffalo abundance across the African continent in 2010 (dots represented 
in shades of red and fluctuating sizes) in relation with the National Park locations (represented in green) 
and the distribution of buffalo subspecies (represented in purple, blue, gray, and yellow) – Source: IUCN 
; East, 1999 

 

 

1.3.1.2 Direct links of the Syncerus caffer caffer with its immediate 

environment  

 

 

Geographical distribution and population sizes of the Cape buffalo have greatly decreased since 

the nineteenth century as a result of habitat loss, poaching, disease outbreaks and climatic 

events (Cornélis et al., 2014). The majority of buffalo populations are now confined to protected 

areas and managed hunting areas (East, 1999) with population densities that approximate 0.45 

individuals per km² in some areas in Zimbabwe (Chamaille-Jammes et al., 2009). The species is 
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currently specified as “near threatened” by the International Union for Conservation of Nature 

(IUCN) (IUCN 2019). Cape buffalo is considered as a key species with high economic value. It 

attracts hunters as animal trophy (Munag’andu et al., 2006) and local inhabitants as preferred 

species to produce income and to supplement the diet with protein (Alexander et al., 2012). 

More recently, Cape buffalo has also gained in value for eco-tourism and is a popular wildlife 

species for tourists participating in safaris (Merwe et al., 2004).  

 

Cape buffalo inhabits a wide range of habitats across Africa (Megaze et al., 2013; Melletti et al., 

2007). They are mostly found in Eastern and Southern African savanna and woodland mosaics, 

seeking areas with rapid and easy access to grass, water, and dense cover, such as thickets, reeds, 

or forest (Kingdon, 2015). They tend to prefer frequenting glades where possible but can stay 

out in the open without shade for extended periods of time (Kingdon, 2015). Cape buffalo is a 

grazer that feeds on grasses, herbs, and occasionally browses on leaves when the competition 

for the resource with other animal species is high and/or when the availability of grasses is sparce 

during the dry season (Grzimek, 1990; Nowak & Walker, 1999). Preferred grass species reported 

by Kingdon, 2015 include Cynodon, Sporobolus, Digitaria, Panicum, Heteropogon, and 

Cenchrus species. As Cape buffalo eats large quantity of vegetations as a bulk grazer and moves 

en masse, the species facilitates the opening up of habitats, which benefits more selective species 

or short-grass grazers (Eby et al., 2014).  

 

However, despite positive ecological impacts on ecosystems, Cape buffalo carries many 

pathogens such as FMD, bovine tuberculosis, brucellosis, and tick-borne diseases, that can be 

potentially transmitted from one animal species to another (Caron, Miguel, Gomo, Makaya, 

Pfukenyi, Foggin, Hove, & de Garine-Wichatitsky, 2013; Dion et al., 2011; Garine-Wichatitsky et 

al., 2013). Domesticated species, such as cattle that are taxonomically close from Cape buffalo, 

are also concerned by these pathogen transmission risks (Bengis, Kock, & Fischer, 2002; R. Kock 

et al., 2014). Buffalo and cattle have similar ecological niches and tend to utilize the same type 

of resources (i.e., forage and water) (Odadi et al., 2011a; Valls-Fox et al., 2018). The competition 

between these two animal species in areas where they live sympatrically (e.g., W/L interfaces) 

can potentially lead to direct and/or indirect interactions, facilitating pathogen transmissions 

(Miguel, Grosbois, Caron, Boulinier, Fritz, Cornélis, Foggin, Makaya, Tshabalala, & de Garine-

Wichatitsky, 2013). Even if Cape buffalo usually avoids cattle, seasonal patterns of interactions 

between buffalo and cattle are observed (Miguel, 2012a). Interactions are usually more frequent 

during the dry season when both water and forage resources are depleted or when cattle range 

further into protected areas in search of food and water (Kock, 2005; Valls-Fox et al., 2018; 

Zengeya et al., 2015). 
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1.3.2 Domesticated cattle (Bos taurus & Bos indicus) 

 

 

“Nguni cattle derive their name from the black tribes of Africa, collectively known as the Nguni 

people. Nguni cattle descend from both Bos taurus and Bos indicus cattle and entered Africa 

around 8000 years ago. As the tribes migrated south into Africa, they took their cattle along. 

Through natural selection and environmental interaction, the cattle evolved into the hardy breed 

we know today as the Nguni. As the tribes settled in different areas, distinctive cattle ecotypes 

developed, but are essentially still Ngunis.” (The cattle site - www.thecattlesite.com) 

 

 

1.3.2.1 Intrinsic behaviors of the species and its relations with the 

surrounding environments 

 

 

Cattle (Bos taurus or Bos indicus) are ruminant mammals belonging to the Bovidae family 

(Figure 1.6) and domesticated by human societies. They are considered escaped or released 

domestic animals because if not well contained by adequate fences or herder’s directives, cattle 

tend to form feral herds and wander into native vegetation wherever suitable food is available 

(Findley, 1976). A cattle’s herd is structured according to a dominance hierarchy where each 

individual yield to those above in the hierarchy. The hierarchy’s status is hereditary and as a 

result, calves adopt their mother's status. Females protect their respective calves by chasing 

anything that threatens them and is not reluctant to share parental care within the ensemble of 

the herd. Dominant males maintain this status until defeated by younger males in challenges. 

(Patent & Munoz, 1993). Cattle’s herd home-ranges vary greatly (Figure 1.6) according to 

geographical locations and their respective socio-ecological organizations and seasonal climate 

fluctuations (Moyo et al., 2013). In some W/L interfaces, where restrictions of access due to 

seasonal crop productions apply, cattle can be encouraged by the herder to range away from 

communal land into natural reserves or National Parks despite not having an official granted 

access (Valls-Fox et al., 2018). 

 

Cattle usually feed on grasses, stems, and other herbaceous plant material present in pastures 

not maintained by humans or in open agricultural fields and consume about 70kg of grass in an 

8-hour day in average (Ng, 2001). Cattle can modify native vegetation by browsing, crushing, 

and trampling, and in areas with high human density, they can severely impact natural systems, 

causing erosion, introduction of non-native grasses and herbaceous plants, destruction of 
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riparian habitats, as well as overgrazing (Moyo et al., 2013). In addition to their grazing activities, 

cattle need to drink every day, and in some instances, are totally dependent on the water 

resources made available by humans (e.g., borehole, dip tank) in areas where the availability of 

surface water is spatially and seasonally sparce.  

 

 
 

Figure 1.6: Main taxonomy, physical, distribution and status, behavior, and ecology as well as reproduction 
and development characteristics of the buffalo (Bos taurus & Bos indicus).  
 

Across Africa, cattle abundance is spatially unevenly distributed with a strong presence in the 

Sahelian strip, in Ethiopia and around Lake Victoria (Figure 1.7). The increase in cattle 

population in a wide array of African W/L interfaces (Ogutu et al., 2016) multiplies the likelihood 

of interactions with nearby wildlife at the W/L interfaces, thus facilitating the risk of pathogen 

circulation among animal species (Jori et al., 2009; Miguel, Grosbois, Caron, Boulinier, Fritz, 

Cornélis, Foggin, Makaya, Tshabalala, & de Garine-Wichatitsky, 2013).  
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Figure 1.7:  Map representing the cattle density in number of individuals per country district across the 
African continent in 2010 (represented in shades of red) in relation with the National Park locations 
(represented in green) – Source: Robinson et al., 2014 

 

 

1.3.2.3 A domestic animal species dependent on herders' decision rules  

 

 

In Southern Africa, many of the region’s economies are dependent on agriculture, which was 

contributing to about 38% of its Gross Domestic Product (GDP) in 2015 (DZAMA, 2016). The 

livestock sector is an important component of the agricultural economies of the region, as over 

60% of the region’s total land area is non-arable (DZAMA, 2016). The countries that form part 

of the Southern African Development Community (SADC) have an estimated populations of 64 

million cattle as of 2015 and most of them are kept under smallholder traditional farming 
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systems where women and children are the major caretakers (Dzama, 2016). Domesticated 

cattle are widely used by smallholder farmers and pastoralists for the production of dairy 

products (e.g., milk, cheese) and meat. Cattle are therefore central to agricultural production, 

and draft animals are often borrowed or sometimes rented, strengthening social cohesion 

amongst neighbors as there are the main form of capitalization for rural populations (Ndengu 

et al., 2017). Beyond their agricultural value, cattle also have a social and cultural dimension 

through the definition of the social status of men and the payment of the bride price (Perrotton 

et al., 2017) and are considered, in some areas, as a form of currency (Patent & Munoz, 1993). 

Furthermore, cattle are essential for diversifying income sources, investment, and risk 

management, providing manure/fertilizer, draught power, and transportation (Baudron et al., 

2012). 

 

Ecological and physical environmental factors influence adaptation patterns employed by 

herders to cope with seasonal variations in forage (Kauffman et al., 1983). Indeed, the season will 

affect forage quantity and quality as the rainfall fluctuate (Sal et al., 1991). For a species like Cattle 

that preferentially graze plant communities of high nutritive value (Roath & Krueger, 1982; 

Ueckert et al., 1980), this variation in forage quality and quantity may potentially have an 

important impact on their respective foraging strategies (Putman et al., 1987). However, cattle’s 

foraging strategies are also likely to differ according to the communities in which they are kept 

as well as the adopted livestock management system (e.g., kraaling, meaning keeping cattle at 

night close to the homestead in corals). Although the forage resource is a crucial driver of cattle 

herding practices, cattle herding calendars in mixed used smallholder farming systems are 

largely determined by agricultural practices (Perrotton, 2015; Valls Fox, 2015a). The agricultural 

calendar depends on weather patterns both on a large and a fine scales as plowing strategies are 

revised almost daily by local farmers. In the Dete communal area, close to Hwange National Park 

(Zimbabwe), the 32% of homesteads that own cattle with an average of 5.5 cattle per herd 

(Perrotton et al., 2017) adapt their herding practices in three distinguish phases:  1) the cropping 

season (November–May) when herders maintain cattle away from agricultural fields to minimize 

incursions and crop damages, 2) out of the harvest time when cattle are no longer herded to 

forage and can roam freely within the agricultural fields, feeding on grass and crop residues and 

when cattle are taken daily to communal dams or to boreholes to drink, 3) toward the beginning 

of the hot and dry season (end of August) when cattle start going unguarded outside the 

communal area limits in search of available fodder that became too scarce within the communal 

area. It is important to note however that these are general patterns for the majority of the cattle 

herds. At an individual level, cattle-herding strategies are complex mechanisms failing under 

personal histories of owners and herders, consideration of environmental parameters, proximity 
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of homesteads to the outskirts of the communal area, as well as neighbors’ strategies (Perrotton 

et al., 2017). 

 

 

1.4 Research questions & objectives of the thesis 

 

 

1.4.1 The origin of the thesis research’s questions  

 

 

As mentioned in section 1.1, W/L interfaces play a preponderant role in the emergence of 

pathogens (Despommier et al., 2006) due to important interactions between humans, 

domesticated species and wildlife in space and time (Haydon et al., 2002). These pathogen 

transmissions are naturally bidirectional between the reservoir and susceptible populations 

(wild -> domestic vs. domestic -> wild) and can thus be potentially spatialized around “hot spots” 

of wild/domestic species interactions. Spatial proximity between populations has been clearly 

identified as one of the crucial risk factors in the transmission between species (Roche et al., 

2012). However, the nature, frequency, and localization of these contacts between wild and 

domesticated animals remain largely unknown despite their importance in explaining how 

ecosystems operate a different spatial scale.  

 

The development and the democratization of recent technologies such as telemetry and satellite 

remote sensing (SRS) technologies, currently allow to characterize domestic and wild animal 

species interactions in time and space at the W/L interface (Triguero-Ocaña et al., 2021). These 

technologies bring additional tools to characterize animal species movements and interactions 

in space and time and participate to multidisciplinary approaches that already combine different 

fields of studies (e.g., behavioral studies of wild and domestic species, social science 

methodologies) (Caron et al., 2021). Amongst these methodologies, spatial modelling of animal 

movement, contacts and interactions taking into account biotic and abiotic ecological features 

as well as behavioral mechanisms have been developed in recent years (Moorcroft, 2012; 

Rastetter et al., 2003a; Westley et al., 2018). Yet, there is a need to further develop these animal 

movement, contact and interaction models to integrate independent and validated 

environmental SRS data. This could enable potential landscape scale analysis of inter-species 

contact and interactions. Such models could benefit from the integration of specially 

characterized environmental SRS data while extending their application capacities to different 

environmental and ecological contexts (Neumann et al., 2015). This is particularly true in the 
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current context where the number of SRS sensors is expanding (Paganini et al., 2018) and the 

wide variety of already existing SRS methodologies and applications extend the analytical 

capacities of ecologists specialized in animal movement and behavior (Pettorelli, Laurance, et 

al., 2014).  

 

Within the framework of this thesis, we positioned ourselves at the interface between a wild 

compartment (protected area) and an anthropic compartment (communal areas) at three 

different study areas in Zimbabwe (described in section 2.1) to apprehend buffalo and cattle 

interactions in space and time using a multidisciplinary approach that combines, ecology, SRS 

and spatial modelling (Figure 1.8). We are particularly interested in the relationship between 

interspecies interactions and how environmental factors (e.g., surface water, landcover, human 

infrastructures) can influence these interactions at the landscape scale. The data as well as an 

important part of the empirical knowledges used in this thesis have been collected and 

developed during previous thesis (Guerbois, 2012; Miguel, 2012; Valls Fox, 2015; Wielgus, 2020).  

 

 

Figure 1.8: Diagrams showing the three main steps of the thesis. 1) characterization of environmental 
factors influencing the buffalo and cattle movements by SRS, 2) spatial modeling of buffalo and cattle 
movements in relation with the previously characterized environmental factors, 3) linking these 
movement patterns to model buffalo/cattle contacts in space and time 

 

 

1.4.2 Three main research questions  

 

 

Question 1: How to characterize the environmental indicators that impact the movements of 

buffalo and cattle in time and space at the landscape scale with the support of remote sensing? 

 

Objectives: The main objective is to develop a classification methodology that allows to 

characterize environmental factors, such as surface water and landcover, at the landscape scale 
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(i.e., 10 meters of spatial resolution) and with pertinent temporal resolutions (i.e., intra-annual 

and inter-annual). The methodology has to be effective on three different locations with 

different geographical and physical characteristics, reproductible, as well as easy to apprehend. 

The use of open-access SRS data as well as open-access software are favored. 

 

Question 2:  How can we model the movements of buffalo and cattle, at the individual and herd 

levels, while considering the spatial and temporal variations of environmental indicators? 

 

Objectives: The main objective is to develop a mechanistic model that enable the simulation of 

buffalo and cattle movements in space and time while considering the individual and collective 

dynamics of the focal species. The model also needs to take into account the environmental 

factors previously characterize by SRS as it aims to spatialize the focal species movements in 

relation with their direct environment.  

 

Question 3: Is it possible to model contacts between buffalo and cattle while determining the 

contribution of environmental indicators in order to characterize the risk of pathogen 

transmission between these two species? 

 

Objectives: The main objective is to assess the nature, frequency, locations of buffalo and cattle 

contacts and interactions by combining the two spatialized models previously developed in 

three different W/L interfaces that present different ecological and geographical configurations.  

 

 

1.4.3 The structure of the manuscript 

 

 

The manuscript is divided in eight main chapters (including the general introduction) that 

answer the three main questions in the order that they have been presented in the previous 

section. In addition, an extra chapter which succinctly summarizes the thesis key components 

in French is present at the end of this manuscript. The one question one chapter is not in play 

here. We’ve preferred to subdivide a main question into several chapters for a better readability 

and comprehension. It is important to note that some chapters include already published 

articles. They, however, are implemented in a way that does not disrupt the reading flow. 

 

Just after the general introduction, the second chapter presents the three study sites in details 

and describe the different data used in the thesis to facilitate the comprehension of the analysis 

further developed within the manuscript. 
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The third and fourth chapters address the research question 1. The third chapter focuses on the 

use of remote sensing in the context of animal movement ecology. It consists of a published 

article in 2020 which is entitled “Remote Sensing of Environmental Drivers Influencing the 

Movement Ecology of Sympatric Wild and Domestic Ungulates in Semi-Arid Savannas, a 

Review.” The fourth chapter describes the SRS classification methodologies that have been 

developed and presents the obtained results of the three study sites. 

 

The fifth and sixth chapters address the research question 2. The fifth chapter details a state of 

the art in modelling and animal movement modelling in particular, as well as a presentation of 

the concept of spatial modelling and the platform used to program the model developed within 

the framework of this thesis. The fifth chapter consists of a published article in 2021 which is 

entitled “Combined use of remote sensing and spatial modelling, when surface water impacts 

buffalo movements in savanna environments” and focuses on Hwange/Dete study site. In 

addition to the article, a section details the application of the buffalo movement model in the 

two other W/L interfaces of the study.   

 

The seventh chapter address the question 3. It presents, in the form of an unpublished article, 

the spatialized mechanistic model developed to simulate the contacts between buffalo and cattle 

at the three W/L interfaces.  

 

The eighth chapter presents the general discussion of the thesis by first focusing on the summary 

of the main objectives and the different results obtained. Then, the inherent limitations of the 

developed methodology by giving some thoughts and recommendations are detailed. To 

conclude the chapter, the perspectives on how to improve the robustness of the developed 

model and implement an epidemiological compartment to the latter with the underlying 

objective of a use of the model in an “EcoHealth” approach are highlighted. 
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1.5 Chapter summary 

 

- The growing demography on a global scale, more particularly in the southern 

countries, as well as the expansion behaviors of human societies multiply the 

interfaces and contact areas between highly anthropized territories and territories still 

relatively preserved by human activity. 

 

- The combination of these interdependent effects multiplies and promotes interface 

spaces where wild and domesticated animal populations come into contact with 

contrasted frequencies in space and time. 

 

- The increase in contacts between wild and domesticated animal species is not 

without consequences both for the animal populations themselves and for the human 

societies that live in their vicinity. We could mention in particular the increased risk 

of transmission and circulation of pathogens with, in the process, zoonoses that could 

eventually cause pandemics on a global scale, or a general degradation of plant and 

animal biodiversity. 

 

- Zimbabwe, a land of contrasts, is fully concerned by the extension of interface areas 

where wild and domestic animal populations interact. This country is particularly 

vulnerable because of the political, economic, and social crisis that has been going on 

for several decades and because the already tangible effects of climate change are 

reducing the country's capacity to deal with the potential consequences of the 

increase in interactions between wild and domesticated animals year after year. 

 

- Buffalo (Syncerus caffer caffer) and cattle (Bos taurus and Bos indicus) are keystone 

animal species for conservation and production systems in southern African wildlife 

livestock interfaces. They have been chosen to illustrate the interactions between wild 

and domesticated animal species within the frame of this thesis. 

 

- This work focuses on the relationship between interspecies interactions (i.e., 

between buffalo and cattle) and how environmental factors (e.g., surface water, 

landcover, human infrastructures) can influence these interactions at the landscape 

scale within three wildlife and domesticated interfaces located in Zimbabwe. The 

tackle these thematical questions, this thesis aims to develop an innovative 

methodology by combining remote sensing and spatial modeling. 
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2.0 Preamble  

 

 

 

 

2.1 Three study sites, three W/L interfaces 

 

 

The three chosen study sites (Figure 2.1) are located on the periphery of protected areas in 

Zimbabwe (i.e., Hwange National Park (HNP), Gonarezhou National Park (GNP) and Kruger 

National Park (KNP)). These three study sites are part of a new trend in conservation and 

management of protected areas, which has been concretized almost twenty years ago 

(International Treaty signed by the Heads of States for Mozambique, South Africa, and 

Zimbabwe at Xai-Xai, Mozambique in December 2002) by the creation of two TFCA: (1) 

KAvango - ZAmbezi- (KAZA-TFCA) for Hwange National Park and (2) Great Limpopo (GL-

TFCA) for Gonarezhou and Kruger National Parks. These sites are located in areas where 

boundaries between protected areas and communal areas are often permeable (i.e., river, 

railroad, or road) and without barriers, where movements occur in both directions and where 

the number of conflicts between human communities as well as humans and wildlife are 

increasing (Baudron et al., 2011; Guerbois et al., 2012). Domestic and wild animal movements 

between the three study sites’ natural and anthropogenic compartments are frequently observed 

in both directions (de Garine-Wichatitsky et al., 2013). Both in the Sengwe communal land in 

the Chiredzi district, the “Gonarezhou/Malipati” site (main village studied: Malipati), and the 

The objective of this chapter is to detail the three study sites that each represent an 

interface between wild and domesticated animal species in Zimbabwe, as well as to 

give an overview of the telemetry, satellite imagery and spatialized environmental 

datasets used to design, calibrate, and validate the methodology developed in this 

thesis.  It is important to underline that the developed methodology requires a 

spatialization of the information at the landscape scale and takes into consideration 

data of heterogeneous order on the spatial level certainly but also on the temporal 

level. The use of data (as far as satellite images are concerned) and open-source 

software to process the data spatially are privileged in order to facilitate the 

reproducibility of the method to the greatest number. 
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“Kruger/Pesvi” site (main village studied Pesvi) present the same geographical, climatic, 

hydrologic, and ecologic characteristics due to their geographical proximity. As such, they are 

described within the same section. 

 

 

Figure 2.1: Location map of the three study sites (represented in red) and designated in relation to the 
proximity with their respective National Park. 

 

 

2.1.1 The interface of Hwange/Dete 

 

 

2.1.1.1 Geographical, climatic, vegetation and hydrology characteristics 

 

 

The Hwange/Dete study site (area of 1192 km², this area have been determined to encompass 

the full spatial extent of the observed telemetry data available) is located at proximity of the Dete 

village in the Hwange district and close to two types of  protected areas (Figure 2.2) in the 

Matabeleland North Province of Zimbabwe: the HNP (area of 14,651 km²) and the Sikumi forest 

reserve (SFR) (around 11,000 km²), a wildlife conservation and timber production area separated 

from the villages only by a tarred road. The study area is located in a semi-arid climate (Beck et 
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al., 2018) at an altitude of around 1090 meters above sea level and annual mean temperatures of 

22°C and characterized by three seasons: a cold and dry season from May to August, a hot and 

dry season from September to October, and a rainy season from November to April, although 

the start of the rainy season varies greatly among years (Perrotton, 2015). Mean annual 

precipitation ranges between 450 and 650 mm per year and is spatially highly heterogeneous 

(Chamaillé-Jammes, Fritz, et al., 2007). Droughts as well as “dry spells” can occur during the 

rainy season (Matarira & Jury, 1992). The vegetation is typical of a highly heterogeneous 

dystrophic wooded savanna (Arraut, Loveridge, Chamaillé-Jammes, et al., 2018). The woody 

cover increases with distance from water pans (Chamaille-Jammes et al., 2009) and the open 

grassland is located along drainage lines. Several vegetation species dominate within the 

landscape, among them we can find Baikiaea plurijuga woodlands, Colophospermum mopane 

bushland or woodlands, mixed bushland community dominated by Combretum species, 

Terminalia sericea and Acacia groves (Rogers, 1993). Open grasslands can also be found along 

drainage lines. The surface water is mainly composed of natural pans of different sizes (ranging 

from approximately 10 meters of diameter to 1 kilometer of diameter) widely distributed across 

the area with the addition of artificial pans fed by underground water pumping stations (present 

both in the communal area but also within the HNP). During the wet season, surface water 

content is high and water is widely distributed across the landscape. On the contrary, during the 

dry season only artificial pumped waterholes provide water for humans as well as for domestic 

and wild animals (Chamaillé-Jammes, Fritz, et al., 2007). 
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Figure 2.2: Location map of the Hwange/Dete study site 
 

 

2.1.1.2 Current ecological context 

 

 

The communal area of Dete is an area dedicated to human settlements with lands allocated by 

traditional leaders (Guerbois et al., 2013), while HNP is managed by the National Parks and 

Wildlife Management Authority (NPWLMA) and the SFR is under the supervision of the 

Forestry Commission, which are both governmental authorities. At the interface between HNP, 

SFR and communal land tensions exist between local stakeholders. These tensions concern 

human-wildlife conflicts (Metcalfe, 2008), poaching (Muboko & Murindagomo, 2014), illegal 

wood harvesting, livestock predation by wild carnivores and crop raiding (Guerbois et al., 2012), 

and disease transmission between domestic livestock and wildlife (de Garine-Wichatitsky et al., 

2013; Miguel, Grosbois, Caron, Boulinier, Fritz, Cornélis, Foggin, Makaya, Tshabalala, & Garine-

Wichatitsky, 2013). Human settlement’s locations in the area take their roots in colonial and 

post-independence policies (Ncube, 2004; Raftopoulos & Mlambo, 2009). Another factor of the 

human presence in the area is the proximity of protected areas, which attract people hoping to 

find abundant natural resources for the establishment of traditional subsistence farming and 

animal husbandry activities (Guerbois et al., 2013). Currently, local communities have no right 
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of access for any use/extraction of natural resources from HNP, except for occasional grass 

harvesting for thatching, under close supervision of rangers. The management of the SFR, on 

the other end, includes a direct use of natural resources as a result of established collaboration 

between traditional leaders and the forestry commission authority (Perrotton, 2015). Since the 

droughts that occurred in the area in the early 1990’s (Maphosa, 1994), the Forestry Commission 

and traditional leaders negotiated complementary rights of access in the SFR for neighboring 

communities. Among those complementary rights, herders obtained the right to graze their 

cattle within the SFR, although the official authorized distance of incursion remains unclear (2 

to 3 km according to the forestry commission and up to 7 km according to local herders) 

(Guerbois et al., 2013). Indeed, the SFR is essential to local herders as it provides high-quality 

forage and water for their livestock, both resources that are being scarce in communal land 

where subsistence mixed farm systems (i.e., seasonal subsistence agriculture and traditional 

subsistence pastoralism) are the dominant economic activities. The use of the SF also represents 

a form of land claiming on a territory that was formerly used by the villagers a few decades ago 

(Perrotton, 2015). Today, contentions between local communities and governmental authorities 

on the use of the SFR’s natural resources still exist and are difficult to resolve. From one end, an 

extended authorized distance of incursion into the forest is asked while on the other end, a fear 

of overgrazing to the detriment of wildlife and of an increase of illegal activities such as wood 

harvesting and poaching is argued. The balance between the different parties living by and for 

this W/L interface is more precarious than ever. 

 

 

2.1.2 The interface of Gonarezhou/Malipati and Kruger/Pesvi 

 

 

2.1.2.1 Geographical, climatic, vegetation and hydrology characteristics 

 

 

The first study area (1696 km², this area have been determined to encompass the full spatial 

extent of the observed telemetry data available) presented in this section, the 

Gonarezhou/Malipati study site, is located in the Southeast Lowveld of Zimbabwe in the 

Chiredzi district at an altitude ranging between 300 m and 600 m above sea level (Chenje et al., 

1998) and at the periphery of the GNP (Figure 2.3). The second study area presented in this 

section (2043 km², this area have been determined to encompass the full spatial extent of the 

observed telemetry data available), the Kruger/Pesvi Study site, is adjacent to the KNP 

(separated by the international boundary) and, as the Gonarezhou/Malipati study site from 
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which it is separated by about 32 km following a straight line, is part of the Malipati communal 

land (Figure 2.4). The climate of Gonarezhou/Malipati and Kruger/Pesvi study sites is 

considered as semi-arid (Beck et al., 2018) and is characterized by mean annual temperatures 

ranging from 25˚C to 27˚C. The mean annual precipitation is 300 mm–600 mm and is 

characterized by high inter-annual variability (coefficient of variation≈ 40-45%) (Chenje et al., 

1998). The seasons are relatively similar to the ones observed in the Hwange/Dete study site. 

The rainy season occurs from December to March followed by a cold dry season between April 

and July and a hot dry season from August to November. 

The natural vegetation of the study sites is predominantly Mopane woodlands 

(Colophospermum mopane) found in association with Kirkia acuminata, Dalbergia melanoxylon, 

Adansonia digitata, as well as diverse species of Combretum, Acacia and Commiphora. In 

addition, perennial grasses such as Urochloa mosambicensis and Aristida congesta can be found 

in the area, usually close from surface water and along dewatered drainage lines. The Mwenezi 

River, a river with an intermittent flow (generally from November to April with a hydrological 

peak between December and February), runs north to south through the study area close to the 

GNP seasonally supporting both wildlife and livestock in water supply before flowing to the 

Limpopo River. The Limpopo River runs eastwards through the study area close to the KNP and 

marks the frontier between Zimbabwe and South Africa as well as with the KNP. Contrary to the 

Mwenezi River, the Limpopo River stays in water all year round despite strong seasonal 

variabilities of its hydrological regime (Purdon & van Aarde, 2017). During the dry season, water 

in the Mwenezi River is only available in a few pools that remain in water inside and at close 

proximity of the main riverbed (Zvidzai et al., 2013).   

 



 CHAPTER 2 – study sites and data used   

41 
 

 

Figure 2.3: Location map of the Gonarezhou/Malipati study site 

 

 

Figure 2.4: Location map of the Kruger/Pesvi study site 
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2.1.2.2 Current ecological context 

 

 

Two main land use types compose the Gonarezhou/Malipati and Kruger/Pesvi study sites’ 

landscape: a mixed land-use for agriculture and livestock grazing comprised within the 

communal lands and conservation areas composed of the GNP and less anthropized areas 

composed of the KNP. Communal lands are characterized by collective and/or community land 

ownership (Murwira & Skidmore, 2005) and the major land use activities include livestock 

production, irrigated cropping, as well as rainfed cropping (Harris et al., 2001). The GNP and 

the KNP are both part of the Great Limpopo TFCA that contains a great diversity of wildlife 

species, hosting the full spectrum of African savanna mammal diversity, mostly in high 

abundance (except for rhinos).  

The GNP is under the jurisdiction of Zimbabwean governmental authorities for conservation 

management of the national Park’s fauna and flora as well as the hunting and tourism activities 

supervision and management. In the GNP study area, part of the conservation area adjacent to 

the communal land is at times used for supplementary grazing by cattle (de Garine-Wichatitsky 

et al., 2013). This is made possible by a highly porous fenced boundary (damaged by both 

elephants and humans) between the conservation area and surrounding communal lands. The 

broken boundary increases the intensity and frequency of interactions between wildlife and 

livestock (de Garine-Wichatitksy et al., 2013) making this W/L interface particularly prone to 

potential human-wildlife conflicts such as pathogen transmission (Miguel, Grosbois, Caron, 

Boulinier, Fritz, Cornélis, Foggin, Makaya, Tshabalala, & Garine-Wichatitsky, 2013).  

The KNP study site, on the other end, is in an intricated geographical situation as the Limpopo 

River (Figure 2.4) acts as a natural border and separates Zimbabwe and South Africa. KNP is 

dependent of South African National Parks (SANParks) regulations since the creation of the 

Great Limpopo TFCA in 2002. Even if wildlife cannot roam completely freely between the GNP 

and the KNP through the Sengwe communal land, regular incursions of wildlife into communal 

areas has been observed, making interactions and their inherent effects between wild and 

domesticated animal species at this particular W/L interface possible (Caron et al., 2016). 
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2.2 Data used in this thesis 

 

 

2.2.1 Telemetry data 

 

 

Satellite telemetry using global positioning system (GPS) has the ability to determine temporal 

and spatial positions of animals in a given area with high precision, temporal accuracy, and 

position updates available in rapid frequency 24 hours a day (Cagnacci et al., 2010). This 

breakthrough in technology enabled new insights (e.g., patterns of biodiversity, ecological 

characteristics of individual species and ecosystem function) into the ecology of animal 

movements (Kays et al., 2015). Data describing the entire lifetime of movement by individual 

animals, and species-wide sampling from multiple populations, are now becoming available and 

offer new opportunities to measure and estimate contacts (Flack et al., 2015). However, few 

studies on large herbivores occupying African savanna environments using these technologies 

have been conducted so far (Owen-Smith et al., 2020) and the data used in this thesis and 

collected in previous works (Miguel, 2012; Valls Fox, 2015) are as valuable as they are scarce.  

 

 

2.2.1.1 Capture of animals and installation of GPS collars 

 

 

The telemetry dataset used in this thesis has been collected by the CIRAD and its partners 

(including CNRS, IGF, SANParks, FAO) in several research projects such as the EU-PARSEL 

project founded by the Food and Agriculture Organization of the United Nations (FAO) and the 

CIRAD between 2008 and 2011 (Caron, 2011), the Eve Miguel’s PhD in 2009-2012 (Miguel, 2012) 

and the Hugo Valls-Fox’s PhD in 2012-2015 conducted within the frame of the ANR SAVARID 

project (Valls Fox, 2015). Ultra-high frequency (UHF) GPS collars (such as the UHF GPG  collars 

manufactured by African Wildlife Tracking) have been used to monitor buffalo and cattle 

movements. Alexandre Caron and colleagues collected buffalo and cattle data in 

Gonarezhou/Malipati study site, Eve Miguel and colleagues collected buffalo and cattle 

telemetry data in the three study sites and Hugo Valls-Fox and colleagues collected cattle 

telemetry data in the Hwange/Dete study site. For the three projects, the GPS collars systems 

were scheduled to acquire locations with a frequency of one hour 24 hours a day. Data were 

acquired during several periods of recording (Table 2.1 and Table 2.2). One collar was fitted per 

herd for the cattle and 2 to 4 per group of buffalo. For the cattle data collected, the dominant 
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female, according to their owner’s perception, was equipped with a collar in order to track the 

movements of each cattle herd in agreement with cattle owners, traditional authorities, and local 

veterinary services.  

 

Contrary to the cattle that are relatively easy to access, buffalo required the application of 

different methods of capture, depending on the site, the capture team’s composition, the 

available material, and the experience. Buffalo groups were sighted from above by helicopter 

then, one or more buffalo were selected given the protocol requirements (e.g., adult females) to 

be tele-anesthetized (de Garine-Wichatitsky et al., 2010). The helicopter then landed close to 

the one or more buffalos and, with or without the support of a ground team, proceeded to 

sampling (e.g., blood sample, a small piece of tissue (ear) and/or hair) and collaring, before 

waking-up the animal using chemical antidote. The other method consisted of using a funnel-

type boma with a diameter of approximately 400 m. After the installation of the boma, buffalo 

groups were oriented inside the structure using a helicopter as an instrument to prevent any 

escape. After an observed lull in buffalo activity, a group team entered the boma to dart selected 

individuals and proceeded to sampling and collaring. All animals were observed returning to 

their group after the darting operation. All field operations conformed to the permits and legal 

requirements of the countries in which they were carried out. 
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BUFFALO 

Study site 
Group

s 
Number of 
individuals 

Individual id 
Period of 
recording 

Utilizations 

Hwange/Dete 

Gp 1 3 
AU287/AU291 

/AU297 

20/04/2010 
to 

18/08/2011 

Calibration/ 
validation 

Gp 2 4 
SAT524/SAT52

6 
/11456/11472 

14/11/2012 
 to 

28/09/2013 

Calibration/ 
validation 

Gp 3 4 
SAT526/11456 
/11472/11473 

03/12/2013 
 to 

15/04/2014 

Calibration/ 
validation 

Gonarezhou/Malipati 

Gp 1 3 B80/B83/B85 
13/10/2008  

to 
03/03/2011 

validation 

Gp 2 4 
B80/B83/B84/

B85 

14/10/2008 
 to 

19/11/2019 
validation 

Kruger/Pesvi 

Gp 1 7 

B31810/B34559
/ 

B34564/B3456
7/ 

B34571/B34572 
/B34575 

31/10/2013  
to 

25/01/2015 
validation 

Gp 2 7 

B31805/B31810
/ 

B31811/B31813/ 
B31817/ 

B31818/ B31820 

25/07/2011  
to 

15/09/2011 
validation 

Gp 3 5 

B34562/B3456
3/ 

B34566/B3457
4/ 

B34576 

20/12/2013  
to 

12/02/2014 
validation 

Gp 4 4 

B34562/B3456
6/ 

B34574/B3457
6 

31/10/2013  
to 

06/02/2015 
validation 

Gp 5 2 B1130/B8526 
04/06/2010 

to 
24/12/2011 

validation 

Gp 6 3 
B1130/B8526/ 

B31808 

25/07/2011  
to 

14/04/2012 
validation 

Table 2.1: Details of the buffalo telemetry data used in this thesis 
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CATTLE 

Study site 
Number of 
individuals 

Individual id 
Period of 
recording 

Utilizations 

Hwange/Dete 10 

AU387 
 

15/12/2010  
to 

15/08/2011 

calibration/ 
validation 

AU388/AU389 
AU390/AU392 

20/04/2010  
to 

15/08/2011 

U4 
28/11/2012 

to 
22/11/2014 

U6 
30/11/2012  

to 
27/06/2014 

U7 
29/11/2012  

to 
23/01/2014 

U8 
29/11/2012  

to 
04/12/2014 

U9 
29/11/2012  

to 
21/11/2014 

Gonarezhou/Malipati 4 

382/384/386 
26/11/2009 

to 
16/05/2011 

validation 

383 
26/11/2009 

to 
21/10/2010 

Kruger/Pesvi 4 
681/682 
684/685 

16/06/2010 
to 

25/07/2011 
validation 

Table 2.2: Details of the cattle telemetry data used in this thesis 

 

 

2.2.1.2 The utilization of pre-processed telemetry data 

 

 

The GPS telemetry used in this thesis have been pre-processed by Elodie Wielgus during her 

PhD (Wielgus, 2020). GPS locations have originally been acquired in decimal degrees with the 

WGS84 datum. In order to project the data and calculate metrics variables such as distances and 

speed, all the telemetry data have been projected under the civilian UTM grid reference system 

(Stott, 1977). Within the civilian UTM grid reference system, horizontal lines are designated by 

their distance from the equator in meters and vertical lines are measured from a separate point 

for each zone, namely an imaginary line lying 500 000 meters west of the zone's central 

meridian. The UTM grid cells corresponding to the study sites were: WGS84 UTM 35S for the 
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Hwange/Dete study site and WGS84 UTM 36S for the Gonarezhou/Malipati and Kruger/Pesvi 

study sites. The established technique by Bjørneraas et al., 2010 has then been applied to identify 

GPS locations where movement patterns was unrealistic, using thresholds for distance, speed 

and turning angles between two recorded locations (criteria used: Δ = 100,000 m; μ = 10,000 m; 

α = 3,000 m/h; θ = -0.95) (Wielgus, 2020). Some of the GPS locations were presenting time 

delays after the collecting sessions. In the case when the GPS location has been taken within 5-

min interval from programmed acquisition time, the GPS location has been conserved and the 

corresponding time attribute recessed at the top of the hour. In the other case, the GPS location 

has been recalculated for the programmed acquisition time by linear interpolation (Wielgus, 

2020).  

 

Having spatialized the pre-processed telemetry data to visually and qualitatively (e.g., 

observation of the attribute data such as IDs and dates of recording) the buffalo and cattle 

telemetry data have been grouped by locations and time of recording for each of the three study 

sites (Table 2.1 and Table 2.2). All the individuals of each of the two species that had the same 

location at the same time have been considered as a herd entity (group) in order to derivate 

herd’s metrics (herd metrics will be detailed in chapter 5). The same individual could be 

considered as part of several groups (Table 2.1 and Table 2.2). Also, from all the telemetry data 

available, only individuals that geographically overlapped with the other focal species have been 

considered for each of the three study sites (Figure 2.5), thus respecting a generic selection 

protocol. Combining the three study sites, a total of 18 cattle and 33 buffalo individuals have 

been used within this thesis (Figure 2.5).  
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Figure 2.5: Spatialized localizations of the cattle (represented in red dots) and buffalo (represented in 
brown dots) telemetry data for the entirety of their respective recorded periods at the three study areas. 
In Hwange/Dete, 10 cattle individuals and 8 buffalo individuals complete the dataset. In 
Gonarezhou/Malipati, 4 cattle individuals and 4 buffalo individuals complete the dataset. In Kruger/Pesvi, 
4 cattle individuals and 21 buffalo individuals complete the dataset.  

 

 

2.2.2 Remote sensing data 

 

 

The use of SRS in ecology regarding environment monitoring in general and animal conservation 

and movement in particular is well known and well disseminated through current scientific 

information channels (Pettorelli, Laurance, et al., 2014; Rose et al., 2015). The last few years have 

seen the emergence of a multitude of new optical and radar sensors, thus multiplying the 

possible applications for the scientific community (Zhu et al., 2017). In this particular context, 

we opted to use SRS imagery to characterize the environmental drivers that influence the 

movements of the two focal species in space and time and use them in combination with the 

already collected telemetry data at our disposal.  

 

Within the frame of this thesis, we have chosen to use satellite images produced by the Sentinel-

2 satellite constellation that comprises two polar-orbiting satellites placed in the same sun-

synchronous orbit and phased at 180° to each other (Drusch et al., 2012). These two optical 
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satellites provide images with wide swath width (290 km), a high revisit time (10 days at the 

equator with one satellite and 5 days with 2 satellites, which results in 2-3 days at mid-latitudes), 

a medium spatial resolution of 10 meters, 20 meters and 60 meters, and 13 spectral bands in the 

visible, near infrared, and short wave infrared part of the spectrum (Drusch et al., 2012). The 

first satellite has been launched in June 2015 while the second one has been launched in March 

2017. The Sentinel-2 constellation is part of the Copernicus program that has been initiated by 

the European Commission in partnership with the European Space Agency (ESA) in 1998. 

Currently, access to the database of satellite images produced by the Sentinel-2 satellite 

constellation is opened to everyone and completely free of charge. Sentinel-2 satellite images’ 

spatial resolution allows landscape scale analysis (Ramoelo et al., 2014) as well as landcover 

classification (Pelletier et al., 2019) while the included 13 spectral bands offer the possibilities to 

derive spectral indices that can be used to efficiently characterize different elements of the 

environment such as surface water (Bie et al., 2020) and different types of vegetation (Frampton 

et al., 2013). Sentinel-2 SRS images also offers a large orbital swath which limits the number of 

tiles to be downloaded to cover large areas and have a sufficient revisit time period to monitor 

the temporal variation of surface water for instance. For all these reasons, we have favored the 

use of Sentinel-2 SRS images over other medium spatial resolution SRS images such as Landsat 

that are produced and made available by the National Aeronautics and Space Administration 

(NASA) since 1972. These images certainly offer greater temporal coverage than Sentinel-2 

satellite images but at a lower spatial resolution (30 meters), with a more limited orbital swath 

capacity (185 km compared to 290 km for the Sentinel-2) as well as with a lower time revisit 

frequency (16 days and 8 days with Landsat 7 and 8 combination). All these elements combined 

can be considered too restrictive for the analysis of animal movements at the landscape scale 

and the combine use with our telemetry dataset.  

 

As no Sentinel-2 satellite images were produced at the time of the telemetry data acquisition 

(Table 2.1 and Table 2.2), satellite images from 2018 have been selected. 2018 was the most 

recent year of SRS data acquisition at the beginning of the thesis and was a representative year 

regarding the annual precipitation measured in the three study areas according to the Tropical 

Applications of Meteorology using SATellite data and ground-based observations (TAMSAT) 

(Figure 2.6). The TAMSAT V3.1 data that have been used is among the best open-source 

precipitation data in terms of precipitation event detection over the African continent at a spatial 

resolution of 0.0375° (approx. 4 km) (Dinku et al., 2018). The TAMSAT data have been 

developed by the University of Reading in collaborations with the Climate Division of the 

National Centre for Atmospheric Science (NCAS) and the National Centre for Earth Observation 

(NCEO) (Maidment et al., 2014, 2017; Tarnavsky et al., 2014). TAMSAT cumulative rainfall 

datasets and the derived daily estimates can be considered temporally consistent, which is 
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important in both assessing climatic risks and for seasonal rainfall monitoring (Thiemig et al., 

2012; Toté et al., 2015).  

 

 

Figure 2.6: Histograms representing the sum of annual precipitation (blue bars) and the maximum annual 
precipitation per year (yellow bars) as well as the mean annual precipitation (red line) over the period 
2000-2018 for all three study areas according to the TAMSAT V3.1 data (Maidment et al., 2017; Maidment 
et al., 2014; Tarnavsky et al., 2014). The year 2018 used as reference for the download of the Sentinel-2 
images is represented in black (sum of annual precipitation) and gray (maximum annual precipitation). 
The 2018 annual precipitation are slightly under average in Hwange/Dete (610 mm < 695 mm) and 
Kruger/Pesvi (420 mm < 490 mm) but remain in the same orders of magnitude and are right on average 
in Gonarezhou/Malipati (at around 510 mm). The maps of the specialized mean annual precipitations for 
the period 2000-2018 are also represented on the right side of the figure. These maps show a spatial 
homogeneity of precipitation across the three study areas.  

 

 

Therefore, to characterize the landcover and the surface water (more details in chapter 4), 72 

Sentinel-2 satellite images have been downloaded in level 1C which provides Top of Atmosphere 

reflectance and orthorectified images (Table 2.3). The Sen2Cor v2.8 application (Sen2Cor, ESA, 

http://step.esa.int/main/third-party-plugins-2/sen2cor/) (Louis et al., 2016) has been used to 

apply the atmospheric corrections, thus transforming L1C images to level L2A (Top of Canopy) 

images. 6 tiles (one tile corresponding to the spatial extent of one of the spatial division grid 

cells) were necessary to cover the entire study zone spatial extent (Table 2.3). The dates of the 

image selected represent days with less than 10% of cloud cover for the entire year 2018 with 



 CHAPTER 2 – study sites and data used   

51 
 

one image per month for each tile. For the month of February however, no images were cloud 

free in 2018. As a result, Sentinel-2 satellite images from February 2019 have been selected 

instead (Table 2.3).  

 

 

Characteristics Values 

Spatial and 
spectral 

resolutions 

10 x 10 m 
B2 (490 nm), B3 (560 nm), B4 (665 nm), B8 (842 nm) 
20 x 20 m 
B5 (705 nm), B6 (740 nm), B7 (783 nm), B8a (865 nm), B11 
(1610nm), B12 (2190 nm) 

Temporal 
resolution 

5 days 

Swath width 290 km 

Tile size 100 x 100 km 

References of 
selected tiles 

T35KNV – T35KNU – T35KMV – T35KMU – T35KLV – 
T35KLU 

Dates of the 
downloaded tiles 

T35KNV (2018-01-05 / 2019-02-24 / 2018-03-16 / 2018-04-
20 / 2018-05-05 / 2018-06-04 / 2018-07-04 / 2018-08-18 / 
2018-09-12 / 2018-10-12 / 2018-11-16 / 2018-12-21) 
T35KNU (2018-01-05 / 2019-02-24 / 2018-03-16 / 2018-04-
25 / 2018-05-10 / 2018-06-14 / 2018-07-04 / 2018-08-18 / 
2018-09-12 / 2018-10-12 / 2018-11-11 / 2018-12-11) 
T35KMV (2018-01-08 / 2019-02-22 / 2018-03-14 / 2018-04-
23 / 2018-05-03 / 2018-06-12 / 2018-07-02 / 2018-08-16 / 
2018-09-15 / 2018-10-10 / 2018-11-19 / 2018-12-14) 
T35KMU (2018-01-13 / 2019-02-22 / 2018-03-14 / 2018-04-23 
/ 2018-05-03 / 2018-06-12 / 2018-07-02 / 2018-08-16 / 2018-
09-15 / 2018-10-10 / 2018-11-14 / 2018-12-14) 
T35KLV (2018-01-08 / 2019-02-22 / 2018-03-14 / 2018-04-23 
/ 2018-05-03 / 2018-06-12 / 2018-07-02 / 2018-08-16 / 2018-
09-15 / 2018-10-10 / 2018-11-14 / 2018-12-14) 
T35KLU (2018-01-08 / 2019-02-22 / 2018-03-14 / 2018-04-23 
/ 2018-05-03 / 2018-06-12 / 2018-07-02 / 2018-08-16 / 2018-
09-15 / 2018-10-10 / 2018-11-14 / 2018-12-14) 

Table 2.3: Summary of the different Sentinel-2 tiles characteristics used in the thesis to produce the land 
use maps and the surface water classifications  
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2.2.3 In-situ data and empirical knowledge 

 

 

A dataset of GPS coordinates locating surface water (both artificial and natural) through field 

exploration has been used to assess the accuracy of the developed surface water classification 

(more details in chapter 4). These data have been collected during previous studies in the three 

different study areas and correspond to projected vector points (Guerbois, 2012; Miguel, 

Grosbois, Caron, Boulinier, Fritz, Cornélis, Foggin, Makaya, Tshabalala, & Garine-Wichatitsky, 

2013; Valls Fox, 2015). In The Hwange/Dete study site, 38 boreholes (artificial surface water 

supplies by solar pumping station) have been identified in the communal area. Within the SRF, 

57 vector points constitute the first dataset of boreholes while the second dataset is composed 

of 86 vector points. Regarding these two datasets, some of the points are located in direct 

proximity of the surface water while others are located on a road passing by. Their precision and 

the recording protocol differ greatly. In the Gonarezhou/Malipati study site, 16 boreholes have 

been identified within the communal area. In the Kruger/Pesvi study site, the borehole dataset 

is composed of 126 referenced vector points but the majority of them are located within the 

national park. Only two of them are located within the geographical extent of the study site 

recorded buffalo telemetry data.  

 

Also, it is important to note that empirical knowledge gathered during previous studies in the 

three study sites has been extensively and continuously transmitted through a variety of contact 

with scientists involved or still exercising in the field (most of the thesis supervising team) and 

various local stakeholders (farmers, veterinarians, park rangers, Zimbabwean students, and 

village leaders). Indeed, a short field trip of 10 days has been organized in the Hwange/Dete 

region in June 2019 to probe the field reality and give an overview of the issues that this thesis 

aims to address. This valuable knowledge positively influenced the current work by limiting 

potential cognitive bias as well as by reinforcing the apprehension of the study area geography, 

landscape composition, socio-economic situation, and ecological context.  
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2.3 Chapter summary 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

- The three wildlife livestock interfaces chosen as study sites have very contrasting 

ecological, geographic, and hydrological profiles. 

 

- The three study sites have relatively comparable climates and heterogeneous 

vegetation structures that are representative of savannah wooded landscapes found 

across Southern Africa. 

 

- Cattle and buffalo telemetry data have a temporal frequency of one hour and have 

been collected over different time periods for the three study sites. Concerning the 

buffalo telemetry data, several individuals were recorded at the same location at the 

same time, allowing to constitute groups of several individuals. 

 

- Time series of Sentinel-2 satellite images for the year 2018 have been downloaded  

for all three study sites in order to characterize environmental variables at the 

landscape scale with a spatial resolution of 10 meters. 

 

- Spatialized environmental data allowing the geographical location of natural and 

artificial water points exist for the three study sites. However, the Hwange/Dete study 

site has a more extensive database than the other two study sites considered. 
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Chapter 3 

 

Literature review of the environmental 
drivers influencing the buffalo and cattle 
movements in space and time 
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3.0 Preamble 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Having learned about the existing dataset, the study sites and their hydrological, 

climatic, ecological and geographical characteristics, as well as the two focal animal 

species considered to focus the study on, this chapter focuses on discriminating the 

environmental variables that influence the buffalo and cattle movements in space and 

time, as well as the existing remote sensing methods to spatially and temporally 

characterize these environmental variables. To do so, a review article has been 

considered in order to present the results of this particular question in a 

comprehensive and potentially exploitable way by the whole scientific community 

specializing in animal movement ecology and wishing to become familiar with key 

concepts of remote sensing. The article was published in 2020 in the open-access and 

peer-reviewed journal “Remote Sensing” 

(https://www.mdpi.com/journal/remotesensing)  that publishes regular research 

papers, reviews, technical notes and communications covering all aspects of remote 

sensing science, from sensor design, validation / calibration, to its application in 

geosciences, environmental sciences, ecology and civil engineering.  

https://www.mdpi.com/journal/remotesensing


 CHAPTER 3 – Environmental variables influencing buffalo & cattle  

56 
 

3.1 The article 
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Abstract: Interfaces between protected areas and their peripheries in southern Africa are subject to 

interactions between wildlife and livestock that vary in frequency and intensity. In these areas, the 

juxtaposition between production and conservation land uses in a context of increasing anthropisation 

can create issues associated with human-wildlife coexistence and raises concerns for biodiversity 

conservation, local development and livelihoods. This literature review aimed at addressing the need 

to consolidate and gather in one article current knowledge on potential uses of satellite remote sensing 

(SRS) products by movement ecologists to investigate the sympatry of wildlife/domestic ungulates in 

savanna interface environments. A keyword querying process of peer reviewed scientific paper, thesis 

and books has been implemented to identify references that (1) characterize the main environmental 

drivers impacting buffalo (Syncerus caffer caffer) and cattle (Bos taurus & Bos indicus) movements in 

southern Africa environments, (2) describe the SRS contribution to discriminate and characterize these 
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mailto:simon.chamaille@cefe.cnrs.fr
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drivers. In total, 327 references have been selected and analyzed. Surface water, precipitation, 

landcover and fire emerged as key drivers impacting the buffalo and cattle movements. These 

environmental drivers can be efficiently characterized by SRS, mainly through open-access SRS 

products and standard image processing methods. Applying SRS to better understand buffalo and 

cattle movements in semi-arid environments provides an operational framework that could be 

replicated in other type of interface where different wild and domestic species interact. There is, 

however, a need for animal movement ecologists to reinforce their knowledge of remote sensing 

and/or to increase pluridisciplinary collaborations. 

Keywords: African savanna; animal movements; earth observation imagery; remote sensing; 

sympatric wild and domestic ungulates; wildlife-livestock interface 

 

1. Introduction 

 

In Africa, human populations living at the edge of protected areas have significantly increased in 

recent years [1,2]. This burst in human population is a challenge for biodiversity conservation in 

protected areas (PA) and livestock production in adjacent communal lands (CL) where these land uses 

coexist [3]. At the PA-CL interfaces, interactions between wildlife, people and their livestock frequently 

occur [4,5] even when park or veterinary fences, largely detrimental to wildlife movements, exist [6–8]. 

This growing number of interactions potentially increases human/wildlife coexistence related issues [3] 

such as competition for resources inside/outside protected areas [9], predation of livestock by wild 

carnivores [10], crop destruction by wildlife [11], and risk of pathogen transmission between wild and 

domesticated species [12–14]. These complications associated with human/wildlife coexistence raise 

challenges for biodiversity conservation and local development. They impact local communities’ 

livelihoods and well-being [15–18], and threaten the sustainable coexistence between stakeholders 

involved in the management of these land-uses. In this context, identifying and characterizing 

environmental drivers that condition animal movements in space and time is essential to assess the 

potential opportunities and threats associated with wild/domestic interactions in PA-CL interfaces. 

The potential for SRS applications, regarding environment monitoring in general and animal 

conservation in particular, has been largely stressed [19,20]. Indeed, SRS techniques provide an 

increasing number of sensors [21–26] that may characterize the environmental drivers impacting animal 

movements at different space and time scales. Moreover, SRS offers continuous temporal follow-up data 

in areas where in-situ data are nonexistent and/or difficult to collect [27], as it is the case in the savanna 

landscapes in southern African PA-CL interfaces [28]. In these heterogeneous open environments with 

high variability in soil composition, topography, and subject to dynamic processes such as rainfall, fire, 

climate change, herbivory and human impacts [29–31], SRS could provide viable tools to predict 

biophysical measurements of cover, density, and biomass of savanna vegetation [32,33]. However SRS 

also faces difficulties in retrieving vegetation spectral response due to soil background, vegetation 

shadow, standing dead vegetation occurring in these arid and semi-arid areas [34,35]. Despite these 

limitations, combining SRS with recent advances in telemetry technology is key to assess 

wildlife/domestic animal interactions in savanna landscapes, especially at PA-CL interfaces [36–38]. 

The African buffalo (Syncerus caffer caffer) and cattle (Bos taurus & Bos indicus) are keystone species 

for conservation and production systems in southern African PA-CL interfaces. The understanding of 

their functional ecology constitutes an applied example on how SRS can be efficiently used to design a 

framework of animal movement analyses. The African buffalo is one of the “Big Five” [39] and 

contributes to consumptive and non-consumptive tourism [40,41], provides a source of proteins and 

income for local communities [42] and is an important member of the ungulate guild who shapes habitat 

heterogeneity in and outside protected areas where the human presence is low [43–46]. Cattle, in 

subsistence farming communities, provide draught power, source of protein, cash incomes, safety net 

and social status [47–49]. Buffalo and cattle are both grazer ungulates, close phylogenetically, sharing 
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common resources (i.e., forage and water) [50], and are thus likely to overlap in range and compete for 

resources, particularly in environments where resources are spatially segregated (e.g., savannas) [51,52]. 

Both species rely on their behavior and the management of the land use by humans to cope with 

constrained access to natural resources (e.g., access to artificial water, forage intake by the herder) 

[53,54]. Their shared use of space increases the likelihood of direct (i.e., the use of the same space at the 

same time) and indirect (i.e., the use of the same space at different times) contacts, which in turn 

promotes the risk of pathogen transmission [12,55–58], a threat to farmers and biodiversity conservation 

[4,13]. Given this complex ecological context, characterizing buffalo and cattle habitats to understand 

their movements in space and time in conjunction with currently available SRS applications and 

methodologies is necessary.  

In this review article, we aim at (1) reviewing the main environmental drivers impacting buffalo 

and cattle movements in southern Africa interface environments, (2) describing the SRS contribution to 

discriminate and characterize these drivers in southern Africa interfaces. The underlying objective is to 

facilitate the uses of SRS by movement ecologists in order to improve wildlife/domestic animals 

management and conservation in different types of savanna interfaces across the globe. It is adding and 

completing previous works that focused on the link between SRS, environmental challenges and animal 

movement but in a wider ecological context [20,59].  

 

 

2. Review Article Methodology 

 

 

A literature review of peer-reviewed articles, thesis and books in English (such as defined in Grant 

and Booth (2009) [60]) has been conducted on the following topics: (i) behavioral and movement ecology 

of buffalo and cattle in southern Africa; (ii) existing remote sensing tools allowing the discrimination in 

time and space of determined environmental drivers. The Web of Science database was used to retrieve 

relevant references via a two steps keyword querying process without time constraint. At each step, a 

systematic screening based on the title and the abstract was first conducted to select the articles, books 

or thesis for full-text reading. Selected references bibliographies have also been read to extract 

additional relevant articles, book or thesis. 

The first step was to discriminate the environmental drivers impacting buffalo and cattle 

movements in space and time. The different keywords combined in no particularly order in the first 

step were “buffalo”; “syncerus caffer”; “cattle”; “bos taurus”; “bos indicus”; “ungulates”; “southern 

africa”; “movement”. The search resulted in 787 references. After abstract screening and the removal of 

replicates, 87 peer-reviewed articles, thesis and books from 1975 to 2020 were included in the review 

(Figure 3.1). Among them, 29 (33.3%) articles concerned buffalo only, 15 (17.2%) cattle only, and 43 

(49.5%) both species. Landcover & Vegetation, surface water, precipitation and savanna fire emerged as 

main environmental drivers impacting focal species (buffalo & cattle) (Figure 3.1). 
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Figure 3.1. Environmental driver statistics of the step 1 bibliography. The percentage of articles 

identifying the environmental drivers of animal movements among all the peer-reviewed selected 

articles is presented according to the species considered (buffalo only, cattle only, buffalo & cattle). 

 

The second step was to define the existing methodologies in remote sensing to characterize the 

different environmental drivers previously determined. The different keywords combined in no 

particularly order in the second step were all the environmental drivers determined in the first step: 

“surface water”; “precipitation”; “rainfall”; “vegetation”; “fire” with the addition of the following 

keywords: “remote sensing”; “Earth observation imagery”; “landcover”; “land-use”; “spectral index”; 

“radar”; “optical”; “savanna”. The search resulted in 1140 references and, after abstract sreening and 

the removal of duplicates, 240 articles from 1974 to 2020 were included in the review.  

In total, 327 articles from 1974 to 2020, divided into 9 categories, have been selected and used as 

reference in this paper (Figure 3.2A). The “diverse” category includes the articles with general themes 

close to the study, but which cannot fit into the other specified categories. Two thirds of the selected 

peer-reviewed articles are about SRS, with a majority of them specifically focusing on Landcover & 

vegetation and surface water (Figure 3.2A). We observed an increase in publications related to SRS since 

the early 2000s and a steady frequency of peer-reviewed articles focusing on buffalo and cattle (Figure 

3.2B). 
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Figure 3.2. Statistics and chronology of the article bibliography by topic category. (A) The ring diagram 

represents the percentage of each category in relation to the total number of reviewed articles. (B) The 

horizontal axis of the histogram corresponds to the published year of the selected articles. The vertical 

axis corresponds to the number of published articles according to their respective categories. 

 

3. Environmental Drivers Influencing the Movements of Buffalo and Cattle and 

the Satellite Remote Sensing Tools to Characterize them 

 

The main environmental drivers (Landcover/vegetation, surface water, savanna fire and 

precipitation) identified through the reviewing process (Section 2) are illustrated through this section 

using the example of a buffalo/cattle interface localized in HNP, Zimbabwe (Figure 3.3). In this 

particular context, the two focal species interact at the interface between a national park and an adjacent 

CL (Figure 3.3A) where habitats cover a wide variety of environments and natural resources. 
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Figure 3.3. Illustrative examples of SRS-derived environmental drivers of buffalo and cattle movement 

in HNP, Zimbabwe (refer to supplementary materials for a complete description of the data used). (A) 

Map of the buffalo and cattle density based on GPS data set for both species (number of individual per 

pixel in the HNP interface ecosystem at 5m spatial resolution) [12]. (B) K-means unsupervised landcover 

classification map of Dete municipality next to HNP derived from Sentinel-2 imagery with a 10 m spatial 

resolution [61]. (C) Frequency and distribution of surface water presence at 10 m spatial resolution 

obtained via the Random Forest (RF) algorithm applied on a sentinel-2 image of March 2018 after the 

application of atmospheric corrections [61]. (D) Normalized Difference Vegetation Index (NDVI) map 

with a 250 m spatial resolution from the Moderate-Resolution Imaging Spectroradiometer (MODIS). (E) 

Map of fire detected in 2018 using the MOD14A2 Fire product with a 1 km spatial resolution. (F) Map of 

the yearly precipitation estimations by the Tropical Applications of Meteorology using SATellite data 

(TAMSAT V3.0) product with a 4 km spatial resolution [62,63]. 

3.1. Landcover 

3.1.1. How Landcover and Vegetation Influences Cattle and Buffalo Movements 

Landcover (cropland, forest, surface water, artificial cover, bare soil, human infrastructures,…) 

affects animal movements because it reflects differences in resource availability, habitat structure 

preferences and ease of travel [64–66]. Buffalo and cattle are ruminants and predominantly grazers [67–

69]. They are associated with open environments, where grass species are more abundant [70], and the 

spatial and temporal variability of fodder resource drives the foraging responses of both species [71]. 

Seasonal shifts in the composition of their diet are common due to the availability of grass species 

[72,73]. During the dry season, i.e., when quantity and quality of food resources decrease, buffalo and 
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cattle adopt a selective and opportunistic switching between different types of habitat or concentrated 

feeding close to water sources [72,74]. Buffalo tend to avoid areas used by cattle due to strong dietary 

overlap [75,76], the presence of human activities, and can travel long distances to find suitable feeding 

resources during the dry season [71,77]. During the wet season, buffalo tend to select available feeding 

resources located close to watering points, limiting their daily travelled distances [70]. Cattle can range 

further away from their enclosures on their own, sometimes into protected areas in search of quality 

forage when the season is dry and when there is no fences surrounding the park [78]. In contrast, during 

the wet season, cattle focus on accessible and available shrub vegetation or low lying herbaceous 

vegetation at proximity of their respective enclosure and inside natural park in some instance [37]. 

Cattle are however prevented to enter agricultural fields during the growing season [79]. 

 

3.1.2. SRS Basics for Characterizing and Classifying Landcover 
 

SRS is widely used to assess landcover [80–84]. Different types of satellite sensors (Table 3.1) record 

the electromagnetic radiations which characterize the landcover, may this be the radiation reflected 

(optical sensors), the radiation emitted (thermal infrared and passive microwave sensors) or the 

radiation scattered (active radar sensors) [85]. Their characteristics (spatial resolution, revisit time 

period, spatial coverage, data availability, spectral resolution—see Table 3.1) define their capacities to 

map different land cover types on a given study area.  

Table 3.1. Small subset of Earth observation satellite systems allowing data acquisition that can 

potentially be used in the field of animal movement ecology. 

Optical Remote Sensing Satellites 

Sensor 

Resolution 
Satellite 

Spatial 

Resolution 

Revisit 

Time 

Period 

Nb of 

Spectr

al 

Bands 

Access 
Data 

Availability 

Used in 

Buffalo/C

attle 

Ecological 

Studies 

Low 

Resolution 

NOAA 1.1 Km 
2 times a 

day 
5 

Open-

source 
1978-present [86,87] 

MODIS 

Bands 1-2 

250 m / 

bands 3-

7 500 m / 

bands 8-36 

1 km 

2 times a 

day 
36 

Open-

source 
1999-present 

[29,54,67,7

9,87–89] 

Suomi NPP 

Bands I1-

5 375 m / 

bands M1-

16 750 m 

2 times a 

day 

 

22 
Open-

source 
2012-present - 

Envisat 

MERIS 
300 m 3 days 15 

Open-

source 
2002-2012 - 

Sentinel-3 300 m 2 days 21 
Open-

source 
2016-present - 

Medium 

Resolution 

Landsat 

Pan* 15 m 

/ MS* 30 

m / TIR* 

60 to 100 

m 

16 days  4-11 
Open-

source 
1972-present 

[11,37,88,9

0] 

Sentinel-2 

VNIR* 10 

m / SWIR* 

20 m / 

ACB* 60 

m 

5 days 13 
Open-

source 
2015-present [91] 
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Aster 

VNIR 15 

m / SWIR 

30 m / TIR 

 90 m 

16 days 14 
Open-

source 
1999-present - 

High 

Resolution 

Spot 

Pan 1.5 to 

2.5 m / MS 

6 to 10 m 

26 days 4-5 Licensed 1986-present [26] 

Ikonos 
Pan 1 m / 

MS 4 m 
1.5–3 days 5 Licensed 1995-2015 [54,92] 

Rapideye MS 5 m 1–5.5 days 5 Licensed 2008-present [26] 

ZY-3 
Pan 2.1 m / 

MS 5.8 m 
5 days 4 Licensed 2012-present - 

GF-1 / GF-2 MS 5 m 4–5 days 5 Licensed 2013-present - 

Planetscope 

- DOVEs 
MS 3 m Daily 4 Licensed 2017-present - 

Very-high 

Resolution 

Quickbird 

Pan 0.61 m 

/ MS 2.24 

m 

2.7 days 5 Licensed 2001-2015 - 

WorldView 

Pan 0.31 m 

/ MS 1.24 

m 

1–4 days 4-17 Licensed 2007-present [79] 

Geoeye 
Pan 0.41 / 

MS 1.64 m 
3 days 5 Licensed 2008-present - 

Pleaides 
Pan 0.7 m / 

MS 2.8 m 
Sub-daily 5 Licensed 2011-present - 

Skysat 
Pan 0.9 m / 

MS 2 m 
Sub-daily 5 Licensed 2013-present - 

Radar Remote Sensing Satellites 

Satellite Frequency 
Spatial 

Resolution 

Revisit 

Time 

Period 

Polari-

zation 
Access 

Data 

Availability 

Used in 

Buffalo/C

attle 

Ecological 

Studies 

ERS-

1/ERS-2 

C-band (5.3 

GHz) 
30 m 35 days VV 

Open-

source 
1991–2001 - 

Radarsat 1 

Radarsat 2 

 

C-band (5.3 

GHz) 

C-band 

(5.405 GHz) 

50 m 

25m 

 

24 days 

24 days 

 

HH 

VV-

VH 

Open-

source 

Licensed 

 

1995–

present 

2007–

present 

- 

- 

 

Envisat 

ASAR 

C-band (5.3 

GHz) 
12.5 m 35 days VV 

Open-

source 
2002–2012 - 

TerraSAR-

X / 

TanDEM-

X 

X-band (9.6 

GHz) 
5 m 11 days 

HH-

VV 
Licensed 

2007–

present 
- 

Sentinel-1 
C-band 

(5.405 GHz) 

FR* 3.5 m 

/ HR* 10 

m and 25 

m / MR* 

25 m and 

40 m 

6 days 
VV-

VH 

Open-

source 

2014–

present 
- 

Alos 

PALSAR 

1-2 

Alos 

PALSAR 2 

L-band (1.27 

GHz) 

SP* 9 × 10 

m / DP* 19 

× 10 m 

46–14 days 
VV VH 

HH HV 
Licensed 

2006–

present 
- 

* Visible Near Infrared (VNIR) / Short-wave Infrared (SWIR) / Thermal Infrared (TIR) / Atmospheric Correction 

Bands (ACB) / Panchromatic (Pan) / Multi-spectral (MS) / Full Resolution (FR) / High Resolution (HR) / Medium 

Resolution (MR) / Single Polarization (SP) / Dual Polarization (DP) 
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Two main categories of classification methodologies are commonly used in SRS to produce 

landcover maps. Supervised classification methodologies use different machine learning algorithms 

(maximum likelihood, neural network ensembles, random forests (RF), …) to discriminate user-

determined landcover categories [93]. For example, the RF algorithm uses a set of decision trees [94] 

and is now widely used [95,96], with the advantages of reliable and rapid execution in processing time 

of large volume of variables and data [97,98]. Such approaches require the definition of a training dataset 

of the different classes to be distinguished before classification. On the other hand, unsupervised 

classifications methodologies are more automatic processes, relying on algorithms such as K-means or 

Agglomerative Hierarchical to discriminate landcover categories [99]. The two types of classification 

methods can be applied to classify either image pixels, based on their spectral or textural values, or 

objects, i.e., neighboring pixels with similar spectral values aggregated into ”objects” prior to the 

classification process. In the latter case, additional object-specific features such as shapes, context 

features/neighborhood relation, scale-hierarchy relation can be used to characterize and classify the 

objects [100]. In all cases, ground-truthing data are required for accuracy assessment. 

Optical satellite images such as MODIS and Landsat (Table 3.1) have been used extensively for 

land cover classification since the 1970s and have enabled the dissemination of freely available 

landcover map products (Table 3.2) that represent major landscape features on a global scale. These 

products provide an initial characterization of landscape features that can be useful considering 

landcover preliminary assessments in a particular study area and can be easily operated by users with 

little SRS knowledge. The recently launched ESA-S2-LC20 product (Table 3.2) is one good example and 

can fulfil such a task despite a moderate accuracy [101]. However, as their spatial resolution and 

typologies are possibly not adapted to the study of ungulates habitats, ‘customized’ landcover maps 

can be produced to better reflect the landscape complexity of a particular study area [102]. 

Implementing optical indexes of vegetation, soil (Table 3.3) and water (Table 3.4) can also potentially 

enhance landcover classification results [103,104].  

Despite high capacities to produce landcover maps, optical satellite images are not without 

limitations (e.g., lack of cloud-free periods) [105] and synthetic aperture radar (SAR) images (Figure 3.4 

and Table 3.1) can provide a reliable alternative to optical satellite images. SAR sensors produce their 

own source of illumination and therefore can operate in almost any weather condition, day or night, 

and penetrate different types of vegetation cover [106,107]. They have shown good results to classify 

landcover in general [108], forests [109] and biomass [110] in particular and are, as a result, increasingly 

used. Several studies have demonstrated the complementarity of SAR and optical data and concluded 

that using them together provides better results than using them separately [22,111,112], especially in 

tropical environments where the cloud coverage often hinders the use of optical satellite images [113]. 

Table 3.2. List of satellite remote sensing-based landcover products. 

Product Name 
Spatial 

Resolution 

Data 

Availability 
Sensor Used Reference 

Climate Change Initiative (CCI) 

LandCover V2 
300 m 

1992 to 2015–

2016–2017–

2018 

MERIS Full and 

Reduced resolution / 

Spot VGT 

[114] 

MCD12Q1 0.5 km MODIS-based 

Global LandCover 
500 m 2001–today MODIS [115] 

Globeland30 30 m 2000 / 2010 
Landsat TM, ETM7, 

HJ-1A/b 
[116] 

GLC 2000 1 km 2000 
SPOT 4 

VEGETATION 
[117] 

GlobCover 

2005 V2.2 

2009 

300 m 2005 / 2009 MERIS FR [118] 

GLCNMO V.1-V.2-V3 
1 km / 500 

m 

2003 / 2008 / 

2013 
MODIS [119] 

GLC Share 1 km 2014 MERIS-MODIS [120] 
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GLC250 m CN (2001 / 2010) 250 m 2001 / 2010 MODIS [121] 

FROM-GLC (GLC, GLC-seg, 

GLC-agg, GC, GLC-hierarchy) 
30 m 2010 Landsat TM, ETM+ [122] 

Global 30m Landsat Tree Canopy 

(TCC) V.4 
30 m 

2000, 2005, 

2010, and 2015 

MODIS, Landsat TM, 

ETM+ 
[123] 

Global Forest Change (GFC) - 

GLAD (Global Land Analysis & 

Discovery) lab at the University 

of Maryland (UMD) 

30 m 2000 to 2019 
Landsat TM, ETM+, 

OLI 
[80] 

Copernicus Global 100 m 

Landcover (CGLS-LC100) 
100 m 2015 

PROBA-V EO and 

GSD 
[124] 

ESA-S2-LC20, 20 m (over 

Africa) 
20 m 2016 Sentinel-2A [125] 

 

3.1.3 SRS for Detecting Landcover and Vegetation Changes  
 

Detection of landcover changes is a complicated and integrated process and there is no optimal 

and applicable approach to all cases [126]. Several studies have demonstrated the capacity of Landsat 

images, which offer the longest continuous record of medium-resolution satellite-based earth 

observation (Figure 3.4), to monitor long term environmental changes in savanna environments 

[127,128]. Optical remote sensing sensors allow to monitor the evolution of the vegetation through 

phenology based on the spectral signature of vegetation [129,130]. For example, the widely used 

normalized difference vegetation index (NDVI) (Table 3.3) [131] was demonstrated highly correlated 

with the vegetation photosynthetic activity [132–134], vegetation development and seasonal patterns, 

forage cumulative growth period quality and quantity assessments [135–137]. These properties allow 

monitoring and comparing vegetation phenology through space and time at different scales. The Figure 

3.3D, for example, represents one image (month of September 2018) of the MODIS MOD13Q1 NDVI 

time series, giving a spatial representation of the vegetation repartition across the HNP interface area.  

NDVI was also found correlated with animal movements [138,139]. However, in savanna 

environments, the relevance of simple indexes such as the NDVI can be limited and must be used with 

caution. Using low spatial resolution satellite sensors (i.e., MODIS) or even medium resolution satellite 

sensors (i.e., Landsat or Sentinel-2), pixels are most of the time mixed pixels of varying proportion of 

trees, grasses and bare soil [140,141]. In that case, the use of soil-adjusted vegetation indexes (Table 3.3) 

may be used as complementary to enhance classification results and seasonal analyses of landcover 

evolution [142,143] when applied within the frame of animal movement studies. 
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Figure 3.4. Earth observation optical and radar satellites commissioning and time of service chronology. 

The length of the arrow represents the continuity and the duration of the corresponding satellite 

program. 

3.1.4. SRS to Characterize Landcover and Vegetation When Studying Animal Movements in 

Savanna Environments 

Applying landcover classification to a savanna landscape can be challenging due to sparse cover, 

high background soil signal, and difficulty to differentiate between spectral signals of bare soil and dry 

vegetation [144]. Despite these limitations, Arraut et al (2018) produced a map of the vegetation 

structure of HNP in seven classes using 2013–2014 Landsat satellite images through a supervised 

classification process with an overall accuracy (OA) of 83.2% [102]. Figure 3.3B presents another 

example of a landcover map derived from an unsupervised classification (K-means algorithm) applied 

to a Sentinel-2 satellite image.  

Such tailored SRS landcover maps have been used in different studies of buffalo and cattle ecology 

aiming at relating animal movements and landcover (Table 3.1). For example, Cornélis et al. (2011) used 

a sylvo-pastoral vegetation map derived from 30 m resolution Landsat imagery to investigate the 

habitat preferences of buffaloes in W Regional Park (Burkina Faso, Benin, Niger) [88]. At local scale, 

very high spatial resolution sensors such as Worldview-2 and IKONOS were used (Table 3.1) to produce 

fine-scale landcover maps allowing the determination of resource use of cattle in communal lands in 

South Africa [79] and Zimbabwe [92]. 

Vegetation indexes (Table 3.3) provide a synthetic description of the vegetation spatio-temporal 

dynamics and several studies have related SRS derived vegetation indices such as the NDVI or the 

Enhanced Vegetation Index (EVI) (Table 3.3) to the spatio-temporal distribution and abundance of 

buffalo and other ungulates species at different scales [26,29,54,68,79,86,88,89,145–147]. For example, 

Naidoo et al. (2012a) used MODIS EVI time series to measure the greenness of the vegetation and 
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demonstrated the importance of this variable in explaining the variations in home range size of 

buffaloes in northeastern Namibia [29]. In two Australian savanna study sites, Handcock et al. (2009) 

showed that the tracks of cattle from GPS collars overlaid with a NDVI map derived from a 10 m 

resolution SPOT-5 image, highlighting a correlation between NDVI and cattle movements [26]. Using 

very high spatial resolution imagery, Zengeya et al. (2015) derived a fine scale EVI map from an 

IKONOS image to determine the proportion of cattle home range observed inside and outside a 

conservation area [54]. 

 

 

Table 3.3. Non-exhaustive list of spectral remote sensing indexes developed to discriminate 

vegetation and soil from optical satellite image analysis and that can be useful within the frame of 

animal movement studies in savanna environments. 

Spectral Index Calculation * Reference 

Used in 

Buffalo/Cattle 

Ecological 

Studies 

Normalized 

Difference 

Vegetation Index 
(NDVI) 

(𝑁𝐼𝑅 − 𝑅𝐸𝐷) (𝑁𝐼𝑅 + 𝑅𝐸𝐷)⁄  
[148,149

] 

[26,68,79,86,88

,145–147] 

Enhanced 

Vegetation 

Index (EVI) 

2.5 × [(𝑁𝐼𝑅 − 𝑅𝐸𝐷) ((𝑁𝐼𝑅 + 6 × 𝑅𝐸𝐷 − 7.5 × 𝐵𝐿𝑈𝐸) + 1]⁄  [150] [29,54,89,146] 

Global 

Environmental 

Monitoring Index 
(GEMI) 

[𝑛 × (1 − 0.25 ×  𝑛) − (𝑅𝐸𝐷 − 0.125)] 1 − 𝑅𝐸𝐷⁄  

𝑛 =  [2 × (𝑁𝐼𝑅2 −  𝑅𝐸𝐷2) + 1.5 × 𝑁𝐼𝑅 × 0.5 × 𝑅𝐸𝐷] 𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 0.5⁄  
([142] - 

Soil Adjusted 

Vegetation Index 

(SAVI) 

[(1 + 𝐿)  × (𝑁𝐼𝑅 − 𝑅𝐸𝐷)] 𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 𝐿⁄  

𝐿 = 0.5 
[143] - 

Modified Soil 

Adjusted 

Vegetation Index 
(MSAVI) 

[2 × 𝑁𝐼𝑅 + 1 − √(2 × 𝑁𝐼𝑅 + 1)2 − 8 × (𝑁𝐼𝑅 − 𝑅𝐸𝐷)] 2⁄  [151] - 

Modified 

Secondary Soil- 

Adjusted 
Vegetation Index 

(MSAVI2) 

0.5 × [2 × 𝑁𝐼𝑅 + 1) − √(2 × 𝑁𝐼𝑅 + 1)2 − 8 × (𝑁𝐼𝑅 − 𝑅𝐸𝐷)] [152] - 

Difference 
Vegetation Index 

(DVI) 

𝑁𝐼𝑅 − 𝑅𝐸𝐷 [153] - 

Optimized 

Soil-Adjusted 

Vegetation Index 

(OSAVI) 

(1 + 𝑌 × [(𝑁𝐼𝑅 − 𝑅𝐸𝐷) (𝑁𝐼𝑅 + 𝑅𝐸𝐷 × 𝑌)]⁄  

𝑤ℎ𝑒𝑟𝑒 𝑌 = 0.16 (𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑣𝑎𝑙𝑢𝑒) 
[154] - 

Soil Brightness 

Index (SBI) 

0.30372 × 𝐵𝐿𝑈𝐸 + 0.27933 × 𝐺𝑅𝐸𝐸𝑁 + 0.47434 × 𝑅𝐸𝐷 + 

0.55858 × 𝑁𝐼𝑅 + 0.508210 × 𝑆𝑊𝐼𝑅 + 0.186312 × 𝑀𝐼𝑅 
[155] - 

Two-band 

Enhanced 
Vegetation Index 

(EVI2) 

2.4 × (𝑁𝐼𝑅 − 𝑅𝐸𝐷) (𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 1)⁄  [156] - 

Modified 

Chlorophyll 
Absorption Ratio 

Index (MCARI) 

[(𝑉𝑁𝐼𝑅 − 𝑅𝐸𝐷) − 0.2 × (𝑉𝑁𝐼𝑅 − 𝐺𝑅𝐸𝐸𝑁)] × (𝑉𝑁𝐼𝑅 𝑅𝐸𝐷)⁄  [157] - 

* BLUE, GREEN, RED, NIR, MIR, SWIR: reflectance values in blue, green, red, near infrared, mid infrared 

and short-wave infrared, respectively. VNIR (visible and near infrared), SWIR1 ad SWIR2: reflectance values from 

bands 5, 11 and 12 of Sentinel-2 respectively. 
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3.2. Surface Water 

3.2.1. How Surface Water Distribution Influences Cattle and Buffalo Movements 

The availability of surface water, artificial (e.g., solar-pumped, diesel generator) [158] or natural 

(e.g., dams, rivers) [159], is commonly cited to constrain movements and space-use of herbivores, 

including savanna buffalo [88,160–163] and cattle [164,165]. However, the influence of water sources in 

herbivore distributions is expected to change in response to variations in forage quality and quantity 

[166,167]. Buffalo are usually associated with areas close to water all-year-round and drink every day 

[90,168,169]. Similarly, cattle preferentially select areas close to water points, usually around their 

enclosures in order to optimize the ratio of energy expenditure to energy gain [79,170] and can also use 

boreholes which are never accessible to buffalo [90]. 

 

3.2.2. SRS Basics for Detecting Water and Water Dynamics  
 

Optical SRS imagery can be efficient to discriminate water surface in different environments due 

to a wide range of sensors (Figure 3.4 & Table 3.1) with various spatial and temporal resolutions 

available [171–176]. Depending on surface water properties (i.e., size, river, pond, seasonal) to detect, 

different categories of sensors can be chosen [177]. However, their spatial resolution may affect their 

efficiency in accurately detecting surface water.  

Many methodologies, from thresholding a single infrared band to the use of multi-spectral 

classification decision trees, have been developed to detect surface water via SRS [178–180]. They rely 

on the spectral signature of water, characterized by a quick reduction of reflectance from the blue to the 

near infrared wavelengths. Water indexes based on two or more spectral bands calculation (Table 3.4) 

and various spectral band combinations have been widely used to detect surface water [181,182] (see 

example in Figure 3.3C).  

Other factors should also be considered as they potentially limit the satellite-based detection of 

surface water extent [183]: water depth, water turbidity variation, soil characteristics, vegetation cover, 

potential cloud cover and shadows. They all influence the water reflectance whatever the spatial 

resolution of the satellite images and influence thresholding values and the efficient use of water 

indexes. Despite these constraints, accurate methodologies can be developed to discriminate water by 

adding complementary spatial information to spectral indexes alone. Owen et al. (2015) for instance, 

have been able to accurately detect artificial waterholes across heterogeneous desert environments 

using Landsat 8 data combined with spectral indexes and texture analysis [184] 

Table 3.4. Non-exhaustive list of spectral remote sensing indexes developed to discriminate water 

surfaces from optical satellite image analysis and that can be useful within the frame of animal 

movement studies in savanna environments. 

Spectral Index Calculation* 
Refer

ence 

Normalized 

Difference 

Infrared Index 

NDII (𝑁𝐼𝑅 − 𝑀𝐼𝑅) (𝑁𝐼𝑅 + 𝑀𝐼𝑅)⁄  [185] 

Normalized 

Difference 

Vegetation 

Index 

NDVI (𝑁𝐼𝑅 − 𝑅𝐸𝐷) (𝑁𝐼𝑅 + 𝑅𝐸𝐷)⁄  
[148,

149] 

Enhanced 

Vegetation 

Index 

EVI 2.5 × [(𝑁𝐼𝑅 − 𝑅𝐸𝐷) (𝑁𝐼𝑅 + 6 × 𝑅𝐸𝐷 − 7.5 × 𝐵𝐿𝑈𝐸 + 1)⁄ ] [150] 

Normalized 

Difference 

Water Index 

NDWI (𝐺𝑅𝐸𝐸𝑁 − 𝑁𝐼𝑅) (𝐺𝑅𝐸𝐸𝑁 + 𝑁𝐼𝑅)⁄  [186] 
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Normalized 

Difference 

Water Index 

(Gao) 

NDWI 

(Gao) 
(𝐺𝑅𝐸𝐸𝑁 − 𝑆𝑊𝐼𝑅) (𝐺𝑅𝐸𝐸𝑁 + 𝑆𝑊𝐼𝑅)⁄  [187] 

Modified 

Normalized 

Difference 

Water Index 

MNDWI (𝐺𝑅𝐸𝐸𝑁 − 𝑀𝐼𝑅) (𝐺𝑅𝐸𝐸𝑁 + 𝑀𝐼𝑅)⁄  
[188,

189] 

Normalized 

Difference 

Turbidity 

Index 

NDTI (𝑅𝐸𝐷 − 𝐺𝑅𝐸𝐸𝑁) (𝑅𝐸𝐷 + 𝐺𝑅𝐸𝐸𝑁)⁄  [188] 

Normalized 

Difference 

Phytoplankton 

Index 

NDPI (𝑀𝐼𝑅 − 𝐺𝑅𝐸𝐸𝑁) (𝑀𝐼𝑅 + 𝐺𝑅𝐸𝐸𝑁)⁄  [188] 

Automated 

Water 

Extraction 

Index 

AWEInsh 

AWEIsh 
AWEInsh = 4 × (𝐺𝑅𝐸𝐸𝑁 − 𝑆𝑊𝐼𝑅1) − (0.25 × 𝑁𝐼𝑅 + 2.75 × 𝑆𝑊𝐼𝑅2) 

AWEIsh = 𝐵𝐿𝑈𝐸 +  2.5 × 𝐺𝑅𝐸𝐸𝑁 − 1.5 × (𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅1) − 0.25 × 𝑆𝑊𝐼𝑅2 
[190] 

Water Index WI 1.7204 +  171 ×  GREEN +  3 ×  RED  70 ×  NIR  45 ×  SWIR1  71 ×  SWIR2 [191] 

* BLUE, GREEN, RED, NIR, MIR, SWIR: reflectance values in blue, green, red, near infrared, mid infrared 

and short-wave infrared, respectively. VNIR (visible and near infrared), SWIR1 and SWIR2: reflectance values 

from Bands 5, 11 and 12 of Sentinel-2, respectively. 

Synthetic aperture radar (SAR) satellite images can be used independently or in combination with 

optical satellite images in order to detect surface water [192,193]. The recent increase in number of 

operational SAR sensors (Table 3.1 & Figure 3.4) has favored their use for surface water detection. 

Indeed, several SAR-based water detection methodologies have been developed such as the surface 

water detection through supervised and unsupervised classifications [194,195], thresholding [196,197], 

object-based image analyses [198,199] and hybrid approaches [200,201]. The application of these 

different methodologies led to the development of several surface water products (Table 3.5) [202–205].        

The accuracy of the SAR-based surface water detection methodologies varies. Terrain shadowing 

due to the topography can result in a side-looking effect [197]. The importance of the vegetation layer 

can produce double-bounce scattering of the signal that increases the backscatter measured in the SAR 

image [206]. The strong wind that roughens the water surfaces can lead to misclassification errors and 

the threshold value to discriminate the surface water is dependent of the image quality acquisition and 

the type of landscape [193]. Nevertheless, surface water long-term monitoring has been successfully 

implemented in a savanna environment via a multi-SAR-system at high and very-high spatial resolution 

[207]. 

 

3.2.3. SRS to Detect Surface Water When Studying Animal Movements in Savanna 

Environments 
 

SRS-based water products like the Global Surface Water (GSW) and the Global Water Body map 

(G3WBM / G1WBM) present the advantage to have a higher spatial resolution and temporal frequency 

compare to the other products listed in Table 3.5. These products are suitable to detect massive bodies 

of water at a continental scale and can be of interest for preliminary analyses, however they show strong 

limitations when trying to discriminate localized, small or seasonal surface water which are 

predominant in savanna environments [208]. Indeed, detecting surface water in savanna environments 

via remote sensing at a landscape scale remains challenging mostly because of surface water seasonality 

dynamics, landscape heterogeneity and variety in surface water area sizes and morphologies [208,209].  

Increasing availability of free medium-resolution optical and radar satellite sensors such as 

Sentinel-1 and Sentinel-2 (Table 3.1) offers potentialities to accurately discriminate, via supervised 
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classification, surface water and surface water dynamics [210]. Among the different spectral remote 

sensing indexes developed to discriminate water surface from optical satellite images (Table 3.4), the 

MNDWI and NDWI are the most commonly used [211] and were identified as efficient discriminating 

indexes for the detection of surface water extent in savanna environments [177,212]. In the case of the 

HNP study area shown in Figure 3.3C, a time series of 12 Sentinel-2 images (one image per month for 

the year 2018) combined with the application of the RF algorithm on MNDWI and NDWI indexes (Table 

3.4) was used to characterize the presence and seasonal dynamics of the surface water. 

So far, water spectral indexes in combination with supervised classification have hardly been used 

in direct relation with buffalo and cattle movements, although their potential within this framework 

have already been stressed [212]. Recently, Naidoo et al. (2020) used the NDWI calculated from Sentinel-

2 images to detect ephemeral water source in relation with buffalo and elephant movements in Namibia 

[91]. However, most of the reviewed studies integrating water into their analysis only used on-site 

observations of surface water [88,147,167] and natural or artificial waterholes [17,213–216]. 

Table 3.5. Non-exhaustive list of remote sensing-based water products. 

Product Name Developer 
Spatial 

Resolution 
Frequency 

Data 

Availability 
Reference 

Global surface 

water (GSW) 

EC JRC (European 

Commission Joint Research 

Center)/Google 

30 m 
Monthly 

Yearly 

1984–2015 

1984–2019 
[217] 

CCI global map of 

open water bodies 

(WBP V4.0) 

ESA (European Space 

Agency) - climate change 

initiative(CCI) 

300 m to 1 

km 

7 days–1 

year 
2000–2015 [218] 

Global lakes and 

wetlands database 

(GLWD) 

University of Kassel/ World 

Wildlife Fund (WWF) 
1 km 1 year 2004 [219] 

SRTM water body 

data product 

specific guidance 

(SWBD) 

National Aeronautics and 

Space Administration 

(NASA) 

90 m 1 year 2000 [220] 

SAR-Based water 

body indicator 

(SAR-WBI) 

ESA 
150 m to 1 

km 

6 to 12 

days 
2005–2012 [221] 

MOD44W NASA 250 m yearly 2000–2015 [222] 

Copernicus WB Copernicus program - ESA 
300 m to 1 

km 
10 days 

2014–

present 
[223] 

Global 3-second/ 

1-second water 

body map 

(G3WBM / 

G1WBM) 

Department of Integrated 

Climate Change Projection 

Research, 4 Japan Agency for 

Marine-Earth Science and 

Technology 

30 m to 90 

m 
1 year 2018 [224] 

 

3.3 Fire Regimes 

 

3.3.1 How Fire Influences Cattle and Buffalo Movements  
 

Savanna is prone to fire due to the existence of a highly flammable continuous vegetation layer 

with ideal burning conditions during the dry season [225,226]. Savanna fires can thus affect herbivores 

movements, by impacting indirectly the quantity and quality of the grazing resources available [227] or 

by reducing cover to hide from predation [228]. Although most herbivores are attracted to the recently 

burned areas due to nutritious regrowth [229], buffalo habitat selection during the dry season appear to 

be strongly constrained by the occurrence of fire, probably due to a great reduction of the quantity of 

forage [75]. Fire can also affect the migration distance of buffalos during the wet season [146].  
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Movement patterns of cattle are also influenced by the occurrence of fire. In Kenyan savanna 

ecosystems, prescribed burning improved cattle forage intake but only in areas that cattle did not share 

with wildlife [230]. Savanna fires could, therefore, affect livestock-wildlife coexistence at the interfaces 

by altering the intensity and frequency of forage use [229]. 

 

3.3.2. SRS Basics for Detecting Fire and Fire Dynamics 
 

Optical SRS can be used to spatially and temporally detect and characterize burnt area and burn 

severity [231–233] based on the detection of changes in the spectral signatures of vegetation [234] with 

a reflection reduction in the visible and near infra-red (NIR) spectral bands. Indeed, the charring and 

removal of vegetation are largely visible and detectable in the infrared [235].  

Various SRS-based approaches have been developed to monitor fire [236,237], including aggregate 

active detection [238,239], multi-temporal composites analyses [240], the use of spectral indexes [241], 

including vegetation indexes such as NDVI or GEMI (Table 3.3), spectral mixture analysis [242], 

machine learning classification [243,244], time series change detection [245] and hybrid approaches 

mixing time series change detection with machine learning classification [246,247]. If these methods 

provide user friendly fire products (Table 3.6) and helpful fire spectral indexes (Table 3.7) by capturing 

most aspects of the spatial and temporal distribution of the fire effects, it can be difficult to relate them 

to actual burned area due to inadequate spatial and temporal resolutions, variability in cloud cover and 

differences in fire behavior [248]. Active fire detection algorithms may either : (i) underestimate the area 

burned in grassland and savanna ecosystems as the fire progresses rapidly across the landscape [249] 

and because small and low-intensity fires may not be detected [250]; (ii) overestimate the burned area 

for isolated fire points smaller than the pixel dimension [250]. In this instance, the MODIS fire products 

MOD14A2/MYD14A2 and MCD45A1 (Table 3.6) provide three categories of confidence (low, medium, 

high) of fire detection (Figure 3.3E), offering flexibility for a targeted use in accordance with the user’s 

choice. 

 

3.3.3. SRS to Characterize Fire when Studying Animal Movements in Savanna Environments 
 

The Figure 3.3E shows an example of the MODIS fire product MOD14A2 (Table 3.6) at the HNP 

interface, illustrating the capacity of such product to depict with a 1km spatial resolution the active fire 

temporal and spatial dynamics and its potential for conducting seasonal- and inter-annual analyses. 

Despite the availability of numerous SRS-based fire products offering a wide range of applications 

(Table 3.6), according to our review only one of them has been used in relation with buffalo and cattle 

movement studies. Naidoo et al. (2012b) used the MODIS MOD14A2/MYD14A2 product to quantify 

the relative effect of dry season variables, including savanna fires, on subsequent wet season buffalo 

migration distance in a large study area running east-west between the northeast corner of Namibia, 

Angola and Botswana [146].  

As shown by this example, and despite limitations, the data listed in Table 3.6 presents the 

advantage to describe fire phenomenon in relation with animal distribution and movement in regions 

with scarce fire information [251]. In well-documented areas, these data can potentially be used to 

complement existing fire databases. Combining better spatial resolution from new sensors such as 

Sentinel-3 (Table 3.1) and remote sensing-based fire products with designed spectral indexes to detect 

fire (Table 3.7) is promising. It could potentially reduce errors and uncertainties in satellite-derived fire 

dates and ignitions, and improve coverage of small fires. The recently launched FireCCI50 product 

(Table 3.6) offers an increased spatial resolution (250 meters) and a better burned area estimation 

compared to the MODIS fire products [249]. This spatial resolution could be useful when aiming to 

integrate fire assessment in animal movement study at the landscape scale in savanna environments.  
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Table 3.6. Non-exhaustive list of satellite remote sensing-based fire products. 

Product Name 
Spatial 

Resolution 

Orbital 

Frequency 

Data 

Availability 
Reference 

Use in 

Ungulates 

Ecological 

Studies 

MOD14A2/MYD14A2 1 km Every 8 days 
2000–

present 
[252]) [29] 

MCD45A1 500 m Monthly 
2000–

present 
[253] - 

MCD64A1 500 m Monthly 
2000–

present 
[248] - 

VIIRS 750 m active fire 

(VNP14) 
750 m 

twice/day (IR 

and day/night 

VIS/NIR 

channel) 

once/day 

(VIS) 

2011–

present 
[254] - 

VIIRS 375 m Active Fire 

(VNP14IMG) 
375 m 

twice/day (IR 

and day/night 

VIS/NIR 

channel) 

once/day 

(VIS) 

2016–

present 
[238] - 

Sentinel-3 SLSTR 

(level-2 FRP product) 
1 km  Daily 

2018–

present 
[255] - 

AVHRR Fire Detects from the 

Fire Identification, Mapping 

and Monitoring Algorithm 

(FIMMA) 

1 km Daily 
1978–

present 
[256] - 

ESA FIRE_CCI 300 m Monthly 
2016–

present 
[257] - 

FireCCI51 250 m Monthly 2001–2019 [258] - 

 

Table 3.7. Non-exhaustive list of spectral remote sensing indexes developed to discriminate fire from 

optical satellite image analysis and that can be useful within the frame of animal movement studies in 

savanna environments. 

Spectral Index Calculation * Reference 

Normalized Burned Ratio (NBR) (𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅) (𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅)⁄  [258] 
Burned Area Index (BAI) 1 (𝑁𝐼𝑅 − 0.06)2⁄ +  (𝑅𝐸𝐷 − 0.1)2 [259] 

Mid Infrared Burned Index (MIRBI) 10 × 𝑆𝑊𝐼𝑅 + 9.8 × 𝑆𝑊𝐼𝑅 + 2 [260] 

Char Soil Index (CSI) 𝑁𝐼𝑅 𝑆𝑊𝐼𝑅⁄  [261] 

Normalized Burn Ratio Thermal (NBRT)  (𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅 × 𝑇𝐼𝑅) (𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅 × 𝑇𝐼𝑅)⁄  [262]   

Normalized difference Vegetation Index 

Thermal (NDVIT) 
(𝑁𝐼𝑅 − 𝑅𝐸𝐷 × 𝑇𝐼𝑅) (𝑁𝐼𝑅 + 𝑅𝐸𝐷 × 𝑇𝐼𝑅)⁄  [262,263] 

* RED, NIR, MIR, SWIR, TIR: reflectance values in red, Near Infrared, Mid Infrared, Short-wave Infrared and 

Thermal Infrared, respectively. 
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3.4. Precipitation 

3.4.1. How Precipitation Influence Cattle and Buffalo Movements 

In southern African savannas, the availability in time and space of natural resources (i.e., surface 

water and forage) is strongly dependent of the precipitation seasonal variations [88,264]. Most 

precipitation occurs during the wet season (November to April). However, the spatio-temporal 

distribution of precipitations in southern Africa is highly heterogeneous at medium-scale inducing 

specific movement patterns such as nomadism [265]. During the dry season (May to October), 

precipitation are lower or nonexistent, and the availability of natural resources decreases. This high 

heterogeneity in rainfalls dictates the behavior of wildlife [8]. 

Buffalos, like other ungulates of semi-arid savannas, are able to track precipitation events over 

large distances [88]. Buffalos living in wetter areas, such as in forested savanna habitats, tend to 

maintain smaller and constant home ranges than those in drier open savanna habitats [160,266]. In these 

more arid areas, natural resources are spatially unevenly distributed, forcing buffalos to travel longer 

distances in their search for forage and water [29,146,162]. In some areas however, smaller buffalo home 

ranges have been noticed during the dry season compared to the wet season [266–268]. 

Precipitation also affect cattle movement patterns through the combined influence on their grazing 

behaviors and the spatial grazing constraints imposed by livestock owners [269]. For example, cattle 

around Kruger National Park, South Africa, select forage with higher quantity and quality during the 

dry season but behave more like non-selective bulk grazers during the wet season, directly influencing 

their daily traveled distance [79]. 

 

3.4.2. SRS Basics for Measuring Precipitation 
  

Satellite-based precipitation measurements with advanced infrared (IR), passive microwave (MW) 

and radar (SAR) sensors provide a complementary alternative to in-situ records [62,270] as they give a 

full spatial and temporal coverage with a good accuracy (Table 3.8) ) [271–278]. Yet, despite the growing 

collection of satellite-based rainfall measurement datasets providing near-real-time estimates [63], only 

a few high-resolution satellite-based products providing historical data at the daily time-step with real-

time or near-real-time updates for the African continent are publicly available (Table 3.8). To improve 

the accuracy of rainfall estimations, the merging of satellite and gauge measurements have been 

designed, thus maximizing the benefits of each data type [279,280]. Noticeable differences can be found 

in the performance of the satellite precipitation estimates though [281]. Satellite-based precipitation 

products generally overestimate precipitation events under 200 mm/month and tend to underestimate 

daily time scale precipitation events compare to the decadal and monthly time scale precipitation events 

[272,282,283]. However, the main precipitation regimes and the spatial patterns of mean annual 

precipitation are well reproduced [281,284].  

Satellite-based precipitation measurements have the advantage of providing full spatial coverage 

compared to the more accurate but spatially limited rain gauge data [285]. Furthermore, observational 

precipitation measurements over Africa include uncertainties that can bias analysis [286,287]. The 

TMPA 3B42 V7 (TRRM) offers the advantage of consistency at the daily time-scale [281]. It is a 

performing product for depicting inter-annual variations but offers a coarser spatial resolution (Table 

3.8) which could be detrimental when studying animal movement at the landscape scale. Since 2019, 

the GPM IMERG v06 algorithm fuses the early precipitation estimates collected during the operation of 

the TRMM satellite (2000–2015) with more recent precipitation estimates collected during operation of 

the GPM satellite (2014–present). Therefore, the GPM IMERG v06 now offers 20 years of data coverage 

and can potentially be of interest regarding animal movement studies at the landscape scale regarding 

its spatial resolution of 0.1° and its broad coverage (Table 3.8).  

The products that combine thermal infrared and passive microwave imagery such as RFE or 

CHIRPS (Table 3.8), perform comparatively well and outperform products which are only based on 
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thermal infrared imagery such as TARCAT (Table 3.8) [272]. They could be used in complement or 

independently with higher spatial resolution satellite-based precipitation products such as the GPM 

product (Table 3.8) to reliably assess precipitation at the landscape scale in seasonal-prone 

environments such as African savannas when lacking in-situ precipitation data. 

 

Table 3.8. Non-exhaustive list of available satellite-based precipitation products. 

Product 

Name 

Temporal 

Resolution 

Spatial 

Resolution 

Data 

Availability 
Coverage 

In-Situ 

Calibration 
Reference 

Use in 

Ungulates 

Ecological 

Studies 

TRMM 

(TMPA 

3B42 V7) 

3 hours 0.25° 
1998–Mid 

2019 
50°S–50°N yes [288] [29,146]) 

TRMM 

(TMPA 

3B43 V7) 

Monthly 0.25° 
1998–Mid 

2019 
50°S–50°N yes [288] [29,146] 

PERSIANN-

CDR 

Hourly/Daily/ 

Monthly / 

yearly 

0.25° 
1983–

present 
60°S–60°N no [289] - 

GPCP (1dd) Daily 1° 
1996–

present 
90°S–90°N no [290] - 

GPCP V2.3 Monthly 2.5° 
1979–

present 
90°S–90°N no [291] - 

CPC Global Daily 0,5° 
1979–

present 
90°S–90°N yes [292] - 

CMAP Monthly 2,5° 
1979–

present 
90°S–90°N yes [293] - 

Cmorph 30 min 0.25° 2002–2017 60°S–60°N no [294] - 

GPM 

(IMERG 

V06) 

30 min / 3 

hours / Daily 
0.1° 

2000–

present 
60°S–60°N no [295] - 

MSWEP V2 
3 hours / 

Daily 
0.1° / 0.5° 1979–2017 90°S–90°N yes [296] - 

SM2RAIN-

ASCAT 
Daily 0.5° 2007–2018 60°S–60°N no [297] - 

TAMSAT 

V3.1 
Daily 0.0375°  

1983–

present 

38°025N–

35°9625S 

19°0125W–

51°975E 

yes [62,63] - 

CHIRPS 

v2p0 
Daily 0.05° 

1981–

present 
50°S–50°N yes [298] - 

ARC V.2 Daily 0.1° 
1983–

present 
40°S–40°N yes [299] - 

RFE 2.0 Daily 0.1° 
2001–

present 

40°S–40°N 

20°W–

55°E 

yes [300] - 

EPSAT-SG 15 min 0.0375° 
2004–

present 

African 

continent 
yes [301] - 

MPE 15 min 0.0375° 
2007–

present 

African & 

European 

continents 

no [302] - 
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3.4.3 SRS to Measure Precipitation when Studying Animal Movements in Savanna 

Environments  
 

Only the National Oceanic Atmospheric Administration (NOAA) African Rainfall Climatology 

(ARC V.2), the Climate Hazards Group InfraRed Precipitation with Station data version 2.0 (CHIRPS20) 

and the Tropical Applications of Meteorology using SATellite data and ground-based observations 

(TAMSAT V3.1) provide continually updated daily time-step data [63,303]. Therefore, due to their 

spatial and temporal resolutions (Table 3.8) they are potentially suitable for applications in animal 

movement studies in African savanna environments. Figure 3.3F shows a spatial representation of the 

TAMSAT V3.1 at the HNP interface while demonstrating the product capabilities to detect spatially 

contrasted precipitation within a relative extensive area (1192 km²). TAMSAT V3.1 (Table 3.8) is among 

the best product in terms of precipitation event detection at a spatial resolution of 0.0375° [304] but it 

may underestimate monthly rainfall measurements [284]. 

Despite the availability of these precipitation satellite-based products, the most commonly method 

to characterize precipitation in relation with animal movement and distribution remains the use of in-

situ gauging stations data [170,305]. Only few studies have used satellite-derived precipitation data in 

relation with buffalo movements. Naidoo et al. (2012a, 2012b) used TRMM data (Table 3.8) to 

characterize which environmental factors, including precipitation, explain buffalo migration patterns 

[146], and variation in buffalo home range sizes in northeastern Namibia [29]. 

 

4. Discussion 
 

The literature on the current knowledge on buffalo and cattle movements and their interactions 

was here linked to an inventory of available and relevant SRS tools to characterize the environmental 

drivers of these movements, found in savanna type landscape environment. 

Landcover, surface water, savanna fire and precipitation emerged through this review as 

environmental drivers defining buffalo and cattle movements at the edge of protected areas in Africa 

and in southern Africa in particular. Optical and radar SRS are both currently operational to characterize 

these drivers and have already been used independently for several ecological applications, including 

animal movements [19,25,306] but have never been collectively linked in animal movement studies. The 

need of dynamic environmental products to analyze animal movement requires that the increasing 

number of SRS sensors, the multiple tools and the large quantity of data available become more 

accessible and easy to use to movement ecologists [307]. 

 

4.1. General Observations 

 
Faced with an overabundance of available data, one should gain insight on data quality and the 

methods, algorithms and applications of using data in animal movement studies. SRS data must often 

be combined with in-situ measurements, which are sometimes not available, for validation purposes 

and accurately representation of environmental drivers. SRS has to be considered only as a partial view 

of the terrain and remain imperfect by definition [308]. Furthermore, the use of SRS products may be 

limited by the time-span of their availability, their spatial and temporal resolution and coverage, their 

spectral characteristics (Table 3.1). The revisit time period of a SRS product (Table 3.1) does not mean 

that it will be usable at the same frequency, as the quality of the image may not always be optimal at 

each acquisition (e.g., cloud cover, limited spatial extent that doesn’t cover the desired area, …). 

These limitations often imply a trade-off between spatial and temporal resolutions [309] and/or 

between spatial resolution and spatial extent coverage [310]. For instance, high and very-high spatial 

resolution images are not necessarily appropriate for all research questions as they contain large 

amounts of data, heterogeneity of spectral values and diversity of objects in small spatial extents that 

can significantly complicate methodology applications [310]. Data pre-processing for a SRS derived 

application is not only costly in processing time and in expertise but also in financial resources. Naidoo 
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et al. (2012a) estimated that weekly acquisition of very high resolution Quickbird imagery (Table 3.1) to 

detect small ephemeral water sources within the frame of their study in relation with buffalo 

movements would have cost close to USD $9 million [29]. One has to be aware of the computing 

capacities available, the allowed time and the appropriate algorithm for the completion of SRS analyses 

[34,311]. 

 

4.2. Landcover and Vegetation Characterization 

 

Our review showed that the use of SRS to understand cattle or buffalo movement ecology mainly 

benefited from open-access products and standard image processing methods. EVI and NDVI are 

widely used vegetation indexes to characterize vegetation availability and evolution patterns in these 

studies [26,29,54,88,312]. However, other spectral indexes such as the Soil Adjusted Vegetation Index 

(SAVI) (Table 3.3) that eliminate soil-induced variations in vegetation indexes [143] have not been used 

at all in existing buffalo and cattle movement studies. The use of such spectral indexes could 

complement more classic vegetation indexes by overcoming certain associated limitations when 

characterizing savanna landscapes through SRS approaches (i.e., mixed pixels) [143,313,314].  

Few studies listed in this review use high or very high-spatial resolution satellite images to 

characterize the landcover [54,79,89] comparatively to the studies that use medium or low-spatial 

resolution satellite images such as MODIS (Table 3.1) to derive spectral indexes [86,87,135] and Landsat 

or Spot (Table 3.1) to characterize landcover [11,70,88,90]. Indeed, high spatial resolution imagery is not 

necessarily appropriate for all research questions, especially because its limited spatial extent requires 

the acquisition of several images to cover large areas at a high financial cost [315]. High and very high 

spatial resolution images contain large amounts of data, heterogeneity of spectral values and diversity 

of objects that significantly complicate methodology applications such as landcover classification [310]. 

However, since 2015, open-source Sentinel-2 images (Table 3.1) bring a spatial resolution and a temporal 

continuity gain compared to other medium spatial resolution images that could potentially improve 

spectral indexes or landcover derivation over large areas while maintaining relevance in application for 

landscape scale analysis. 

As the human and livestock populations grow in Africa [2,316], the pressure on protected areas’ 

boundaries increases resulting in the transformation of natural landscapes and the creation of hard 

edges between protected areas and their surroundings by human infrastructures and activities (e.g., 

buildings, roads, cleaned land for cultivation, pasture, trees and grasses harvest) [68]. These two factors 

combined directly impact the movement of buffalo and cattle as they cross the natural park borders to 

find foraging or water resources. Human infrastructures including fences, human settlements and 

agricultural areas also represent potential barriers to animal movement. For example, movement rates 

of buffalos living near fences appear to be low [317] and large migratory movements are limited by 

fences [146] when they are not damaged by elephants [6]. SRS can play a fundamental role to 

characterize the human factors (infrastructures, activities) into the buffalo and cattle movement 

processes. For instance, crops can potentially provide an important resource for both buffalo and cattle 

during the wet season in southern African savanna even if both species are prevented to enter fields 

with growing crops (e.g., using different practices such as wildlife deterrent measures and livestock 

herding). Time series SRS derived vegetation indexes such as EVI or NDVI (Table 3.3) have been 

efficiently used as phenology indicators [318,319] combined with landcover classification [320], high-

resolution optical and radar sensors [321] for crop and pasture monitoring and space delimitation. 

Concerning hardly distinguishable objects from space such as fences, human settlements and roads, the 

increasing availability of very high-resolution (Worldview-2, Pleïades, …) satellite images (Table 3.1) 

offer a wide range of possibilities to characterize these landscape features via landcover object-based 

approach classification [23]. These methodologies could certainly be used independently or combined, 

bringing a wide range of indicators for animal movement and interactions analysis. 
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4.3. Surface Water Delineation 
 

Several methods such as spectral indexes thresholding (Table 3.4), image classification, surface 

water spatial delineation through satellite image textures [184], have been efficiently used 

independently to map surface water bodies. However, the numerous remote sensing-based water 

products presented in Table 3.5 have not been used in the different buffalo and cattle movement 

reviewed studies. Similarly, water spectral indexes listed in Table 3.4 and SAR images (Table 3.1), with 

the exception of one study that used NDWI derived from Sentinel-2 images in relation with buffalo 

movements [91], have not been used despite their potential to improve classification algorithms and 

water detection in savanna environments [177,203,204,207,212]. This may partly result from a lack of 

knowledge about the existence and availability of SRS products in the movement ecology community, 

a major gap that this review aims to fill.  

According to our review, the use of SRS offers a potential that remains to be explored regarding 

the detection of surface water at a landscape scale in savanna environments, as a driver of wild and 

domestic ungulates movements. Indeed, classification of surface water derived from optical and/or 

radar medium spatial resolution images (Table 3.1), could provide spatially delineated surface water 

areas and water resource seasonal variations at a landscape scale and on a monthly basis (Figure 3.3B), 

which constitutes a clear advantage in term of spatial representation over in-situ fixed referenced points. 

 

4.4. Savanna Fire Characterization 

 

SRS plays an important role in determining the spatial extent and timing of fires in savanna 

environments [244,322]. However,, few of the reviewed studies focusing on buffalo and cattle 

movements used satellite remote sensing-based fire products (Table 3.6) and none of them used 

designed optical images derived fire spectral indexes (Table 3.7) despite their proven efficiency [323]. 

Landsat and, increasingly, Sentinel-2 (Table 3.1) for example, are extensively used for medium spatial 

resolution fire scar mapping in savanna [250,324] and could provide potential improved results for 

studies that use lower spatial resolution images [146]. 

However, mapping fire severity is more challenging than just mapping the occurrence of fire. One 

major limitation of all optical SRS approaches is the presence of cloud cover that hinders the temporal 

continuity of the follow-up [325]. For animal movements studies, the severity of a given fire event is 

more relevant than its frequency and timing alone. To bypass such limitation, SAR images could be 

used. Philipp and Levick (2020), for example, demonstrated that C-band SAR data can contribute to 

effectively map fire severity in tropical savanna [325]. Characterizing savanna fire severity in addition 

of being able to locate fire events could also be useful for measuring more accurately the influence of 

human land use practices [326] and how it potentially affects animal movements. 

 

 

4.5. SRS for Precipitation Characterization 
 

According to our review, only the TRMM product (Table 3.8) have been used for buffalo and cattle 

movement studies [29,146]. This is probably because most of the satellite-based precipitation products 

are difficult to apprehend for non-specialists, thus compromising their potential use in animal 

movement studies. They usually present unconventional output file formats, non-standardised 

precipitation measurement units and uncommon map projection systems. Therefore, potential users 

need to access metadata that are most of the time difficult for non-SRS specialist to understand in order 

to assess satellite-based precipitation products usefulness. The mitigation of this constraint by 

simplifying the use of satellite-based precipitation products could be greatly beneficial for animal 

movement studies. 

The use of satellite-based precipitation products combined with in-situ precipitation data when 

available remains paramount for more accurate estimations of precipitation trends at a local scale [272]. 
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Additionally, algorithm performances of satellite-based precipitation products (Table 3.8) greatly vary 

depending on location, topography, local climate, and season [273,282,283]. This performance 

variability needs to be taken into account before choosing a satellite-based precipitation product for a 

specific application and in accordance with the study area geographical specifications. 

 

4.6. Selection of Suitable SRS Products to Study Buffalo and Cattle Movements in Southern 

Africa 

 

Choosing a set of SRS tools for the characterisation of environmental drivers influencing the buffalo 

and cattle movements is firstly driven by the question to be addressed (e.g., habitat selection, landscape 

scale movement patterns, long-distance migration, …), which in turn defines the spatiotemporal scales 

to be considered [59]. Additional criteria such as the required SRS expertise, computing resources, and 

cost, may be taken into account too (see Section 4.1). Figure 3.5 provides an illustration of suitable SRS 

products for ecologists to characterize environmental drivers impacting animal movements in southern 

Africa according to their temporal and spatial resolution scales. 

 

 

Figure 3.5. Suitable SRS products for ecologists to characterize environmental drivers impacting animal 

movements in semi-arid savannas landscapes. These SRS products are represented according to their 

temporal (ordinate axis) and spatial resolution scales (abscissa axis) and can be used for different type 

of analyses related to animal movements (movement patterns, home-range and habitat selection at broad 

and local scales, migration) [59]. We define the ”movement” (represented in blue) as the motion initiated 

by a variety of methods that focal species use to move from one place to another. The ”migration” 

(represented in green) is defined as long distance movements to a different environment involving 

periodical and cyclical dynamics in space and time. Home range and habitat selection (represented in 

orange at broad scale and in red at local scale) are considered as areas where focal species regularly move 

depending on natural resource selections and social interactions and behaviors. Note that the contours 

of the different analyses categories are blurred to emphazise the fact that there are no clearly established 

boundaries between these categories. 
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High and very high spatial resolution sensors can be used to provide fine-grain maps of landcover 

and water surface for habitat occupation and habitat selection studies at local scale. Very high spatial 

resolution images such as Worldview 2, Pleiades, or Ikonos images can be used to discriminate small 

objects within the landscape (i.e., fences, human settlements, road networks) and characterize landscape 

at fine scale (ideal for the study of small animal species with a small home range). However, they are 

costly and require remote sensing expertise and high computing power. 

These fine-scale landcover maps can be combined with precipitation and savanna fires data at 

coarse spatial resolution but with a high temporal repetitivity for studies that focus on daily animal 

movements. For instance, precipitation TAMSAT 3.0 (Table 3.8) product is easily accessible and covers 

the entire African continent at 4.8 km of spatial resolution with daily, pentanal, decadal, monthly and 

seasonal temporal resolutions; recent VIIRS active fire images (Table 3.6) offer improved spatial and 

temporal resolutions compared to former fire products. These products are easy to use and do not 

require high computing power. 

For studies focusing on animal movements at a coarser spatial and temporal scales, landcover and 

vegetation (Table 3.2), fire (Table 3.6) and water (Table 3.5) free products can be used for preliminary 

assessments in areas where in-situ data are difficult to collect or non-existent. These products are easily 

accessible online, easy to use for non-SRS specialists, well documented and require little computing 

power in order to cover large areas. In addition, they can be efficiently combined with higher spatial 

resolution and custom-made SRS products. 

 

5. Conclusions 
 

SRS extends the analytical capacity of ecologists in many fields including animal movement studies 

[20]. New SRS sensors are continuously launched thus expanding and increasing the potential 

applications of these tools (Figures 3.4 and 3.5). The Committee on Earth Observation Satellites (CEOS) 

reports that its member agencies are currently operating or planning more than 300 different satellite 

Earth observation missions by 2030, carrying over 900 different measurement instruments offering 

different spatial resolutions and spectral capabilities [327]. Medium-resolution Sentinel-1 and Sentinel-

2 images (Table 3.1) are particularly promising in the field of animal movement as they provide 

continuous open-source data since 2014–2015 at a 10 meters spatial resolution with radar and optical 

sensors. However, given the SRS sensors and applications diversity, it is paramount to determine which 

SRS product is best suited for a given scale of analyses and how potential inherent limitations can affect 

the latter.  

To facilitate the use of SRS products in ecological movement research studies, a better data 

accessibility such as the European Spatial Agency Sentinel program, which promotes open data, and 

training platforms to familiarize users with the utilization and the potentialities of SRS data, are needed. 

The collaboration of movement ecologists with remote sensing experts within a multi-disciplinary 

approach could also help to integrate more efficiently remote sensing products in ecological movement 

research. 

 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, The open-source data and 

developed products presented in Figure 3.3 are listed below: TAMSAT v3.0 data: the entire archive is available in 

direct download via batch process at https://www.tamsat.org.uk/data/archive with the script detailed at 

https://www.tamsat.org.uk/public_data/public_scripts/wget_TAMSATv3.0; The MOD/MYD14A2 (MODIS 

thermal anomaly product) data are available to download at https://search.earthdata.nasa.gov/search after login—

Archived by National Aeronautics and Space Administration, U.S. Government, LP DAAC. 

https://doi.org/10.5067/MODIS/MOD11A2.006; The MOD/MYD13Q1 (MODIS vegetation product) data are 

available to download at https://search.earthdata.nasa.gov/search after login—Archived by National Aeronautics 

and Space Administration, U.S. Government, LP DAAC. https://doi.org/10.5067/MODIS/MOD13Q1.006; The 

Sentinel-2 images are freely available at https://scihub.copernicus.eu/dhus/#/home after login. The land cover map 

is available to download at CIRAD depository website: Rumiano, Florent; Miguel, Eve; Valls-Fox, Hugo; Chamaillé-

Jammes, Simon; Caron, Alexandre; Tran, Annelise, 2020, "Land cover map, Dete site, Hwangue National Park, 

https://www.tamsat.org.uk/data/archive
https://www.tamsat.org.uk/public_data/public_scripts/wget_TAMSATv3.0
https://search.earthdata.nasa.gov/search
https://search.earthdata.nasa.gov/search
https://scihub.copernicus.eu/dhus/#/home
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Zimbabwe", doi:10.18167/DVN1/BJJZJV, CIRAD Dataverse, V1; The surface water map is available to download at 

CIRAD depository website: Rumiano, Florent; Miguel, Eve; Valls-Fox, Hugo; Chamaillé-Jammes, Simon; Caron, 

Alexandre; Tran, Annelise, 2020, "Monthly surface water maps, Hwangue National Park, Zimbabwe, 2018", 

doi:10.18167/DVN1/KPSYME, CIRAD Dataverse, V1, The buffalo and cattle GPS data access are subject to authors’ 

authorization. 
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3.2 Chapter summary 

 

 

 

 

 

 

 

 

 

 

 

 

 

- 327 references (mainly peer-reviewed scientific articles) have been selected and 

analyzed. 

 

- Surface water, precipitation, landcover and fire emerged as key drivers impacting 

the buffalo and cattle movements. 

 

- These environmental drivers can be efficiently characterized by SRS, mainly through 

open-access SRS products and standard image processing methods. 

 

- Applying SRS to better understand buffalo and cattle movements in semi-arid 

environments provides an operational framework that could be replicated in other 

type of interface where different wild and domestic species interact. 

 

- Given the SRS sensors and applications diversity, it is paramount to determine which 

SRS product is best suited for a given scale of analyses and how potential inherent 

limitations can affect the latter. 

 

- The collaboration of movement ecologists with remote sensing experts within a 

multi-disciplinary approach could help to integrate more efficiently remote sensing 

products in ecological movement research and solve the actual lack of knowledge that 

ecologists have with remote sensing applications and methods. 
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4.0 Preamble 

 

 

 

 

4.1   A three steps classification methodology 

 

 

African savanna vegetation structure and pattern are heterogenous (Mishra and Crews 2014) 

and driven by rainfall, soils characteristics, geomorphology, herbivory, wildfire as well as 

anthropogenic activities (Coughenour and Ellis 1993). These biome’s defining characteristics 

make landcover classification (abstract representation of the observed (bio)physical cover on 

the earth's surface using well-defined diagnostic criteria) of savanna environments particularly 

challenging as savanna vegetation types are often difficult to separate spectrally due to low inter-

class separability and high intra-class variability (Sluiter & Pebesma, 2010) and because surface 

water is highly sensitive to changes in both climate conditions, and land-use/management 

practices (Andreu et al., 2019). However, the increasing number of SRS sensors allowing the use 

of time series datasets has drastically improved landcover classification potentiality and 

accuracy (Franklin et al., 2015). Indeed, intra-annual spectral variability of SRS images 

engendered by periodic vegetation life cycles and surface water seasonal variability can be 

measured and extrapolated (Liu et al., 2016). Several approaches to derive variables from time-

series have been developed using a wide range of SRS sensors (Carrasco et al., 2019; Gómez et 

al., 2016; S. Xie et al., 2019). Regarding the spatial resolution of the SRS images used as 

classification reference input, low-resolution SRS images produce low accuracy with high 

uncertainty in savanna environments mainly due to small patches size of contiguous vegetation 

and heterogeneous classes with mixed vegetation (Mishra, Crews, and Okin 2014). Very high-

spatial resolution SRS images (spatial resolution < 10 m) provide all the details required to 

 

The purpose of this chapter is to describe in detail the satellite image classification 

methodologies used to characterize, at the landscape scale, the environmental 

variables influencing buffalo and cattle movements in space and time that were 

determined in the previous chapter. The results and analyses of the developed 

methodology are also detailed to provide a sense of accuracy of spatialized data that 

will be used as input in the mechanistic model later on in chapter 5, 6 and 7.  
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reproduce savanna vegetation complexity but are limited by small swath area, large data volume, 

low temporal frequency and high data cost (both financially and in computing capacity). 

Medium resolution SRS images (spatial resolution comprised between 10 and 30 m) such as 

Sentinel-2 or Landsat represent a good compromise in regard to landcover classification for 

landscape-level applications in savanna environments (Arraut, Loveridge, Valls, et al., 2018; 

Borges et al., 2020). However, in savanna environments, discriminating specific vegetation 

properties from medium-resolution imagery is methodologically challenging as soil background 

potentially affects the spectral contribution of vegetations (Huete, Jackson, and Post 1985). 

 

To cope with challenges inherent to savanna environments pixel-based classification derived 

from medium-resolution SRS images, we’ve opted to divide our classification methodology into 

three separate and complementary steps (Figure 4.1), consisting in mapping the surface water as 

well as the agricultural areas separately from the other vegetation elements.  With this approach, 

the pixels of Sentinel-2 images, constituting the input data used to train the classifier algorithm 

(in our case “Random Forest”), are more spectrally homogeneous. This homogeneity of the 

isolated spectral signal from a particular class of a landcover in contrast with all the other 

elements of the same landcover can significantly improve the classifier algorithm performance, 

thus limiting confusions in the output classifications (Andreu et al., 2019; Bellón, Bégué, Lo Seen, 

De Almeida, et al., 2017).  
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Figure 4.1: Landcover classification general methodology.  

 

 

As described in Chapter 2, a time series of Sentinel-2 images has been considered for the  

classification process. A stack of the relevant Sentinel-2 bands or derived spectral indices has 

been selected and used as input for the considered classifier algorithm for each step (more 

details in sections 4.2, 4.3 and 4.4). A supervised classification of the surface water have been 

realized as a first step followed by a supervised classification of the agricultural area as a second 

step and an un-supervised classification of the vegetation as a third step. At the end of the two 

first steps, two derived polygons of the resulted classifications have been derived and merged to 

mask the input raster used in the un-supervised classification of the vegetation in step 3. The 

entire methodology process has been generically used for the three study sites.  
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4.2  Characterizing the surface water 

 

 

4.2.1 Methodological approach 

 

 

The modified normalized difference water index (MNDWI) (H. Xu, 2006) and the normalized 

difference water index (NDWI) (McFeeters, 1996) (see the Chapter 3 for the spectral indices 

calculation) have been derived from the sentinel-2 time series and used to classify the surface 

water. In addition to the two spectral indices, the Short Wave Infrared (SWIR) band has been 

used to complete the input SRS image dataset (Figure 4.2). A stack of the three selected bands 

have been realized for each month of the time series and used as input dataset for the 

classification process (Figure 4.2).  Two classes (i.e., “surface water” and “other”) have been 

determined and 50 polygons for each of the two classes served as reference samples via image 

interpretation. Within the total amount of extracted pixel values, 300 pixel values have been 

randomly selected for each of the two classes in 5O iterations and have been redistributed 

following a 50/50 ratio to supply the training and the validating datasets respectively. The 50/50 

ratio has been chosen as it allows a more reliable comparison between training and validation 

datasets than a ratio with a lower proportion of validation samples (Mercier et al., 2018). The 

training and validation datasets have then been integrated into a Random Forest (RF) classifier 

algorithm to monthly classify the entire SRS images dataset for each of the three study sites. RF 

has been chosen as it requires simple parametrization while being reliable and rapid in its 

execution as well as being able to efficiently process large volume of variables and data (Pelletier 

et al., 2016). The classification process has then been produced 50 times to consider the 

algorithm stochasticity and select the best classification iteration amongst the 50 iterations 

produced. At the end of the classification process (Figure 4.2), the resulted raster have been 

vectorized to allow the manual removing of the false positive pixels wrongly classified as “surface 

water”. The month of March has been chosen as the month of reference as it corresponds to the 

period of the year when the surface water reaches its maximum spatial extension. The obtained 

reference vector layer has then been used as a template to mask all of the false positive pixels 

present in the other months of the time series. The same process has been reproduced for each 

of the three study sites. At the end of the post-classification process (Figure 4.2), three time 

series of monthly classified surface water maps have been produced at the spatial scale of 10 

meters (Figure 4.3).  
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Figure 4.2: Diagram describing the pre-classification, the classification and the post classification stages 
of the surface water supervised classification methodology  

 

To validate the resulting surface water classifications, the overall accuracy as well as the Kappa 

indicators have been derived for each of the 50 RF classification iterations (Figure 4.2). The 

kappa index measures the degree of agreement among independent observations of the same 

phenomenon (i.e., inter-rater reliability) as well as the consistency in ratings of the same 

observer across multiple instances of a given observation (i.e., intra-rater reliability) for 

categorical data (McHugh, 2012). The OA corresponds to the percentage of well classified pixels 

compared to the total number of pixels present within the classified image (Alberg et al., 2004). 

As all statistical index, the kappa and OA are not exempt of limitations and have to be used with 

caution (Pontius and Millones 2011). The average results of the 50 classification iterations 

regrouping the entire time series were compiled into a two dimensions confusion matrix 

(Stehman, 1997) for each of the three study sites where the OA and Kappa have been calculated. 

Each row of the confusion matrix represents the actual instances of a specific class while each 

column represents the predicted instances of a specific class. Specific to Hwange/Dete, another 

validation process took advantage of an existing in-situ reference dataset regrouping the 

localizations of surface water points (see Chapter 2 for more details on the in-situ surface water 

localization dataset and Chapter 6 for more details on the validation process using the in-situ 

surface water localization dataset).  
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4.2.2 Results and descriptions 

 

 

The resulting classifications highlight the different hydrological morphologies of the three study 

sites (Figure 4.3). Indeed, Hwange/Dete is characterized by a succession of surface water ponds 

of varying size, unevenly distributed throughout the territory. These surface water ponds are 

impacted by seasonal variations with a maximum area reached in March and close to 6 km² for 

the year 2018 (Figure 4.4) compared to a total mapped surface area of 1191 km². The supervised 

classification of water surfaces via the use of Sentinel-2 medium resolution satellite images 

allowed the detection of surface water ponds with diameters well below 500 meters (Figure 4.3), 

thanks to a spatial resolution of 10 meters. The time series highlighted a significant seasonal 

fluctuation of surface water ponds detected each month of the year 2018. The areas of detected 

surface water ponds varied from 6.1 km² in March to 0.62 km² in December, a ratio of 1 to 10 

(Figure 4.4). This variation in water area detected by the supervised classification of the time 

series corresponds to the seasonal variations in rainfall observed over the Hwange/Dete study 

site (see section 2.1.1.1). 

 

In Gonarezhou/Malipati and Kruger/Pesvi, the hydrological morphology corresponds to a river 

system with some small surface water ponds unevenly distributed throughout the two study 

sites (Figure 4.3). In Gonarezhou/Malipati, the surface areas of the detected water bodies vary 

with the season (Figure 4.4). For the year 2018, it varied from 8 km² in March to 1.2 km² in 

January, a ratio of 1 to 6.7. The total surface area covered by the surface water remains relatively 

small in contrast with the total mapped surface area of the Gonarezhou/Malipati study site (i.e., 

1696 km²). The intra-annual variation of the surface water area detected by the supervised 

classification through the entire time series follows the intra-annual seasonal rainfall pattern of 

the Gonarezhou/Malipati area (see section 2.1.2.1), which is similar to the one observed in 

Hwange/Dete despite different hydrological morphologies.  
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Figure 4.3: Surface water classification results for the three study sites 

 

In Kruger/Pesvi, the surface areas covered by the detected surface water is more important 

compared to the two other study sites. The maximum surface area of the detected surface water 

reached 17.4 km² in February while the minimum surface area of the detected surface water 

reached 2.2 km² in November (Figure 4.4), a ratio of 1 to 7.9. It is important to note that, even if 

the surface area of the detected surface water fluctuates during the year, the seasonal pattern is 

not similar to the ones observed in the two other study sites with two noticeable peaks in 

detected surface water area in August and December (Figure 4.4). The Limpopo River, which 

flows through the Kruger/Pesvi study site is subject to hydrological flow variations due to 

anthropogenic activities and in particular to the water management in relation to hydroelectric 

dams installed on its course as well as the sustainability of irrigation developments (van der Zaag 

et al., 2010). The surface area covered by the detected surface water in regard to the total mapped 

surface area of the Kruger/Pesvi study site (i.e., 2037 km²) remains small. 
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Figure 4.4: Temporal evolution of the monthly surface area of the surface water (in km²) detected by the 
supervised classification for the three study sites 

 

If the surface water supervised classification time series managed to detect the study sites surface 

water areas at the landscape scale while translating ecological and climatic patterns observed in 

these areas, their accuracy performances are contrasted (Figure 4.5). Indeed, the supervised 

classification is less accurate in Hwange/Dete with a kappa index of 0.75 and an OA of 0.88 

compared to the Gonarezhou/Malipati (kappa index of 0.97 and OA of 0.99) and the 

Kruger/Pesvi (kappa index of 0.93 and OA of 0.97) study sites. The amount of surface water 

classified as other types of landcover in Hwange/Dete is by far superior to the other study sites 

as the surface water areas are formed by small surface water ponds and are, as a result, more 

easily confused with other types of landcover with similar or closed spectral signal. Indeed, this 

is particularly true during the driest months (i.e., May, August, and September) (Figure 4.5) as 

the surface water become scarce and the surface water ponds reduce in size, making them less 

easily detectable and more easily confused with vegetation landcover categories where the 

proportion of bare soil in the spectral value of the pixel is important. In Gonarezhou/Malipati 

and Kruger/Pesvi, the river hydrological morphology configurations make the surface water 

more easily detectable through the use of a supervised classification performed from medium 

resolution satellite images such as Sentinel-2 images, since theoretically, the areas constituted 

by the water bodies are more extended in space, generating bigger objects with more 

homogeneous spectral signals. However, as in Hwange/Dete, contrasts exist in these two study 

sites when looking at the intra-annual surface water supervised classification accuracy (Figure 

4.5). In Gonarezhou/Malipati, March and December are concerned with the lowest accuracies 

in contrast with the relative steady accuracies observed throughout the year while in 

Kruger/Pesvi, only the month of July shows a decrease in accuracy compared to the rest of the 

year. Due to the high overall accuracy values throughout the supervised classification of the time 

series both in Kruger/Pesvi and in Gonarezhou/Malipati, these punctual decreases of accuracy 
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values are more related to residual artifacts of the applied atmospheric corrections on the 

Sentinel-2 images (see section 2.2.2) than to seasonal changes in landscape structure or surface 

water abundance. 

For the three study sites, the confusion is more pronounced for water pixels classified as other 

types of landcover than the other types of landcover pixels classified as surface water. This 

reflects a tendency of the RF algorithm to overestimate the presence of surface water within the 

landscape, even if this confusion must be put into perspective in view of the overall satisfactory 

performance of the three supervised classifications. 

 

 

Figure 4.5: Confusion matrices of supervised surface water classifications for the three study sites 
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4.3  Discriminating the agricultural areas 

 

 

4.3.1 Methodological approach 

 

 

The methodological approach used for the supervised classification of the agricultural area is 

similar as the one described in section 4.2.1 for water surfaces. However, two differences 

compared to the surface water classification methodology have to be noticed. The first difference 

is that only one month was used within the Sentinel-2 satellite image series (Figure 4.6). The 

month of March has been chosen as it corresponds to the period of the year when the peak of 

the wet season occurs (Figure 4.4) and where the contrast between the vegetation and the bare 

soil is the strongest. The second difference is the fact that other spectral indices have been used 

as SRS images dataset input for the pixel values extraction via reference polygons sampled. A 

combination of Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index 

(EVI) and Soil Adjusted Vegetation Index (OSAVI) (see Chapter 3 for the spectral indices 

calculation) have been considered to classify agricultural areas. These spectral indices have been 

used extensively and proved to be efficient in previous studies to characterize agricultural area 

using medium spatial resolution SRS images such as the one used in this supervised classification 

methodology (Bellón, Bégué, Lo Seen, De Almeida, et al., 2017; Y. Zhao et al., 2020). Two 

classification classes (i.e., “agricultural area” and “other”) have been determined to train and 

validate the RF classifier algorithm (Figure 4.6). At the end of the post-classification process, 

one map of the classified agricultural area at 10 meters of spatial resolution for each of the three 

study sites have been produced (Figure 4.7). To validate the accuracy of the agricultural area 

classifications, the same process as described in section 4.2.1 has been reproduced, using 

confusion matrices (Figure 4.8).  
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Figure 4.6: Diagram describing the pre-classification, the classification and the post classification stages 
of the agricultural area supervised classification methodology 

 

 

4.3.2 Results and descriptions 

 

 

The spatial distribution of agricultural areas detected by the supervised classification is very 

contrasted according to the study sites. In Hwange/Dete, the agricultural areas are grouped close 

to each other, forming a quasi-homogeneous space with marked contrasts to other landcover 

types (Figure 4.7). On the other hand, in Gonarezhou/Malipati and Kruger/Pesvi, the detected 

agricultural areas are more unevenly distributed throughout the mapped territories, forming 

patches with smaller surface areas, blending more into an heterogeneous landscape (Figure 4.7). 

In comparison with the other types of landcover, the percentage of the agricultural areas is more 

pronounced in Hwange/Dete with 5% of the total classified surface area (Figure 4.10B), covering 

an area of 59,5 km². In Gonarezhou/Malipati, the percentage represented by the agricultural 

areas is comparable with 4% of the total classified surface area covering an area of 68,3 km² 

while being far less inferior in Kruger/Pesvi with a percentage of only 0,8% (Figure 4.10B) and 

covering an area of 15,6 km².  
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Figure 4.7: Maps of supervised water surface classification results for the three study sites 

 

The accuracy of the agricultural areas supervised classifications is contrasted according to the 

study sites (Figure 4.8). In Hwange/Dete the supervised classification performed better with a 

kappa index of 0.83 and an OA of 0.91 compared to the Gonarezhou/Malipati (kappa index of 

0.53 and OA of 0.77) and the Kruger/Pesvi (kappa index of 0.66 and OA of 0.83) study sites. 

These results confirmed the importance played by the landscape configuration and the existing 

degree of contrast between the different types of landcover. Unlike surface water, the spectral 

signal of agricultural surfaces is more difficult to isolate from the spectral signal of other types 

of vegetation cover. Hwange/Dete has better classification results because the agricultural areas 

are densely grouped in space, forming an homogeneous space that contrasts with other 

surrounding vegetation types. However, this existing contrast does not prevent the RF algorithm 

from overestimating the classification of agricultural areas into other types of vegetation cover 

while other types of vegetation cover are practically not classified as agricultural areas (Figure 

4.8). The contrasting results observed in Kruger/Pesvi and Gonarezhou/Malipati can be 

explained by the tendency of the RF algorithm to confuse both agricultural areas with other 

types of vegetation cover and the other types of vegetation cover with agricultural areas in 

similar proportions (Figure 4.8).  
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The supervised classification of the agricultural areas at the landscape scale allows to visually 

assess the precise location as well as the main clusters of agricultural areas in the three study 

sites (Figure 4.7). The post-classification step consisting of the manual correction of the pixels 

wrongly classified as agricultural areas while being in fact other types of vegetation cover pixels 

(Figure 4.6) has therefore been facilitated as most of the false positive pixels were located in 

areas far from the detected agricultural area clusters.  

 

 

Figure 4.8: Confusion matrices of supervised agricultural area classifications for the three study sites 

 

 



 CHAPTER 4 – Remote sensing methodology  

111 
 

4.4  Producing the final landcover maps 

 

 

4.4.1 Methodological approach 

 

 

Three Sentinel-2 red-edge bands (i.e., Sentinel-2 band 5, band 6 and band 7 that are located 

between the red and the Near Infrared of the electromagnetic spectrum) have been masked with 

manually digitalized polygons of road networks as well as with vectorized surface water and 

agricultural area polygons resulting from the two previous classifications (Figure 4.1). These 

three bands have been used as input SRS image dataset for the unsupervised classification as it 

has been established that the red-edge bands inclusion into classification scheme positively 

impacts the characterization of vegetation classes and improve overall classification accuracies 

(Schuster, Förster, and Kleinschmit 2012). The three produced masked raster have then been 

used to classify four classes of vegetation and landscape characteristics for Hwange/Dete (i.e., 

woodland, mixed-woodland-shrubland, shrubland, mixed shrubland-grassland) and five classes 

of vegetation and landscape characteristics for Gonarezhou/Malipati and Kruger/Pesvi (i.e., 

woodland, mixed-woodland-shrubland, shrubland, mixed shrubland-grassland, bare soil) 

(Figure 4.9) via a pixel-based non-supervised K-means clustering classification method 

(Burrough, van Gaans, and MacMillan 2000). The K-mean algorithm is a classical distance-

based algorithm that evaluates similarity or dissimilarity of the pixel values by the distance to 

each cluster center for each of the pre-determined classes (Shan, 2018) and has been chosen as 

it proved its efficiency for SRS landcover classification (Chen and Peter Ho 2008). After the 

clustering of all pixels present in the input raster, the resulting classes were labelled in 

correspondence with the “a priori” class assessment previously realized via photo-interpretation 

of a very high satellite image (i.e., Pleïades). 40 reference polygons per class have been manually 

digitalized for each of the three study sites to compensate for the lack of an in-situ landscape 

description database and used as reference polygons for the validation of the unsupervised 

classification. These reference polygon datasets have then been used to derive the confusion 

matrices and calculate the OA and the Kappa index (Figure 4.11). A satisfaction threshold was 

established at an OA higher than 0.7 and a kappa index strictly superior to 0.6 to combine 

multiple accuracy quantifications, thus qualifying the relevance of the classification produced 

(Shao et al., 2019). In the case where the classification result is judged not usable (corresponding 

to the retroactive loop “NO” – Figure 4.9), the application of a k-means is repeated until a 

classification reach a satisfactory level of accuracy. At the end of the unsupervised classification 

process, the resulting vegetation classification raster have been merged with the previously 
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produced surface water, agricultural areas and road network polygons (Figure 4.1), thus 

assembling the final landcover maps for the three study sites (Figure 4.10A).  

 

 

 

Figure 4.9: Diagram describing the pre-classification, the classification as well as the chosen vegetation 
typology of the vegetation unsupervised classification methodology.  

 

 

4.4.2 Results and descriptions 

 

 

The produced landcover maps for the three study sites highlight a contrast in the landscape 

spatial configuration and intrinsic composition between Hwange/Dete from one hand and 

Gonarezhou/Malipati and Kruger/Pesvi from the other end. In Hwange/Dete the landcover is 

more wooded across the mapped area and is composed of mostly closed landscapes, with the 

exception of areas in closed proximity with surface water where the vegetation opens up (Figure 

4.10A). The woodland covers an area of 175,5 km² and the mixed-woodland shrubland covers an 

area of 660.4 km², representing 14.7% and 55.5 % of the total classified surface area respectively 

(Figure 4.10B). Interestingly, the most open areas where the landcover classes “shrubland” and 
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“mixed-shrubland-grassland” are found (these landcover categories represent 20.3% et 1.9% of 

the total classified surface area, covering areas of 242.1 km² and 22.8 km² respectively) 

correspond to the territory mainly frequented by GPS collared buffalo (see Figure 2.5 in section 

2.2.1.2).  

 

 

Figure 4.10: A) Maps of the three study sites landcover classifications. B) Percentage share of each 
landcover class relative to the total area of the landcover classification for each of the three study sites 

 

In Gonarezhou/Malipati, the landcover changes drastically whether the observed landcover is 

located on the eastern or western side of the Mwenezi river that flows from north to south 

(Figure 4.10A). On the eastern side of the river, the landscape is more wooded as “woodland” 

and “mixed woodland shrubland” composed the majority of the landcover types present in this 

particular area (these landcover categories represent 10.7% et 14.7% of the total classified surface 

area, covering areas of 181.7 km² and 250 km² respectively). However, on the western side of the 

river, that corresponds to the Gonarezhou National Park (see Figure 2.3 in the section 2.1.2.1), 
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the landscape is more open and composed primarily of “shrubland” and “mixed-shrubland-

grassland” that cover a wider area and represent 88.7% et 76.8% of the total classified surface 

area, covering areas of 181.7 km² and 250 km² respectively (Figure 4.10B).  

 

In Kruger/Pesvi, the wooded landcover is present in closed proximity of the Limpopo River that 

flows eastward and becomes rarer the further away from the river (Figure 4.10A). The 

“woodland” and “mixed woodland shrubland” landcover categories represent 5.5% et 15.7% of 

the total classified surface area, covering surface areas of 111.5 km² and 320.5 km² respectively 

(Figure 4.10B). The landscape is however more open in comparison with the other study sites as 

the “mixed-shrubland-grassland” landcover category is more present, covering an area of 208.6 

km² that represent 10.2% of the total classified surface area (Figure 4.10B). Nevertheless, it is the 

“shrubland” landcover category that covers the most extensive area by far with a surface area of 

1323.8 km², representing 65% of the total classified surface area (Figure 4.10B).  

 

The accuracy of the unsupervised vegetation classification is rather consistent and steady for the 

three study sites (Figure 4.11). In Hwange/Dete, the kappa index is 0.67 and the OA is 0.75. In  

Gonarezhou/Malipati and Kruger/Pesvi, these accuracy indicators a slightly inferior with a 

kappa index of 0.64 and 0.66 and an OA of 0.71 and 0.73 respectively (Figure 4.11). It is slightly 

inferior to other realized supervised classifications of savanna environments (e.g., in Kenya 

Hunter et al., 2020 obtained a classification with an OA of 0.82 while covering a smaller study 

area) but similar to other non-supervised classification using the K-means clustering approach 

(e.g., in Brazil Filippi et al., 2009  obtained a classification with a maximum OA of 76.84). For 

the three study sites, the confusions concern the landcover categories that are closer in foliage 

and vegetation composition from one another. The “woodland” is often mistaken as the “mixed 

woodland shrubland” and the “mixed woodland shrubland” is often incorrectly classified as 

“shrubland”. Depending on the landcover categories, the precision of the k-mean algorithm 

varies greatly (Figure 4.11). Indeed, the landcover categories that contrast the most in term of 

spectral signal according to the degree of opening and closing of the foliage and vegetation 

composition, such as the “woodland” and “mixed-shrubland-grassland”, present the best 

accuracies (e.g., in Hwange/Dete, the “woodland” is classified with a precision of 0.91 and the  

“mixed-shrubland-grassland” with a precision of 0.85). On the contrary, the landcover 

categories that are heterogeneous in term of foliage and vegetation composition, hence having 

a contrasting spectral signal, such as the “shrubland” and the “mixed woodland shrubland”, are 

not as well classified as the other landcover categories (e.g., in Hwange/Dete the “shrubland” 

and the “mixed woodland shrubland” are both classified with a precision of 0.58).  
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Figure 4.11: Confusion matrices of the unsupervised vegetation classifications for the three study sites 
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4.5 Chapter summary 

 

 

 

 

 

 

 

 

 

- A three steps methodology have been chosen to characterize the surface water as 

well as the landcover at the landscape scale with a spatial resolution of 10 meters for 

the three study sites. 

 

- To classify the surface water, a supervised classification method using a Random 

Forest algorithm have been designed and applied on Sentinel-2 satellite images time 

series. As a result, three time series of surfaces water (one for each of the study sites) 

have been produced, detailing the spatiotemporal availability of surface water at a 

landscape scale. 

 

- The same methodological principles have been applied to classify the agricultural 

areas at the three study sites. This particular step have been conducted in order to 

discriminate agricultural areas from the rest of the vegetation structure thus 

improving the capacity to characterize vegetation landcover with limited confusions.  

 

- An unsupervised classification using the K-mean clustering approach have been used 

to classify the vegetation structure of the three study sites. Four vegetation types have 

been discriminated: i) woodland, ii) mixed woodland-shrubland, iii) shrubland, and 

iv) mixed shrubland-grassland.  

 

- Overall, the classification method based on a pixel-based approach is simple, 

reproductible, uses open-source data and software and provides accurate results for a 

wide range of ecological applications requiring landscape scale landcover data over an 

extensive surface area. 
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5.0 Preamble 

 

 

 

 

5.1  Overview of the animal movement ecology 

 

 

Animal movement ecology has developed to a particular discipline within the broader research 

field of ecology and benefited strongly in recent years from telemetry data to explore the causes, 

mechanisms, and patterns of animal movement in space and time. This discipline primarily aims 

to understand consequences of animal movements on the ecology and evolution operating 

across heterogeneous/homogeneous landscapes at individual, population, and community 

scales (Cagnacci et al., 2010). Adding to the these primary objectives, underlying objectives aims 

at addressing management and conservation questions, at determining the success or failure of 

management or conservation interventions, and at monitoring spatiotemporal environmental 

changes in relation with animal behaviors (Miller et al., 2019). Indeed, measuring the position 

in space and time of a free-living animal allows to relate the determined animal to its immediate 

environment, thus apprehending the fate of individuals (e.g., interrelations between individuals 

within the same animal species or with other animal species) as well as the structure and 

dynamics of populations and communities within changing ecosystems (Hanski & Hanski, 1999; 

Swingland et al., 1983; Turchin, 2015).  

 

At first, animal movement ecology that started during the 1950s was primarily focused on 

improving management strategies by understanding where animals were moving and how they 

were using natural resources (Miller et al., 2019). The notion of animal’s home range, originally 

This chapter marks a transition in that it addresses the issue of spatial modeling and 

follows on from Chapters 3 and 4 which were primarily focused on the remote sensing 

aspects of the thesis. The chapter below defines in detail the field of research of animal 

movement ecology, gives a state of the art of all spatial modeling methods used in this 

specific research field with their respective strengths and weaknesses, and describes 

the spatialization process of the animal movement model used in this thesis, and in 

particular through the description of the spatial modeling language Ocelet developed 

internally at CIRAD. 
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defined by Burt as “an area traversed by the individual in its normal activities of food gathering, 

mating, and caring for young” (Burt, 1943), was predominantly used to tackle this particular 

objective. Later, the concept of home range evolved through the development of statistical 

modeling of space use, and spatially explicit mechanistic models (Kie et al., 2010). However, 

until recently there was no general consensus on the framework to address animal movement 

mechanisms (Börger, Dalziel, and Fryxell 2008; Kie et al. 2010), as movement mechanisms are 

very diverse among animal life forms (Holyoak et al., 2008). In regard to these recurring 

confusions, today’s animal movement ecology quantifies movement patterns to make inferences 

about likely behaviors (Turchin, 2015). A general framework emerged (Figure 5.1A) as animal 

movement ecology considers animal movements as interactions between internal (e.g., 

intention, instinct, basic needs) and external factors (e.g., environment, other individuals of the 

same species or other animal species), movement and navigation capacities (e.g., speed, 

alignment, cohesion), producing observed qualitative and quantitative movement paths 

(Nathan et al., 2008). These interactions inserting themselves into four paradigms (i.e., 

biomechanical, random, cognitive and optimality) that represent different approaches to 

analyze, describe and quantify animal movement (Figure 5.1B). However, if the general 

framework developed by Nathan et al. 2008 allows to potentially link analyses of movement 

paths and studies of movement mechanisms, thereby better understanding the interactions 

between animal movement and ecological processes, a wide array of methodological approaches 

exist and are extensively used, leading to multiple interpretations and potential confusions. In 

animal movement ecology, synthesis as well as the generic aspect of the methods commonly 

used remains a challenge. In that regard, animal movement modelling methodologies must be 

chosen with care according to initial research hypotheses. 
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Figure 5.1: These two figures are extracted without modification from (Nathan et al., 2008). A) Diagram 
representing a general conceptual framework for movement ecology. B) Diagram representing the 
relationships (the three colored arrows) the different compartments of the general conceptual framework 
for movement ecology as well as different scientific disciplines (the four colored circles) in which the 
movement of organism is being studied while considering the organization of the general conceptual 
framework for movement ecology.  

 

 

5.2  Mathematical models follow two paradigms 

 

 

We consider the modelling process as a conceptual framework that aims to reproduce a real or 

proposed system by abstraction (Figure 5.2). By definition, a modelling process impacts all 

aspects of a given research as it is closely linked to the chosen discipline, theme and study 

locations, the initial research hypothesis, the quality and quantity of available data, the speed 

with which the model can be developed, the validity of the model, the speed of experimentation, 

as well as the confidence that is placed in the model results (S. Robinson, 2008). All simulation 

models are simplifications of a perceived reality and are subjective in essence (Zeigler, Muzy, 

and Kofman 2018). Mathematical modelling corresponds to the application of this conceptual 

framework (Figure 5.2) by the translation of a given system via mathematical reasoning 

following two methodological approaches that can be used independently or in combination : a 

statistical modelling approach and a mechanistic modelling approach. 
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Figure 5.2: This figure is extracted without modification from (S. Robinson, 2008) and consists of a 
diagram representing the conceptual model in the simulation project life-cycle. This conceptual model 
can serve as a foundation to build any desired models that aim at reproducing complex ecological systems.  

 

 

5.2.1 Statistical models 

 

 

The mathematical formulation of a statistical model (also named empirical model) does not 

intent on describing realistic cause and effect between model parameters and a predicted 

response, or to reproduce/simulate phenomenon inherent to general ecological functions and 

mechanisms, but to efficiently condense empirical facts to provide an understanding of a specific 

research hypothesis based on correlative relations (Wissel, 1992). For example, it is possible to 

incorporate a specific animal trait information based on statistics into a given model for ordinal 

response in order to identify the main reasons why animal species differ in their environmental 

response (Warton et al., 2015). It can be considered that three major components compose a 

statistical modelling approach in ecology: i) an ecological component, ii) a data component, and 

iii) a statistical component (Austin, 2002).  The ecological component consists of the ecological 

knowledge, theories, and assumptions to be used or tested in a given study. The data component 

is formed dependently of decisions made regarding the quality and quantity of the input data 

(i.e., telemetry data). How the data have been collected, measured, or estimated are key 

elements to be considered. The statistical component corresponds to the choice of one particular 

or several statistical methods, error functions and significance tests that linked the two other 
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components to determine the capacity of the designed statistical model to successfully answer 

the initial research hypothesis (Austin, 2002). Non exhaustive and commonly used statistical 

models to describe animal movement are step-space model (SSM) (Patterson et al., 2008), 

stochastic differential equations (SDEs) (Preisler et al., 2004) or hidden Markov model (HMMs) 

(Langrock et al., 2012). These models are usually calibrated and validated by statistical 

measurements of various level of complexity such as generalized linear model (GLM), 

generalized additive model (GAM), classification and regression tree (CART), artificial neural 

network (ANN), random forest (RF) or root mean square error (RMSE) (Dormann, 2020). 

Regarding animal movement ecology, statistical models are dynamic and assume a hierarchical 

structure between various different metrics such as velocity or displacement, distances between 

successively observed positions, headings (i.e., compass directions), changes of directions (i.e., 

turning angles), … (Patterson et al., 2017). Three main categories encompass the variety of these 

dynamic statistical models (Hooten and Johnson 2017): i) point process models (Brost et al., 

2015), ii) discrete-time dynamic models (McClintock et al., 2012) and iii) continuous-time 

dynamic models (D. S. Johnson et al., 2008).  

 

Statistical modelling approaches for the analysis of individual or collective animal movements 

can be overly complex, both in their design and in terms of the computational power required 

to calibrate and validate them (Patterson et al., 2017). This can lead to a lot of effort in vain on 

trying to understand aspects of a possibly unrepresentative dataset. On the other end, some 

statistical animal movement models can also be too simplistic as the rely on one or few 

parameters to understand a vast array of complex behaviors (Patterson et al., 2017). It is 

important to keep in mind that statistical models are closely dependent of the quality and 

quantity of input telemetry data, and as such can be biased if the time frequency and regularity 

are inconsistent or if the continuity of data is compromised due to instrumental difficulties as 

well as environmental and animal behavioral influences (Hooten & Johnson, 2017). Statistical 

models have to be chosen carefully depending on the temporal and spatial scales of the given 

study, the number and type of the considered focal animal species as well as the scale on which 

the given study aims at understanding the animal movement patterns (i.e., individual, 

population or community). Statistical models have been extensively used to understand animal 

movements (Essington, 2021; King, 2014). For example, Hooten, Scharf and Morales, 2019 

designed a statistical model in continuous-time to provide direct inference about gains and 

losses associated with physiological processes based on buffalo movements in heterogeneous 

environments. 
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5.2.2 Mechanistic models 

 

 

Mechanistic models base predictions on our understanding of cause–effect relationships (Guisan 

and Zimmermann 2000) as they describe empirical knowledge by formalizing them into 

mathematical formulas or simulations. Mechanistic models are a formalization of knowledge on 

the functioning of a given system. This knowledge is often derived from observational data that 

are therefore essential to model specific processes. Indeed, mechanistic models do not focus 

primarily on predicted precisions, but rather on theoretical correctness of the predicted 

response (Pickett, Kolasa, and Jones 2010). The mechanistic model approach requires a 

conceptualization of a hypothesis centered on how a given system works and how considered 

variables are interconnected within this system (Ellis et al., 2020). It usually follow a five step 

process: i) problem identification, hypothesis generation and definition of the general 

framework of the study, ii) model conceptualization, iii) data collection that precisely describe 

mechanisms intended to be modeled, iv) model development based on the choice of 

mathematical equations to reproduce specific mechanisms or assumptions of particular 

mechanisms, and v) model evaluation through statistical, graphical, sensitivity, behavior, and 

scenario analyses. Mechanistic models can either have a system of equations simple enough to 

make an analytical calculation of the solutions or have too many retractions associated with  a 

complex system making analytical solution applications impossible. In that case, simulations are 

processed step by step through the calculation of differential equations (Busenberg, 2012). 

Discriminating essential and nonessential components of a mechanistic model is crucial as it 

determines the assignment of the appropriate equation structure between components and 

indicates the required level of model complexity needed (Ellis et al., 2020). The model outputs 

will usually give valuable information on requirements to add more complexity and/or 

restructure the model, implying strong back-and-forth interventions between model 

developments and data-based experimental works, which are commonly used to parametrize 

the model in addition with empirical and bibliographical knowledge.  

 

In regard to animal movement ecology, mechanistic movement models have seen recent 

methodological advances, where animal space-use as well as environmental conditions are now 

viewed as direct or indirect factors that mechanistically influence the movement of animal 

species individuals and/or collective (Morales & Ellner, 2002; Rumiano et al., 2020). 

Mechanistic approaches that consider such factors include ecological diffusion models (Hefley 

et al., 2017; P. J. Williams et al., 2017), resource selection function (RSF) (Manly et al., 2007), as 

well as the step selection function (SSF) (Thurfjell, Ciuti, and Boyce 2014) and its translation 

into a probability density function of space use through stochastic simulations (Signer, Fieberg, 
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and Avgar 2017) or a master equation (Potts et al., 2014). All these mechanistic model 

approaches identify the mechanisms driving animal movement, allowing a more explicit 

assessment of the ecological processes at play in comparison with statistical models (Potts and 

Lewis 2014).  

If mechanistic models allow extrapolations as they can potentially produce predictions outside 

the range of used input data, they do have some limitations as well. The spatial and temporal 

scale on which a mechanistic model can efficiently operate is a central challenge in ecology in 

general (Levin, 1992). Applying such models is currently limited to relatively small systems 

(Cabral, Valente, and Hartig 2017). Mechanistic models face issues concerning calibration and 

data availability. Indeed, if mechanistic models are not constrained by data, increasing the 

model complexity may result in exponentially increasing uncertainties, rendering the model 

useless even if it is structurally correct. For example, the fitting procedure of an animal 

movement mechanistic model requires animal locations to be independent samples from the 

input dataset (Potts & Lewis, 2014). Yet, obtaining an independent set of location points usually 

requires using a small subsample of the input data, which can mean discarding a lot of 

information (Moorcroft and Barnett 2008).  

 

Despite these challenges, one could argue that more mechanisms are needed to understand the 

complexity so common in nature (Evans et al., 2013). However, simple mechanistic models will 

remain useful to address specific questions and users have to carefully balance model 

complexity. In the end, one key advantage of mechanistic models is that they are flexible and 

modular, offering the possibility to experiment with the complexity trade-off and, as a result, 

assess model generality (Evans et al., 2013). Furthermore, mechanistic models can also be used 

effectively in combination with statistical models to enhance the capacity to describe, apprehend 

and simulate complex systems (Caradima et al., 2021).  

 

 

5.3  The choice of a mechanistic model based on collective 

movements of self-propelled individuals 

 

 

5.3.1 The individual versus the collective 

 

 

Choosing a model to describe an ecological mechanism such as animal movement requires 

considering the scale at which the movement is applied. Do we favor to model a set of individual 
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movements or a collective movement of individuals to model the animal movements in space 

and time? Should interactions between individuals be considered as influential in regard to 

animal movements? Answering these questions while complementing initial research 

hypothesis conditions the choice of the modeling method to be used to simulate any given 

animal movement mechanisms a priori. 

Individual based models (IBMs) constitute a more favored starting point for building animal 

movement models as this modelling approach explicitly recognizes the discreteness of the 

population and the stochastic nature of the movement dynamics (Black & McKane, 2012). 

Indeed, IBMs can potentially capture a large range of phenomena even if the results are 

frequently numerical in nature, making any theoretical understanding difficult (DeAngelis and 

Grimm 2014). IBMs are mechanistic model well suited to incorporate spatial landscapes in a 

realistic manner and to simulate complex behaviors in populations (DeAngelis, 2018) and have, 

for example, been used to spatially model ungulate grazers (Proaktor, Coulson, and Milner-

Gulland 2007). However, a main limitation of this modelling approach is the lack of formal 

structure and methods of analysis compared to what mechanistic models with mathematical 

constraints (e.g., SSF) offer (Donald L. DeAngelis and Grimm 2014), despite standardization 

efforts such as the overview, design concepts, and details (ODD) protocol (Grimm et al., 2010).  

 

Another individual scale approach, very close from the IBMs in terms of modeling principles, 

consists of Agent-based models (ABMs). These models have a finite number of individuals in the 

modeled system, each “agent” having an arbitrary given number of attributes or parametrized 

degrees of freedom (Grimm et al., 2005).  They differ from IBMs as relationships between 

individuals are explicitly established. The IBMs, on the other hand, do not initiate relationships 

between the individuals of a given model, individuals being autonomous (DeAngelis & Grimm, 

2014). For that reason, ABMs are able to capture the fine-scale effects of individual movements 

in driving dynamics within populations (Watkins et al., 2015) and consist of a bottom–up 

approach as each agent can learn and adapt their own behavior while responding to other agents 

and changes in the environment (McLane et al., 2011). This property as an advantage over top-

down approaches (e.g., statistical models such as RSF) as it enables extensive exploration on the 

effects and implications of any type of changes that could potentially occur within the modeled 

system. In term of mitigating conservation management strategies, ABMs can play an important 

role indeed (Grimm et al., 2005). However, ABMs are complex in their design (i.e., more rules, 

quantitative parameter estimation, complex sensitivity analyses) and tuning them can be 

difficult as the more parameters there are, the more they influence each other (Schulze et al., 

2017). Moreover, ABMs are much less tractable than a mechanistic model based on fewer 

mathematical equations and have a lower genericity potential.  
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Complementary  to the individual scale modelling approaches, collective movement models are 

getting more and more recognition as recent technological advances dramatically improve the 

ability to collect data on the movements of animal groups (Hughey et al., 2018). Within the field 

of animal movement, the importance of social dynamics on both fine-scale (Russell et al., 2017) 

and broad-scale processes (Sigaud et al., 2017) is stressed, thus influencing the utilization of such 

model to reproduce animal movements. The possibility to couple extensive amounts of collected 

environmental data with the analytical capacities of mathematical movement models enable 

statistical inference of animal movement mechanisms and drivers (Hooten et al., 2017). If multi-

agent ABMs have been used to simulate collections of interacting individuals (DeAngelis 2018; 

Couzin et al. 2002), several studies have introduced static quantitative observables into swarm 

models to effectively reproduce individual interactions within a collective (Eriksson et al., 2010). 

Such swarm model methodologies include the distribution of inter-individual distances, swarm 

density, polarity, sharply defined edges, and anisotropy (Viscido, Miller, and Wethey 2002; 

Ballerini et al. 2008; Cavagna et al. 2008). All these model methodologies can potentially be 

used to efficiently compare the output of a simulation model to in-situ observations of a given 

ecological/biological system depending on the abundance and quality of the in-situ data (e.g., 

telemetry data, empirical knowledge) used to calibrate the model. However, even if swarm 

models can provide valuable insights on the type of interactions occurring within an animal 

group/herd and more broadly on the groups general movement dynamics, the model’s inferred 

interaction rules (e.g., repulsion, attraction, alignment,…) can potentially produce the same 

statistical observables even with different parameter values (Eriksson et al., 2010b). In turn, this 

can produce redundancy and an incapacity to reproduce specific behaviors.  

 

As knowledge of animal movements accumulate, there has been an increasing appreciation that 

many movement processes must be considered using a wide array of modelling approaches. The 

preferred use of IBM and ABM is to study "emergent" properties at a given system scale from 

rules defined for individuals. The counterpart is that it is often very difficult to explain the exact 

causes of this emergence. IBMs, ABMs and collective movement models are all relevant but have 

to be chosen accordingly in regard to their intrinsic strengths and weaknesses.  

 

 

5.3.2 The synthesis of the two, when individuals influence the collective 

 

 

Many of animal movement modelling approaches usually neglect potential interactions between 

different animals as most of them assume that the movement of one individual within a group 

is representative of the group’s overall movement (Morales et al., 2010). This assumption, mainly 
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correlated to the intention of advantaging model’s simplification over its complication, can 

introduce an analysis bias, thus limiting the ability of a model to reproduce movement dynamics 

at different spatial and temporal scales. Indeed, animals often do not move independently of 

each other (Camazine et al., 2020). Therefore, understanding the distribution of individuals in 

space requires scaling-up from individual movement patterns to groups of individuals and, 

according to the scope and aim of the study, to populations of groups (Okubo et al., 2001). In 

this instance, the temporal scale becomes important as interactions between the group structure 

of a population and the movement of individuals can be relevant at longer time scales (Fryxell 

et al., 2007) as well as on relatively short temporal scales (Couzin et al., 2005; Eftimie et al., 

2007). Moreover, movement responses of individuals to the changing spatial distributions of 

resources can not only influence their individual movement but also that of the entire group 

(Gaillard et al., 2010).  

 

To model the movements of an entire group while considering the individual movements within 

the group, self-propelled particle (SPP) models are considered. These models capture physical 

properties (e.g. alignment, distance, cohesion) between neighboring individuals in self-

organized swarms (Langrock et al., 2014). In SPP models, all individuals must adhere to basic 

mechanistic rules in which the forces of attraction (e.g., social interactions such as vigilance or 

interspecies relationship status) and repulsion (e.g., avoiding collisions with closed neighbors, 

safe space) are optimized within an interaction zone to maintain coordinated group movements 

(Mann, 2011; Strömbom, 2011). In SPP models, individuals consider their closed neighbors at 

discrete time intervals as well as being virtually considered similar to one another (Conradt et 

al., 2009). Collective motions can be envisioned without a leader (Grégoire & Chaté, 2004; 

Vicsek et al., 1995) but also with a leader (Ferdinandy et al., 2017), thus changing the 

configuration of individuals within the group and introducing a classification among them. SPP 

models have been developed extensively (Dowd & Joy, 2011; Polansky & Wittemyer, 2011; Yates 

et al., 2010) following the trend of technological advances in tracking individuals (Kays et al., 

2015). 

 

The main advantage of the SPP models is that they allow to translate detailed, intricate, and 

complex phenomenon such as individual interactions within animal groups in “minimal” rules 

composed of few parameters to catch crucial and universal properties that may be present in a 

wide variety of systems (Grégoire & Chaté, 2004). Empirical knowledge as well as observed data 

can fuel these models (Langrock et al., 2014), making them well-suited for a wide range of 

studies, especially when in-situ data are lacking or in insufficient number to validate a statistical 

model for instance. However, depending on the spatial and temporal scales of the study, 

limitations can occur as it can be difficult to model the level of detail entailed by animal 
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interactions at the landscape scale and with temporal frequency inferior to the hour. In this 

configuration, precise high resolution telemetry data as well as a large number of collared 

individuals are necessary to calculate the interactions metrics needed to calibrate the model 

parameters. Despite this constraint, SPP model can be a good alternative to avoid modelling 

design complexity inherent to ABMs or the important number of data required as input 

associated with statistical modelling approaches (Schliehe-Diecks et al., 2012) while reproducing 

animal movements at individual and group scales (see Chapter 6 for more detail). 

 

 

5.4  Spatializing the model and combining it with SRS data 

 

 

5.4.1 The notion of space in animal movement modelling 

 

 

Spatial structure and organization of a given system is now usually acknowledged as an essential 

perquisite to accurately model ecological processes (Dieckmann et al., 2000; Kareiva & 

Wennergren, 1995). It is now common knowledge that the degree of interrelation and influence 

between animal individual and the surrounding environment depends both simultaneously on 

animal movements and environmental change dynamics (Morales et al., 2010). While many 

studies of animal movements focus on apprehending the dynamics at the population and 

individual scales in space, the underlying connections between the intrinsic movement of an 

animal and its immediate environment is rarely addressed and described because a bidirectional 

spatial modelling of these connections are required at different spatial and temporal scales to be 

properly assessed (Fryxell et al., 2005; Revilla & Wiegand, 2008). Adding time as another 

dimension to space into a model requires the implementation of the model’s inputs into a 

platform geared for manipulating spatialized data such as geographic information systems (GIS) 

to extrapolate and analyze the model outputs. This procedure may prove to be complicated and 

non-intuitive as GIS are still, to this day, suffering from an intrinsic limitation of not properly 

handling the time dimension (Comber & Wulder, 2019). Likewise, modeling approaches that 

consider time first face limitations in regard to spatial information as the latter cannot be 

dissociated with movement data and evolve independently (Peuquet, 2001). Merging movement 

data with a self-evolving geographical context implies to develop multi-dimensional (i.e., space 

and time) movement models to effectively measure the influence of a changing environment on 

the behavior of moving individuals or group of individuals (Onsrud & Kuhn, 2016). In regard to 

this particular challenge, an intuitive environment platform able to link all the dimensions of a 
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movement model in an intuitive and scalable way could prove to be a valuable tool to facilitate 

the development of such approach.  

 

 

5.4.2 The language “Ocelet” 

 

 

Several domain specific languages (DSL) that allow the simulation of heterogeneous entities in 

spatialized and temporalized complex systems through their interactions exist today. Amongst 

them, the most noticeable are CORMAS (Bousquet et al., 1998), NetLogo (Levy et Wilensky, 

1999), GAMA (Taillandier et al., 2012) and Ocelet (Degenne et al., 2009). The Ocelet DSL allows 

the synthesis of top-down (e.g., systems dynamics) and bottom-up (e.g., ABMs) modeling 

approaches by focusing on their “common denominator” which are embodied by the 

interactions (Degenne & Lo Seen, 2016).  

 

The Ocelet DSL is designed around five main concepts that are: entity, service, relation, scenario 

and datafacer (Degenne et al., 2009) (Figure 5.3). It is based on the concept of interaction graph 

(Harary, 1969), where each element of the system (entity) is represented by one specific vertex 

of the graph, and where the graph’s edges between the vertices carry the functions describing 

the relations between the entities (interaction functions). Each entity has different 

characteristics, called properties, which can be assigned to other entities if required and allow 

to establish potential relations in between them. A service (e.g., update of the trajectory, or the 

individual movement – Figure 5.3) can complement the entity in addition to the properties by 

assigning functions that characterize given abilities inherent to a given entity. The datafacer  is 

a generic way to bind entities and datasets, independently of their spatial form:  vectors (i.e., 

point, line, and polygon geometries) and raster (i.e., matrix of pixels) (Castets, 2015). Three levels 

of model specification are denoted by (Degenne, 2012): i) "The level of individuals", where the 

types of entities in the model are described, their properties defining their state, and the rules 

(service) defining their behavior, ii) “The level of interactions", where the exchanges between 

the entities are governed and defined via the concept of interaction graphs, iii) “The level of the 

system and its dynamics", which allows the organization of a scenario modeling the 

spatiotemporal dynamics of a defined system. Indeed, the initial state of the model and the 

simulation steps are set within the scenario that contains an ordered sequence of operations that 

are executed during a simulation run to represent the changes occurring in a geographical area 

over a period of time (Degenne et al., 2009). 

 



 CHAPTER 5 – A spatialized mechanistic animal movement  

130 
 

The ability of the Ocelet DSL to incorporate heterogeneous spatialized data by attributing them 

the status of entity or assigning them as one or several entity’s properties, offers the capacity to 

the user to establish relations between complementary spatialized and temporal information 

inherent to a complex system. For example, it is possible to implement an entity of an animal 

species telemetry data as spatialized vector points with a temporal property and put them in 

relation with another entity of remote sensed surface water represented as a spatialized raster 

with the same temporal property. By establishing an interaction graph between these two 

implemented entities, it is therefore possible to assign a wide range of functions to translate the 

design of the desired model with a set of rules detailed within a scenario. Such rules could be “a 

restriction applied to the animal species to get closer to the surface water during the dry season”. 

This example shows how numerous the possibilities are and how easily they can be used to 

implement different types of models (e.g., ABMs, SPP) to translate animal movements at 

different spatial and temporal scales while using heterogeneous data. 

 

 

Figure 5.3: This figure have been adapted from (Degenne & Lo Seen, 2016) and represent a schematic 
diagram showing an practical example of different entities in interaction. Circles are the vertices, and 
colored lines, the edges, of a graph. Lines represent spatial (blue), functional (orange), hierarchical (red) 
and social (green) relationships between the entities (Buffalo, cattle, water, landcover and herders), on 
which interaction functions can be applied. The gray boxes are examples of Ocelet language syntax to 
develop an entity and a relation.  
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5.5 Chapter summary 

 

 

 

 

 

- Animal movement ecology primarily aims to understand consequences of animal 

movements on the ecology and evolution operating across 

heterogeneous/homogeneous landscapes at individual, population, and community 

scales 

 

- Mathematical models mainly follow two paradigms dictated by the statistical 

approach and the mechanistic approach. Statistical models efficiently condense 

empirical facts to provide an understanding of a specific research hypothesis based on 

correlative relations. Mechanistic models base predictions on the understanding of 

cause–effect relationships as they formalize them into mathematical formulas or 

simulations. 

 

- The advantages and disadvantages of individual and collective movement models 

have been assessed. Self-propelled particle models provide an adequate solution as 

they avoid modelling design complexity inherent to ABMs or the important number 

of data required as input associated with statistical modelling approaches while 

reproducing animal movements at individual and group scales. 

 

- The domain specific language “Ocelet” can incorporate heterogeneous spatialized 

data by linking them within an interaction graph in the form of entities on which are 

assigned a set of particular properties. This language offers the capacity to the user to 

establish relations between complementary spatialized and temporal information 

inherent to a complex system.  
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6.0 Preamble 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter first presents, in the form of an article published in the scientific journal 

"The International Archives of the Photogrammetry, Remote Sensing and Spatial 

Information Sciences" that was also subject of an oral presentation in the framework 

of the International Society for Photogrammetry and Remote Sensing (ISPRS) 

Congress 2021 in front of peers and colleagues, the mechanistic movement model 

developed to simulate the movements of buffalo at the collective and individual scale 

in regard to the surface water availability in space and time at the specific study site 

of Hwange/Dete. In a second step, this chapter details the application of this same 

model on the other two study sites (i.e., Gonarezhou/Malipati and Kruger/Pesvi) and 

its modification with the implementation of the ability to consider landcover in 

addition to surface water to determine buffalo movements in space and time. This 

work, which was the subject of a Master 2 internship, has the particularity of testing 

the generality of the mechanistic movement model by applying and validating it in 

different W/L interface configurations.  
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ABSTRACT: 
 

In semi-arid savannas, the availability of surface water constrains movements and space-use of wild animals. To accurately 

model their movements in relation to water selection at a landscape scale, innovative methods have to be developed to i) better 

discriminate water bodies in space while characterizing their seasonal occurrences and ii) integrate this information in a 

spatially-explicit model to simulate animal movements according to surface water availability. In this study, we propose to 

combine satellite remote sensing (SRS) and spatial modelling in the case of the African buffalo (Syncerus caffer caffer) 

movements at the periphery of Hwange National Park (Zimbabwe). 

An existing classification method of satellite Sentinel-2 time-series images has been adapted to produce monthly surface water 

maps at 10 meters spatial resolution. The resulting water maps have then been integrated into a spatialized mechanistic 

movement model based on a collective motion of self-propelled individuals to simulate buffalo movements in response to 

surface water.  

The use of spectral indices derived from Sentinel-2 in combination with the short-wave infrared (SWIR) band in a Random 

Forest (RF) classifier provided robust results with a mean Kappa index, over the time series, of 0.87 (max = 0.98, min = 0.65). 

The results highlighted strong space and time variabilities of water availability in the study area. The mechanistic movement 

model showed a positive and significant correlation between observations/simulations movements and space-use of buffalo’s 

herds (Spearman r = 0.69, p-value < 10 e-114) despite overestimating the presence of buffalo individuals at proximity of the 

surface water. 
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1. INTRODUCTION 

 

In semi-arid environments such as southern African 

savannas, the availability of surface water constrains 

movements, distributions and space-use of wild animals 

(Chamaillé-Jammes et al., 2016). Having the capacities to 

monitor, through space and time, surface water availability at 

a landscape scale can potentially enable the characterization 

of wild animal movements in relation to this natural resource. 

The simulated distribution of wildlife in space and time 

resulting from the modelling of the relationship between an 

animal species and its water requirements could then be used 

to address human/wildlife coexistence related issues such as 

competition for resources inside/outside protected areas 

(Young et al., 2005), crop or livestock  destruction by 

wildlife (Valls-Fox, 2015), and risk of pathogen transmission 

between wild and domesticated species (Caron, Miguel, 

Gomo, Makaya, Pfukenyi, Foggin, Hove, & de Garine-

Wichatitsky, 2013; Miguel, Grosbois, Caron, Boulinier, Fritz, 

Cornélis, Foggin, Makaya, Tshabalala, & de Garine-

Wichatitsky, 2013).  

The advent of satellite telemetry using global positioning 

system (GPS) allows to determine temporal and spatial 

position of animals in a given area with high precision, 

temporal accuracy and position updates available in rapid 

frequency 24 hours a day (Cagnacci et al., 2010). This 

breakthrough in technology enabled to better apprehend how 

and why animals move (Kays et al., 2015). Combining this 

technology with satellite remote sensing (SRS) generates 

opportunities for studies such as natural resource suitability 

mapping (Remelgado et al., 2018) or species–environment 

interactions mapping (Sheeren et al., 2014). Indeed, SRS 

provides an array of tools and methodologies to discriminate 

environmental variables (e.g., surface water) at different 

spatial and time scales in areas with partial or no in-situ data 

coverage (Alsdorf et al., 2007). This is particularly true in the 

current context of increasing number and variety of SRS 

sensors (Paganini et al., 2018). For example, several studies 

have been combining GPS telemetry data with SRS in 

savanna environments to investigate the relationship between 

resource gradients and overlap between wild and domestic 

herbivores (F. M. Zengeya et al., 2015) or to assess the impact 

of small-scale ephemeral water sources on wildlife (Naidoo 

et al., 2020), greatly expanding our understanding of 

ecological functioning in relation to animal movement as a 

result. Since 2015, Sentinel-2 satellites provide 10m spatial 

resolution SRS images with a revisit frequency of 5 days that 

can potentially be combined with GPS telemetry data to 

conduct landscape scale ecological analysis. Applications 

and studies in the field of ecology using this technology need 

to be further developed in conjunction with spatial modelling.  

 

Spatial models of animal movement taking into account 

biotic and abiotic drivers as well as behavioral mechanisms 

have been developed in recent years (Moorcroft, 2012; 

Westley et al., 2018). Mechanistic modelling approaches can 

take into account fine-scale ecological processes (e.g., 

environmental changes and animal responses) that underlie 

ecosystem functions (i.e., watering behavior of a focal 

species) and incorporates changes in ecosystem properties 

(e.g., inter-species competition for water resources) in 

response to changes in the environment (e.g., climate and 

water resource changes) (Rastetter et al., 2003). Models that 

describe the collective motion of groups of self-propelled 

agents (Gregoire et al., 2003; Huepe & Aldana, 2008) can 

simulate herd dynamics easier than hard-to-calibrate 

individual-based models. Such ‘swarm’ models are 

parsimonious as they use few parameters (i.e., speed, 

alignment, cohesion) to mimic a group of individuals 

(Eriksson et al., 2010; Gregoire et al., 2003; Vicsek et al., 

1995b) and are a way to control the amount of self-

organization within a herd of a specific species (i.e., the 

degree of alignment and cohesion of the individuals’ 

headings). However, dynamic animal movement models that 

combine SRS with GPS telemetry in order to specifically 

characterize species-environment interactions in space and 

time at a landscape scale are lacking. Indeed, SRS derived 

environmental data are rarely used in combination with 

spatial modelling although the understanding of animal 

movement and their associated ecological mechanisms could 

benefit from such approaches (Neumann et al., 2015; 

Rumiano et al., 2020).  

 

Thus, the objectives of this study are two-fold: i) developing 

a method to map surface water at a landscape scale 

accounting for seasonal variations in a savanna type area near 

the Hwange National Park (Zimbabwe) using Sentinel-2 

satellite images, and ii) integrating the resulting surface water 

maps in a spatialized mechanistic animal movement model, 

with the example of the African buffalo (Syncerus caffer 

caffer), a keystone species for conservation and production 

systems in southern African interfaces (Cornélis et al., 2014). 

 

 

2. MATERIAL & METHOD 

 

2.1 Study area 

 

Our study area is located North West of Zimbabwe in the 

Matabeleland North Province (18°37’ S, 26°52’ E) (Figure 

6.1). More specifically, it lies at the northern periphery of 

Hwange National Park (HNP), within the Sikumi Forest Area 

(SFA) that is under the management of the Forestry 

Commission of Zimbabwe since 1968 and covers an area of 

approximately 200 km² sharing an open boundary with HNP 

(14650 km²). In this ecosystem, wildlife coexists with human 

activities such as cattle herding, firewood and thatching grass 

harvesting and tourism (Valls-Fox et al., 2018). Human 

settlements and agricultural fields are located only a few 

hundred meters away from the unfenced SFA boundaries 

(Guerbois et al., 2013). The vegetation of the area can be 

characterized as semi-arid wooded savannas with patches of 

grassland. Surface water is naturally provided by pans and 

springs, most of which dry-up during the dry season (May to 

September). Solar powered pumping stations are also present 

in the area and ensure year-round water availability. Annual 

rainfall approximates 600 mm per year in average with an 

inter-annual variability coefficient of 25 % between 1928-

2005 (Chamaillé-Jammes et al., 2006). However, drought 

severity and inconsistency of rainfall increased in the area 

during the twentieth century (Chamaillé-Jammes, Fritz, et al., 

2007).  
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Figure 6.1. Map of the study area and display of the data used 

in the study 

 

2.2 Data 

 

Telemetry data: 8 buffalo individuals have been monitored in 

the area from April 2010 to April 2014 by ultra-high 

frequency (UHF) collars (manufactured by African wildlife 

Tracking) set with a 1 hour frequency signal (Miguel, 2012; 

Valls Fox, 2015). Three groups of respectively three 

individuals (from April 20th 2010 to August 18th 2011), four 

individuals (from November 14th 2011 to September 9th 2013) 

and four individuals (from March 12th 2013 to April 15th 201) 

have been constituted. Each group represents buffaloes that 

are present at the same time in the same area (Figure 6.1).  

 

Remote sensing data: 24 Sentinel-2 satellite images of a 

complete year, corresponding to one image per month for the 

two tiles (T35KNV & T35KMV), necessary to spatially cover 

the entire area, have been downloaded in level 1C (Top Of 

Atmosphere reflectance and orthorectified images) via the 

Copernicus Open Access Hub. As no Sentinel-2 images were 

produced at the time of the telemetry data acquisition, we 

have chosen images from the year 2018 which is 

representative of the annual rainfall precipitation measured 

via Tropical Applications of Meteorology using SATellite 

data and ground-based observations (TAMSAT) compared to 

the years were the telemetry data have been collected. Only 

the images with less than 10% of cloud cover have been 

considered. As no images were cloud free for the month of 

February 2018, the series was completed by two images from 

February 2019, one per tile.  

 

Reference polygons derived from image interpretation: For 

each Sentinel-2 image and each land-use types to be 

classified (“surface water” and “other”), a set of 100 

reference polygons have been evenly vectorised over the 

study area.  

 

Surface water ground truth data: These data consist in GPS 

coordinates locating surface water collected on the field 

during previous studies conducted in the area (Guerbois, 

2012; Miguel, 2012; Valls Fox, 2015) (Figure 6.1).   

 

2.3 Methodology 

 

The methodology is structured in separate phases (Figure 

6.2). 

 

 

Figure 6.2. Flowchart combining remote sensing data with 

telemetry data to model the focal species movements 

 

2.3.1 Mapping the surface water 
 

Pre-treatment: The Sen2Cor v2.8 application (Sen2Cor, 

European Space Agency) has been used to apply atmospheric 

corrections, thus transforming L1C images to level L2A (Top 

Of Canopy) images. The 20 meters spatial resolution spectral 

bands have been resampled by bilinear interpolation to 10 

meters spatial resolution before being projected to the 

WGS84/UTM35S projection system and clipped to the study 

zone spatial extent. Following (Y. Du et al., 2016), the 

modified normal difference water index (MNDWI) and the 

normalized difference water index (NDWI) have been 

calculated and stacked with Sentinel-2 short-wave infrared 

(SWIR) band. At the end of the pre-treatment, 24 three-layer 

rasters (NDVI, MNDWI, SWIR), 12 (one per month) for each 

of the two tiles covering the study area, composed the image 

corpus used in the supervised classification process. 

 

Classification: The reference polygons (c.f. 2.2) have been 

used to clip the 24 pre-treated multi-layer raster stacks to 

create training and validation raster samples. These raster 

samples were then randomly selected with a 50/50 ratio 

towards training and validation and used in the random forest 

(RF) classifier (Breiman, 2001). The 50/50 ratio has been 

chosen as it allows a more reliable comparison between 

training and validation samples than a ratio with a lower 

proportion of validation samples (Mercier et al., 2018). RF 

algorithm was chosen because of its advantages of simple 

parametrization, reliable and rapid execution in processing 

time of large volume of variables and data and its proven 

efficiency in satellite image landcover classification 

(Pelletier et al., 2016). The RF algorithm has then been 

applied on all the 24 pre-processed multi-layer rasters to 

obtain a classification at 10 meters of spatial resolution.  
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(1) 

 

(2) 

 

 

Post-classification: For each classified raster image, the 

pixels classified as ‘water’ have been vectorised to allow the 

manually removal of the noise pixels (false positives). As the 

water surfaces reach their maximum spatial extents in March, 

when the peak precipitation occurs, the two derived 

classification images of the month of March (one per tile) 

have been selected to map the maximum water extent in the 

area. The resulted vector layers of the month of March have 

then been used as a template to mask all of the noise pixels 

present in the 11 other months of the year vector layers.  

 

Surface water classification validation: The surface water 

ground truth data (c.f. 2.2) were used to validate the 

classification when being located directly on a surface water 

polygon or within a 100m buffer area around the surface 

water polygon. Reference polygons derived from image 

interpretation (c.f. 2.2) have been used as training and 

validation references to apply a cross-validation on two 

classification accuracy indicators (i.e. overall accuracy (OA) 

and Kappa index) and test the robustness and stability of the 

classification method. 50 iterations of classification using 

randomly selected reference polygons were performed to run 

the cross-validation.  

 

2.3.2 Processing telemetry data 
 

Behavioural metrics calculation: In-situ telemetry data (c.f. 

2.2) have been used to calculate the movement’s speed of 

buffaloes. The speed value gathering 75% of the values of the 

speed distribution observed within the three buffalo groups 

(v1, v2, v3 = 0.48, 0.45, 0.46 km/h resp.) determines the 

distance v0 that buffaloes are able to cover in one model time 

step (10 minutes) in the following modelling section. In 

addition, the median distance between individuals of a same 

group has been calculated and mean/median daily distances 

covered between water points by buffalo have been 

calculated for validation.  

 

Identification of behavioural phases. African buffalo drink 

water daily (Cornélis et al., 2014). The telemetry in-situ data 

have been used in accordance to correlate the speed and the 

probability for individuals to be near the surface water every 

hour over a period of 24 hours for the entire duration of the 

telemetry data measurement (Figure 6.3). As a result, two 

distinct phases were identified: a watering phase (from 9am 

to 7pm) and a free wandering phase (from to 7pm to 9am). 

 

 

Figure 6.3. Mean probabilities of the observed buffalo to be 

nearby (< 100m, shaded zone) surface water as a function of 

the time of the day (blue line), superimposed to the median 

speed of the observed buffalo (red dashed line), the median 

interdistance (brown line) and the phi values (green line) 

 

 

 

2.3.3 Modelling the buffalo movements in space and time 
 

Choice of the modelling language: The domain specific 

language Ocelet has been used to build the animal movement 

model (Degenne & Lo Seen, 2016). This language has the 

capacity to integrate spatial entities in vector and raster 

format and create relations between them to simulate spatio-

temporal dynamics. The developed spatial model is 

composed of three main interacting spatial entities: (i) the 

buffalo individuals, (ii) the herd, (iii) the surface water.  

 

Animal modelling approach: To model buffalo movements 

in space and time, a model of collective motion of self-

propelled individuals (Gregoire et al., 2003) has been chosen, 

as it is parsimonious and mimics a wide range of movements. 

Derived from the Vicsek model (Vicsek et al., 1995) in which 

individuals interact at short distances, the model induces an 

overall cohesion of a population of individuals through space 

and time (Gregoire et al., 2003). Hence, the model highlights 

specific properties: no leader in the herd, noisy environment 

and/or communications, local interactions. In the model, 

buffalo move at discrete time steps by a fixed distance v0, 

their direction defined for each time step t as an angle 𝜃𝑖
𝑡 : 

 

𝜃𝑖
𝑡+1 = arg  [𝛼 ∑ �⃗�𝑗

𝑡

𝑗≠ⅈ

+  𝛽 ∑ 𝑓𝑖
⃗⃗⃗

𝑗
 

𝑗≠ⅈ

] +  𝜉𝑖
𝑡 

 

where 𝛼 controls the herd alignment that corresponds to the 

sum of individual’s speed vectors �⃗�𝑗  (𝑗 ≠ 𝑖), while 𝛽 controls 

the herd cohesion expressed as the sum of the vectors 𝑓𝑖
⃗⃗⃗

𝑗
 that 

link two individuals i and j, and   the noise that represents 

the uncertainty with which the direction of each individual is 

influenced by neighbouring individuals  ( being a random 

angle, comprised between - and ). The cohesion force 

𝑓𝑖
⃗⃗⃗

𝑗
(Gregoire et al., 2003) between each pair of individuals 𝑖 

and 𝑗 is expressed as follows: 

 

𝑓𝑖
⃗⃗⃗

𝑗
=  𝑒𝑖⃗⃗⃗ ⃗𝑗  {

−∞                𝑖𝑓 𝑟𝑖𝑗 <  𝑟𝑐 ,           
1

4
 
𝑟𝑖𝑗−𝑟𝑒

𝑟𝑎−𝑟𝑒
       𝑖𝑓 𝑟𝑐 <  𝑟𝑎 ,          

1                   𝑖𝑓 𝑟𝑎 <  𝑟𝑖𝑗 <  𝑟0

                   

 

where 𝑒𝑖⃗⃗⃗ ⃗
𝑗
 represents the unit vector along the segment going 

from individual i to individual j within a defined distance of 

interaction r0 and rij between individuals i and j. 𝑓𝑖
⃗⃗⃗

𝑗
 is defined 

by several parameters (Table 6.1) that are representative of 

buffalo’s herd behaviour. These values are based on 

empirical knowledge and in-situ observations.  
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Parameter Definition Value 

v0 Buffalo speed 0.46 km/h* 

𝑟0 
limit of interaction 

distance 

500m** 

𝑟𝑐 distance of repulsion 5m** 

𝑟𝑒 equilibrium distance 10m** 

𝑟𝑎 minimal distance 150m** 

 α – free 

divagation  

60 *** 

α – watering 

phase 

90 *** 

𝛽 40 *** 

 0.2 *** 

Table 6.1. Model parameters estimated from telemetry data 

(*), expert knowledge (**), or calibration (***) 

 

Calibration: To control the animal movement modeled we 

used two integrated indices calculated at each timestep t 

(Figure 6.3). The first one is the Phi order parameter (φ) that 

summarizes the averaged alignment of the herd: 

 

φt  ≡  
1

N
 |∑ eⅈθj

t

N

j=1

| (3) 

 

where N is the total number of individuals. The second 

indicator is the median interdistance that reflects the 

averaged cohesion of the herd. For the simulated data, φ and 

interdistance values have been calculated from four randomly 

selected individuals within the modeled herd of 200 

individuals to level with the observed data where four 

individuals make up the herd at most (cf. 2.2). The absolute 

differences between the observed and simulated values of 𝜑 

and interdistance have been calculated. We have then chosen 

the parameters tryptic (𝛼, 𝛽 and ) minimizing the difference 

between observations and simulations for both behavioral 

phases. The interdistance distributions being non-normal, the 

Kullback–Leibler (KL) divergence (Kullback & Leibler, 

1951) has been chosen for the distribution comparison 

purposes. The parameters 𝛽 and  have been calibrated in 

comparison with the free wandering phase interdistance 

distribution of the observed data. Once calibrated, 𝛽 and  

remained constant during the watering phase as the cohesion 

between individuals and the noise to be added to the equation 

have been considered identical for the two phases. The 𝛼 

parameter has been calibrated for each phase by minimizing 

the differences between observed and simulated 𝜑 

distributions. For testing every combination of the 

parameters tryptic (α  and β  [1:100],   [0.2:0.6]) 33 

iterations of simulation for each of the three observed herds 

(cf. 2.2) have been conducted.  

 

Model behavior: Buffalo move randomly in every direction 

during the free wandering phase (c.f. 2.3.2) following the set 

α, β and  values determined by the calibration. During the 

watering phase (c.f. 2.3.2), buffalo take the direction of the 

closest surface water only changing the α value. The α value 

is then set to 0 when the herd reaches the proximity of the 

surface water. α remains unchanged until the beginning of 

the free wandering phase when the cycle repeats itself. 

 

Validation: The centroids calculated from four randomly 

selected individuals within the simulated herd have been 

compared with the centroid derived from observed 

individuals. Spatial density rasters of the centroids have been 

computed using a quadratic kernel shape from planar 

distances with a search radius of 500m at a 10m spatial 

resolution. The model being stochastic, 50 iterations for each 

of the three herd groups, considering the entirety of their 

respective time periods (c.f. 2.2), have been conducted for the 

simulation and used to derive a final simulated median raster. 

Concerning the observed data, the same method of density 

calculation have been used for each of the three groups, also 

considering the entirety of their respective time periods, 

before deriving the final observed median raster. In the end, 

the simulated median raster has been subtracted to the 

observed median raster to measure quantitatively and 

spatially their differences. Spearman correlation coefficients 

have also been calculated from 1000 iterations of 1000 

randomly selected sample pixels on the observed and 

simulated median rasters. 

 

3. RESULTS 

 

3.1 Monthly surface water maps 

 

In total, 290 ponds have been identified through the 

classification of Sentinel-2 images time series, highlighting 

strong seasonal patterns of water spatial distribution and 

availability, with only 24 ponds detected in August, the driest 

month of the season, and 17 water ponds that have been 

detected every month of the time series, indicating that 94% 

of the surface water depend on the season. 

The mean OA value of the time series, both tiles combined, 

is 0.93 (min 0.82 – max 0.99) and the mean kappa index 

value is 0.87 (min 0.65 – max 0.98), with temporal and 

spatial fluctuations (Figure 6.4). Kappa index and OA values 

are higher for the KMV tile than for the KNV tile (Figure 6.1) 

during the dry season (May to September) but lower during 

the wet season (November to April) (Figure 6.4). 

For the validation of the water classification with the use of 

the observed data, 85% of the GPS points referencing the 

presence of surface water (c.f. 2.2) have been detected when 

applying a buffer of 100m around the polygon classified as 

surface water and 60% have been detected without applying 

a buffer.  

 

 

Figure 6.4. Kappa index and overall accuracy (OA) of water 

classification along to the year for the two Sentinel-2 tiles 

(KMV and KNV) 
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3.2 Calibration results 

 

For the free wandering phase (c.f. 2.3.2), 𝛼 has been set to 

60,  𝛽 at 40 and  at 0.2 (Table 6.1). For the watering phase 

(c.f. 2.3.2), the value of α has been set to 90, confirming the 

initial assumption that the weight of the alignment would be 

more pronounced during the watering phase when all the 

individuals take the direction of the closest surface water. 

 

3.3 Results of modelling buffalo movements in relation 

with surface water  

 

The model is stochastic as each buffalo individuals can 

choose a random direction following an angle from 0° to 360° 

at the beginning of every free wandering phases (c.f. 2.3.2). 

As a result, each simulation produced a specific centroid 

trajectory of 200 buffalo individuals that can then be 

compared to the observed centroid trajectory of 4 individuals 

for the entire observed time period or over a different time 

period (Figure 6.5). We observe that the area covered by 

simulated centroid trajectories is comparable in size to the 

area covered by the observed centroid trajectory although 

simulated centroid trajectories tend to extend further. The 

shape of simulated centroid and observed centroid 

trajectories follow the same general pattern. We note 

different round trips made within the area covered by the 

different centroid trajectories as well as recurrent use of 

specific surface water locations. 

 

Figure 6.5. Observed and simulated herd’ centroids 

trajectories comparison for a period of one month. The 

observed trajectory is symbolized by the graduated red line 

(from light red that symbolizes the beginning of the period to 

dark red that symbolizes the ending of the period). The black 

dot points represents the simulated herd’ centroids trajectory. 

 

 

Overall, the model tends to overestimate the presence of 

buffalo near water ponds and underestimate their presence in 

peripheral areas (Figure 6.6A). Even if overestimated, 

validation results demonstrate the model capacity to simulate 

the movement of buffaloes towards the surface water. Indeed, 

simulated and observed median density rasters were 

significantly correlated (Spearman r = 0.69, p-value < 10 e-

114). Most of the differences between the densities are small 

(Figure 6.6B). The model, however, fails in reproducing the 

densities observed outside the proximity of surface water 

ponds (Figure 6.6A), explaining the differences between the 

observed and simulated densities for the pixel’s density 

values superior to 0.25 (Figure 6.6B). During the free-

divagation phase, buffalo may take random paths away from 

their territory before turning around and heading back to the 

nearby surface water. This feature of the model explains why 

the territory covered by buffalo in the simulations is larger 

than that observed (Figure 6.6A). 

 

Figure 6.6. A) Difference of density map between observed 

and simulated herd’s centroids trajectories. B) Graph 

representing the distributions of pixel values in the simulated 

and observed median density rasters (c.f. 2.3.3) 

 

 

4. DISCUSSION 

 

4.1 Mapping the surface water via SRS in savanna 

 

Detecting surface water in semi-arid savanna using SRS at a 

landscape scale remains challenging due to surface water 

seasonality dynamics, landscape heterogeneity, presence of 

shades, and variety in surface water area sizes and 

morphologies (Moser et al., 2014). However, increase 

availability of free medium-resolution satellite sensors such 

as Sentinel-2 provides potentialities to characterize, via 

supervised classification of combined MNDWI and NDWI 

indices, surface water presence and dynamics at landscape 

scale (Y. Du et al., 2016). Even if most studies focusing on 

buffalo movements only use in-situ observations of surface 

water (Zvidzai et al., 2013), SRS is increasingly used (Naidoo 

et al., 2020) and can be a valuable asset in areas that are 

difficult to access and where it is almost impossible to collect 

in-situ data. The surface water classification methodology 

developed in this study is efficient (c.f. 3.1) but  may be 

limited by the spatial resolution of the SRS images used for 

input. Indeed, the use of satellite optical sensors such as 

Sentinel-2 images can show its limit when trying to detect the 

small ponds (surface<1,000 m²) or the surface water that may 

be hidden by the vegetation. The use of very-high SRS 

images in combination with hydrologic modelling (Soti et al., 

2010) or time series of medium spatial resolution could be an 

improvement. 
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4.2 The mechanistic animal movement model  

 

The mechanistic movement model, even if it requires 

significant development and implementation costs, is less 

dependent of a correlation between ecological processes and 

environment properties than an empirical model (Gaucherel, 

2018). By mathematically simulating interactions and mutual 

constraints among ecological processes, mechanistic models 

improve the ecological realism and extrapolation to different 

environments of a given model (Kearney & Porter, 2009). By 

using a swarm model to mechanistically model buffalo herd 

movements, the knowledge of individual behaviours is 

reduced but the potential to develop animal movement 

models in area where in-situ data are lacking or expensive to 

collect is increased. It is important to keep in mind that the 

model developed in this study somehow neglects individual 

characteristics as only their interactions with neighbours are 

considered. As a result,  interaction rules between 

individuals, mostly quantitative, can generate the same 

statistical variables leading to redundancy and model 

similarity (Eriksson et al., 2010). In this particular instance, 

agent-based modelling can provide alternative approaches 

but usually implies greater complexity in design (i.e., more 

rules, quantitative parameter estimation, complex sensitivity 

analyses) for tuning the model (Schulze et al., 2017), is much 

less tractable than mechanistic equation-based models and 

has a lower reproducibility potential.  

 

4.3 Limits of the designed model  

 

Only eight buffalo individuals have been monitored by 

telemetry and, at best, only four individuals were 

simultaneously recorded within the same area at the same 

time, thus partially reproducing the dynamics of a herd. 

Indeed, a buffalo herd is composed of at least 200 individuals 

in our study area (Miguel, Grosbois, Fritz, Caron, de Garine-

Wichatitsky, et al., 2017). Given the few individuals used to 

calibrate buffalo herd behaviour, proven dynamics such as 

fission-fusion within buffalo herds (Wielgus et al., 2020) are 

not reproduced by the model. Despite this limitation, the 

model has been able to coherently simulate the movement of 

200 buffalo individuals influencing each other’s direction in 

relation with surface water availability (c.f. 3.3). Monitoring 

more individuals and integrating this data in the calibration 

process should potentially strengthen the model’s capacity to 

reproduce buffalo herd dynamics. Moreover, if surface water 

directly impacts buffalo movements in space and time 

(Chamaillé-Jammes et al., 2016), other environmental 

variables may be taken into account to accurately simulate 

buffalo movements at the landscape scale (Rumiano et al., 

2020). Indeed, the temporal structuration of the model in two 

behavioural phases (cf. 2.3.2) translates an over-

simplification of buffalo ecological functioning. For 

example, times when buffalo are feeding in between the two 

behavioural phases have not been taken into account, leading 

to an underestimation of the presence of buffalo in areas 

located at the periphery of surface water. On the other hand, 

the trends of the model to overestimate the presence of 

buffalo at proximity of detected surface water may be due to 

the quality of SRS-derived surface water maps. Indeed, all 

the surface water have not been detected due to their small 

size, vegetation covering and potential draining at the time of 

satellite image acquisition, de facto reducing the choice of 

surface water locations that buffalo can reach in simulations 

compared to what happens in reality. 

 

 

4.4 Perspectives 

 

Perspectives of this first modelling study of buffalo 

movements in semi-arid savanna using SRS include the 

integration of other environmental variables (e.g., browsing 

areas, vegetation structure, …) and human infrastructures 

(e.g., agricultural fields, roads, …) to simulate more realistic 

buffalo movements. By adding more key factors influencing 

the buffalo’s movements to the model, the latter could 

potentially be adapted to the study of contacts between 

wildlife and domesticated species at the interface between 

communal and protected areas. The present study provides an 

original modelling framework allowing the integration of 

SRS-derived environmental variables to address complex 

questions on disease propagation, ecological interactions 

between species or animal management. 

 

5. CONCLUSION 

 

The ecological and animal movement model developed in 

this study demonstrated how a mechanistic model can be 

spatialized and combined with remote sensing data to 

simulate buffaloes’ movements in relation with surface water 

availability at a landscape scale. For the first time to our 

knowledge, we proposed to model buffalo at the individual 

and collective scales in heterogeneous environments by the 

use of a parsimonious swarm model. This simple and 

replicable framework can be considered as an alternative to 

the existing modelling tools in the understanding of animal 

movement in regard to water selection in several ecological 

contexts and environments.   
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6.2 Application of the buffalo movement model in two other W/L 

interfaces 

 

 

The reflections and results presented in this section are the result of a Master 2 internship 

carried out during 5 months between February and June 2021 by Victor Dufleit (Dufleit, 2021), 

then a student in the Master “Biodiversité, écologie et évolution” (BEE) specialization “Écologie 

Évolutive et Fonctionnelle” (EEF) at the University of Paris I Panthéon-Sorbonne.  

 

 

6.2.1 A movement model that also consider the landcover 

 

 

As detailed in Chapter 2, the Gonarezhou/Malipati and the Kruger/Pesvi study sites are 

ecologically, geographically and hydrologically contrasted with the Hwange/Dete study site. To 

adapt the model, initially developed to the Hwange/Dete study site configuration, to the 

Gonarezhou/Malipati and the Kruger/Pesvi study sites, changes regarding the model’s capacity 

to apprehend the hydrological spatial configuration had to be processed. The water points in the 

Hwange/Dete study site are mainly small water ponds (Figure 4.3), and the movement of 

simulated buffalo towards a selected water point by taking the centroid of the corresponding 

water polygon as the "target" works accordingly as the centroid of the polygon corresponds to 

the location of a specific water point. This is not the case for the Kruger/Pesvi and 

Gonarezhou/Malipati study sites which are crossed by rivers (Figure 2.3 and Figure 2.4). Initially, 

these rivers were represented in the original environmental data by a single polygon, whose 

centroid did not necessarily correspond to a particular water area. In addition, observation of 

GPS collar data showed that buffalo drink at different locations in the rivers. It was therefore 

chosen to divide the polygons characterizing these rivers into multiple smaller polygons, each 

with its own identifier. Watering areas in these rivers were identified from GPS records near the 

rivers, and the median size of these areas has been calculated for both study sites and used to 

divide the river polygons (Gonarezhou/Malipati, Mwenezi River: 1300m; Kruger/Pesvi, Limpopo 

River: 750m). 

The movement model detailed in the section 6.1.2 was considering the surface water as the only 

environmental driver influencing the buffalo movements in time and space. Therefore, in order 

to measure the impact of landcover on buffalo movements over time and space and improve the 

model’s reproduction of buffalo’s herd trajectories, the movement model has been modified to 

consider, in addition to the surface water, the landcover. Indeed, certain landcover classes (e.g., 
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mixed shrubland/grassland) can represent feeding areas for a herd, particularly grassy areas, as 

buffalo are browsers (Cornélis et al., 2014). It has also been shown that buffalo can feed on the 

leaves and fruits of certain trees (Cornélis et al., 2014), so shrub and forest areas were also 

considered attractive to buffalo during their feeding periods. Therefore, based on probability 

metrics extrapolated from the buffalo telemetry (Figure 6.7), the model behavioral and temporal 

structures have been modified accordingly (Figure 6.8). The buffalo day was thus redivided into 

five different phases to account for two new phases, active movement in search of a grazing area 

and resting/rumination, corresponding to the observed velocity measurements (Figure 6.7A). 

The watering phase was kept as it was, the free divagation phase was shortened to stop before 

the increase in speed observed around 3 am (Figure 6.7A). The watering phase was kept as it 

was, the free divagation phase was shortened to stop before the increase in speed observed at 

around 3 a.m (Figure 6.8). A new phase began, which was termed active movement, where the 

buffalo moved in relation to the nearby landcover (Figure 6.8). 

 

 

Figure 6.7: A) Medium speed of buffalo in relation to the probability to be at proximity of the surface water 
depending on the hour of the day. B) Probability for buffalo to be on a specific landcover in regard to the 
entire duration of the telemetry data recording period for each of the study sites.  

 

A preferential targeting system has been created (Figure 6.8) based on the methodology used in 

Step Selection Function (SSF) studies (Thurfjell et al., 2014). At each hour, a new "target" is 

determined. A buffer zone, which radius corresponds to the maximum distance d covered by the 

buffalo in one hour, is created around the position of the herd (d = 750m at Kruger/Pesvi and 

1035m at Gonarezhou/Malipati), values determined after removing outliers, (value greater than 

1.5 x quartile 0.75). All pixels of the landcover raster within this buffer then become potential 

targets. Each pixel is assigned a probability 𝑝 according to the equation (1)  
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𝑝=𝑃𝑖*𝑛𝑖 (1)

 

where 𝑃𝑖 is the preference associated with landcover i (Figure 6.7A) and 𝑛𝑖 is the proportion of 

pixels of land cover i present in the buffer. A target is then selected considering the probability 

associated with each pixel (Figure 6.7A). The buffalo then move towards this target. A new target 

is determined every hour, an interval over which observed buffalo behavior in relation to 

landcover has been extrapolated (extrapolation corresponding to the frequency of recording the 

location of the buffalo equipped with GPS collars). 

 

 

Figure 6.8: Evolution of the buffalo movement model. The later transitioned from a movement model 
considering surface water only with two behavioral phases to a movement model considering surface 
water as well as landcover with five behavioral phases.  
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The selection process occurs during the “feeding phase where buffalo keep moving while taking 

the direction of the most suitable landcover corresponding to the pre-determined preference 

probabilities (Figure 6.7B). The last phase, in which the observed speeds decrease (Figure 6.8), 

was named "rumination phase" and can be considered as a phase in which the buffalo stop to 

rest and ruminate. In this phase, the landcover on which the herd is standing is checked every 

hour. If the herd is on a landcover considered favorable (Mixed shrubland/grassland, Shrubland, 

Mixed shrubland/woodland), the α of the model that regulate the alignment of the individuals 

within the collective is set to 0, forcing the buffalo movements to be governed only by the noise 

η and the cohesion β. As the result, the herd's movements are restricted to a relatively small area 

and is almost static in space. If, at the time of the landcover check, the herd is on unfavorable 

ground cover (e.g., Woodland, Other) the buffalo behave similarly to the free divagation phase. 

They continue their random movements in their directions until they reach a favorable 

landcover. 

With these modifications, the movement model is able to consider both the availability of the 

water resource and its spatial distribution, as well as the different types of landcover 

corresponding to the buffalo's preferences in offering potential food sources and suitable areas 

for resting and rumination. 

 

 

6.2.2 Application in Gonarezhou/Malipati and Kruger/Pesvi 

 

 

Looking at one trajectory output simulated in the Kruger/Pesvi Study site as an illustration 

example, the movement model that only considers surface water (Figure 6.9A - map located in 

the middle) follows the model’s behavioral phases  implemented (Figure 6.8). The trajectory 

starts in a random direction and then move in the direction of the surface water at the beginning 

of the watering phase. Once the surface water reached, the buffalo slow down and stop until the 

next free roaming phase begins. At this point, a new random direction is given to the buffalo’s 

individuals until the next watering phase begins. The simulated trajectory is very straight for 

this model, giving a strong impression of going back and forth (Figure 6.9A – map located in the 

middle). Concerning the trajectory output simulated by the movement model considering the 

surface water as well as the landcover (Figure 6.9A – map located in the right), i) the free 

divagation and watering phases trace rectilinear trajectories comparable to the model 

considering only the surface water, ii) the active movement phase with landcover preference 

presents relatively scattered clusters of points with some backtracking depending on the 
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landcover preferences and the stochastic buffalo’s locations, and iii) the rumination phase is 

characterized by a cluster of points in a restricted area when the buffalo are on a landcover that 

is favorable to them. In this specific simulation (Figure 6.9A – map located in the right), the 

buffalo are attached to a much smaller geographic area than with the movement model 

considering only the surface water and the trajectory produced by the model considering surface 

water and landcover is more consistent with the observed trajectory (Figure 6.9A – map located 

in the left). 

 

 

Figure 6.9: A) Maps of the buffalo herd centroids observed and simulated trajectories at the Kruger/Pesvi 
study site, for one iteration (concerning the simulations) over a period of 15 days. B) Heat maps of density 
differences (simulated-observed) for Gonarezhou/Malipati (above) and Kruger/Pesvi (below) and the 
observed and simulated MCP obtained with the two different buffalo movement models. The model 
considering surface water only (on the left) and the model considering surface water as well as landcover 
(on the right).   

 

The MCPs simulated by the movement model considering only the surface water (Figure 6.9B – 

maps located in the left) and the movement model considering the surface water as well as the 
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landcover (Figure 6.9B – maps located in the left) are close to those observed (Figure 6.9B), 

although in Gonarezhou/Malipati, an area unexplored by the simulated buffalo in the south-east 

can be seen (Figure 6.9B – maps located in the top). We also observe that the high values of 

over-estimations are not very widespread in space for all the simulations. All the movement 

models overestimate the density of buffalo herds at the centroids of the water polygons used, 

this is particularly true at Gonarezhou (Figure 6.9B – maps located in the top). Herd density is 

underestimated in some Mixed shrubland/grassland and woodland areas south of the river in 

Kruger/Pesvi (Figure 6.9B – maps located in the bottom). This underestimation persists with the 

movement model considering the surface water as well as the landcover. The simulated MCP 

have an area closer to the observed one for the model considering the surface water and the 

landcover. This observation is related to the trajectories simulated by this model (Figure 6.9A – 

map located in the right), resulting in an increase of the overall values of simulated densities 

and strong densities over-estimations more extensively spread in space for the two study sites 

(Figure 6.9B – maps located in the right). 

 

The average ρ ranges varies from 0.80 to -0.05 for the "water" model with the maximum for 

Kruger/Pesvi group 1 and the minimum for Gonarezhou/Malipati groups 1 and 3 (Table 6.2). For 

the "water/landcover" model, mean ρ values range from 0.72 to -0.26 (Table 6.2) maintaining 

the same hierarchy in values as for the "water" model. It should be noted that at the Kruger/Pesvi  

study site, the higher the simulation time the higher the average ρ (Table 6.2).  

 

  “water” model “water/landcover” model 

 Simulation time ρ̅ 𝑝 𝑣𝑎𝑙𝑢𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ρ̅ 𝑝 𝑣𝑎𝑙𝑢𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅  

K1 455 days 0,66 <0,05 0,53 <0,05 

K2 52 days 0,15 <0,05 -0,14 <0,05 

K3 54 days 0,38 <0,05 -0,03 0,06 

K4 462 days 0,66 <0,05 0,53 <0,05 

K5 568 days 0,78 <0,05 0,62 <0,05 

K6 264 days 0,80 <0,05 0,72 <0,05 

G1 871 days -0,05 <0,05 -0,26 <0,05 

G3 401 days 0,02 0,11 -0,19 <0,05 
 

Table 6.2: Table that present the results of the Spearman correlation tests for the "water" and "water/ 
landcover" models. These tests were performed with the observed and simulated median density raster 
obtained considering the entirety of the simulation duration for each buffalo groups (K corresponding to 
the Kruger/Pesvi buffalo groups and G corresponding to the Gonarezhou/Malipati buffalo groups).  

 

Despite the more realistic simulated trajectories produced by the landcover model in terms of 

morphology (because they are more random and less rectilinear) and in terms of spatial 
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representation (because the produced MCP are less extensive), the densities produced are less 

faithful to observed densities (Figure 6.9B). However, these results are strongly linked to the 

spatial distribution of natural resources (e.g., water surface and landcover) and to the 

geographical location of the starting point of the simulated trajectories. It is also important to 

note that the model is stochastic and that the correlations between observed and simulated 

densities vary strongly from one iteration to the next. 

 

 

6.3 Chapter summary 

 

 

- An existing classification method of satellite Sentinel-2 time-series images has been 

adapted to produce monthly surface water maps at 10 meters spatial resolution.  

 

- The use of spectral indices derived from Sentinel-2 in combination with the short-

wave infrared (SWIR) band in a Random Forest (RF) classifier provided robust results 

with a mean Kappa index, over the time series, of 0.87 (max = 0.98, min = 0.65). The 

results highlighted strong space and time variabilities of water availability in the study 

area 

 

- The resulting water maps have been integrated into a spatialized mechanistic 

movement model based on a collective motion of self-propelled individuals to 

simulate buffalo movements in response to surface water at the Hwange/Dete study 

site.  

 

- The mechanistic movement model showed a positive and significant correlation 

between observations/simulations movements and space-use of buffalo’s herds 

(Spearman r = 0.69, p-value < 0.05) despite overestimating the presence of buffalo 

individuals at proximity of the surface water. 

 

- The mechanistic movement model only considering the surface water have been 

replicated and tested in the two other study sites.  
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- The mechanistic movement model has been modified with the implementation of 

the ability to consider landcover in addition to surface water to determine buffalo 

movements in space and time.  

 

- The genericity of the modified mechanistic movement model has been tested by 

applying and validating it in different W/L interface configurations (i.e., 

Gonarezhou/Malipati and Kruger/Pesvi). 

 

- More realistic simulated trajectories have been produced by the mechanistic 

movement model considering the surface water and the landcover in terms of 

morphology (because they are more random and less rectilinear) and in terms of 

spatial representation (because the produced MCP are less extensive). 

 

- The ρ values range from 0.72 to -0.26, maintaining the same hierarchy in values as 

for the previous mechanistic movement model.  
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Spatial modelling of contacts between 
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7.0 Preamble 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter details, in the form of a scientific paper, not yet submitted, the 

mechanistic model for simulating buffalo-cattle contacts at the three study sites 

considered in this thesis. The objective is to better understand potential contacts 

between domestic and wildlife at three different wildlife/livestock interfaces by 

combining remote sensing and spatial modeling to simulate the movements of African 

buffalo (Syncerus caffer caffer) and domestic cattle (Bos taurus, Bos indicus) at the 

landscape scale. The movement and contact model presented in this chapter 

synthetizes all the methodological and thematic steps presented in the previous 

chapters of this manuscript. 

The submission of the article is planned by the end of 2021 knowing that the article 

has only been reviewed by the thesis supervisors and not by all the associated co-

authors. For now, The open-access Ecography journal 

(https://onlinelibrary.wiley.com/journal/16000587?tabActivePane=undefined) 

is targeted for publication. Ecography is owned by the Nordic Society Oikos (NSO), 

and publishes papers focused on broad spatial and temporal patterns, particularly 

studies of population and community ecology, macroecology, biogeography, and 

ecological conservation. It is particularly suited to communicate the developed model 

to the ecologist scientific community. 

 

https://onlinelibrary.wiley.com/journal/16000587?tabActivePane=undefined%20
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7.1 The article 

 

Research  

 

Spatial modelling of contacts between wildlife and livestock 
in Southern Africa 
 
Florent Rumiano, Pascal Degenne, Alexandre Caron, Cédric Gaucherel, Eve 
Miguel, Michel de Garine-Wichatitsky, Simon Chamaillé-Jammes, Hugo 
Valls-Fox, Hervé Fritz, Annelise Tran 
 

F.Rumiano (https://orcid.org/0000-0001-8615-7161)    (florent.rumiano@cirad.fr), P. 
Degenne (https://orcid.org/0000-0003-0062-8511) , A. Caron (https://orcid.org/0000-0002-5213-3273), 
C. Gaucherel (https://orcid.org/0000-0002-4521-8914), M. deGarine Wichatitsky 
(https://orcid.org/0000-0002-5438-1473) , S. Chamaillé-Jammes (https://orcid.org/0000-0003-0505-
6620), H. Valls-Fox (https://orcid.org/0000-0001-7482-1205), H. Fritz (https://orcid.org/0000-0002-
7106-3661), A. Tran (https://orcid.org/0000-0001-5463-332X)  
 
 
The open interfaces between protected areas and rural communal lands in southern Africa are 
characterized by semi-arid savannas where wildlife-livestock interactions vary in frequency and intensity. 
In a context of increasing anthropization, the multiplication of these interactions may facilitate human-
wildlife conflicts such as competition for natural resources, livestock predation, crop destruction by 
wildlife, and/or the risk of pathogen transmission between wild and domestic species. To better 
understand potential contacts between domestic and wildlife at these wildlife/livestock interfaces, we 
combine remote sensing and spatial modeling to simulate the movements of African buffalo (Syncerus 
caffer caffer) and domestic cattle (Bos taurus, Bos indicus) at the periphery of three national parks in 
Zimbabwe and South Africa. Surface water and vegetation, the primary determinants of movement for 
these ungulate species, have been classified and mapped from a time series of medium resolution Sentinel-
2 satellite images. The resulting classification maps were then integrated into a mechanistic mathematical 
model of collective movement of individuals interacting in relation to one another according to group 
cohesion and alignment. This stochastic model allowed the simulation of herd movements and the 
location of contact areas and their seasonal dynamics in space and time. The model outputs were 
compared to GPS collar location data of 34 individuals (16 buffalo and 18 cattle). The results show a high 
spatial and seasonal variability of contacts between buffalo and cattle in the three study areas, and a 
landscape scale correspondence between the modeled and observed contact area spatial extensions 
(distance between centroids of the observed and simulated contact areas are strictly inferior to 3.1 km). 
These initial results illustrate the potential of spatial modeling combined with remote sensing to 
generically simulate animal movements at the landscape scale while offering opportunities to manage 
these interfaces through, for example, a coupling with epidemiological modelling.  

 
Keywords: remote sensing, spatial modelling, mechanistic model, animal movement, surface water, 
landcover, African buffalo, cattle, savanna, wildlife-livestock interface 

Introduction 

 
The current footprint of human societies and their 
extractive activities increase the need for natural 
resources while producing the fragmentation of 

natural areas (A. Hansen & Defries, 2007). This 
phenomenon particularly pregnant in developing 
countries de facto conditions humans and their 
domestic animals to live more and more in 
proximity to natural areas and wildlife (Wittemyer 
et al., 2008), thus multiplying the number of 

https://orcid.org/0000-0001-8615-7161
mailto:florent.rumiano@cirad.fr
https://orcid.org/0000-0002-5213-3273
https://orcid.org/0000-0002-4521-8914
https://orcid.org/0000-0003-0505-6620
https://orcid.org/0000-0003-0505-6620
https://orcid.org/0000-0001-7482-1205
https://orcid.org/0000-0002-7106-3661
https://orcid.org/0000-0002-7106-3661
https://orcid.org/0000-0001-5463-332X
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wildlife-livestock interfaces (WLI). WLI are 
defined as the physical space in which wild and 
domestic species, as well as humans, overlap in 
range and potentially interact (Caron et al., 2021). 
These interactions occurs between natural 
ecosystems as defined by Ostrom (2009). Within 
WLI, wild and domestic animal movements 
between land uses (e.g., communal land and 
protected areas) determine the spatial overlap and 
the potential direct and indirect contacts between 
species (Ferguson & Hanks, 2012). From an 
anthropocentric perspective, the so-called 
“human-wildlife conflicts” (HWC) that potentially 
constitute threats to human agricultural activities 
as a whole and human life in particular (Madden 
2004) are characterized by events such as livestock 
depredation by carnivores (Eklund et al., 2017), 
crop destruction by wildlife (Gross et al., 2018), 
increased competition for shared natural resources 
(Treves et al., 2006), hunting or illegal poaching 
(Warchol et al., 2003), and disease transmission 
(Decker et al., 2010). Given the complexity of HWC 
locally, WLI are in the epicenter of economic, 
social, health and conservation issues (Frank, 
Glikman, and Marchini 2019), conducting 
stakeholders, including scientists to design policy-
relevant pathways toward human–wildlife 
coexistence (König et al., 2020) and coadaptation 
(Carter, Baeza, and Magliocca 2020). Indeed, 
livestock husbandry and subsistence agro-
pastoralism prevail in Southern African WLI, 
(Caron, Miguel, Gomo, Makaya, Pfukenyi, Foggin, 
Hove, & Garine-Wichatitsky, 2013), impacting 
conservation within these multiple use areas (Fynn 
et al., 2016). In Southern Africa, WLI are mainly 
located in semi-arid savannas in which the spatial 
distribution and availability of natural resources 
(e.g., forage and surface water, …) are conditioned 
by seasonal variations and the footprint of human 
activities as well as agricultural expansion 
(Chagumaira et al., 2016). This spatial distribution 
of natural resources influences, in turn, how animal 
use a landscape and the abundance of animal 
species (G. Wang et al., 2006). In Southern African 
savannas, forage and surface water become 
resources that cannot be substituted during the dry 
season (Valls-Fox, De Garine-Wichatitsky, et al., 
2018) and, as a result, their respective availability 
becomes a key determinant of animal distribution 
at the landscape scale (Ogutu, Reid, et al., 2014). In 
Southern African WLI, competition for natural 
resources occurs in areas suitable for the 
development and occurrence of these resources 
(Chamaillé-Jammes, Valeix, and Fritz 2007) and 
can potentially lead to depletion effects as they are 
often regrouped in delimited areas for a limited 
timeframe (Shrader et al., 2008).  

African buffalo (Syncerus caffer caffer) and 
domestic cattle (Bos taurus, Bos indicus), keystone 
animal species for conservation and production 
systems in Southern Africa, are large bovid species, 
principally grazers with similar body size, that rely 
on and compete for the same natural resources 
when sympatric (Fynn et al., 2016; Odadi et al., 
2011). Given the particular context occurring in 
southern African WLI, it is crucial to understand 
the drivers of resource selections by wild and 
domesticated animal species to mitigate HWC, 
including the risk of pathogen transmission 
(Miguel, Grosbois, Caron, Boulinier, Fritz, Cornélis, 
Foggin, Makaya, Tshabalala, & Garine-Wichatitsky, 
2013) by characterizing the spatiotemporal 
distribution of natural resources (Wiens, 1989), 
animal movements patterns (Benhamou, 2014) as 
well as their respective foraging and watering 
decisions (Owen-Smith, Fryxell, et Merrill 2010; 
Valls-Fox et al. 2018). 
Spatial models that simulate animal movements at 
a landscape relative to biotic and abiotic drivers 
and including behavioral mechanisms have 
recently been the subject of several studies 
(Westley et al., 2018). In conjunction with the 
development of spatialized animal movement 
models, the democratization of the combined use 
of telemetry using global positioning system (GPS) 
(Kays et al., 2015) and satellite remote sensing (SRS) 
(Remelgado et al., 2018) in animal movement 
ecology further strengthens the potential to 
develop mechanistic model approaches that 
reproduce fine-scale ecological processes (e.g., 
landscape scale animal movements and inter-
individual contacts) and underlie ecosystem 
functions (e.g., watering and foraging behavior of a 
focal species) in response to changes in the 
environment (e.g., seasonal variabilities of natural 
resources). In that regard, a spatialized mechanistic 
mathematical model simulating buffalo 
movements in relation to surface water seasonal 
availability characterized by SRS at the landscape 
scale (spatial resolution of 10 meters) have been 
recently developed in a WLI in Zimbabwe 
(Rumiano et al., 2021). 
Considering the overgrowing risk of disease 
transmission between wildlife and livestock (and 
potentially humans) (Miguel, Grosbois, Caron, 
Boulinier, Fritz, Cornélis, Foggin, Makaya, 
Tshabalala, & Garine-Wichatitsky, 2013) induced 
by their direct or indirect contacts in space and 
time, this study proposes 1) to build on the buffalo 
movement model developed by Rumiano et al. 
2021,  to include cattle movements according to the 
collective motion of groups of self-propelled 
individuals (Gregoire, Chate, and Tu 2003) as well 
as to consider landcover in addition to the surface 
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water as environmental drivers of animal 
movements, 2) to use this spatialized mechanistic 
mathematical model to apprehend and discuss the 
role played by the environmental variables that 
potentially condition the frequency and intensity 
of the two focal animal species contacts in three 
different WLI located at the periphery of protected 
areas in Zimbabwe and South Africa.  

 

Method 

 
Study area 
 
The three study sites (Figure 7.1) are located on the 
periphery of protected areas in Zimbabwe (i.e., 
Hwange National Park (HNP) referred in the article 
as “Hwange/Dete”, Gonarezhou National Park 
(GNP) referred in the article as 
“Gonarezhou/Malipati” and in South Africa (i.e., 
Kruger National Park (KNP) referred in the article 
as “Kruger/Pesvi”) where conflicts between human 

communities and wildlife are increasing (Mutanga 
et al., 2017;Guerbois, Chapanda, and Fritz 2012) 
and where boundaries between protected areas and 
communal areas are often permeable (i.e., river, 
railroad, or road) and without barriers. For the 
three study sites, human activities in communal 

areas outside national parks essentially consist of 
subsistence farming with small-scale livestock 
production and rainfed agriculture (from 
November to March). Small herds are bred 
extensively with on average 12 heads of cattle and 
small ruminants (goats and a few sheep) per herder 
(Miguel, Grosbois, Caron, Boulinier, Fritz, Cornélis, 
Foggin, Makaya, Tshabalala, & Garine-Wichatitsky, 
2013). In these areas, domestic and wild animal 
movements between natural and anthropogenic 
compartments are frequently observed in both 
directions (Chigwenhese et al., 2016;Dube et al., 
2010) and contacts between Africa buffalo and 
domesticated cattle have been observed (Miguel, 
Grosbois, Caron, Boulinier, Fritz, Cornélis, Foggin, 
Makaya, Tshabalala, & Garine-Wichatitsky, 2013) 
despite the fact that incursions of livestock into 
protected areas are strictly forbidden in Zimbabwe 
and in South Africa (Chigonda, 2018).  The 
intensity and frequency of contacts varied among 
the study sites (represented by the width of the 
arrows in Figure 7.1), emphasizing different buffalo 

and cattle contact configurations. Based on the 
statistical analyses developed in a previous study 
(Miguel, 2012), the rate of cattle incursion inside 
protected areas (expressed as a percentage of the 
overall time recorded by the GPS collars placed on 
targeted cattle) was 6.9% in Hwange/Dete, 3% in 

Figure 7.1: Location maps of the three study areas. Only the contact areas between buffalo and cattle are 
represented. 
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Gonarezhou/Malipati and 0.2% in Kruger/Pesvi. 
Concerning the rates of buffalo incursion into 
communal areas, it was of 0.05% in Hwange/Dete, 
7.46% in Gonarezhou/Malipati and 58% in 
Kruger/Pesvi.  
The three study sites are located in semi-arid 
climate with annual mean temperatures of 22°c 
and mean annual precipitation ranging from 450 to 
650 mm for Hwange/Dete (Chamaillé-Jammes, 
Valeix, and Fritz 2007) and mean annual 
temperatures ranging from 25°c to 27°c and mean 
annual precipitation  ranging from 300 to 600 mm 
in both Gonarezhou/Malipati and Kruger/Pesvi. 
On average and excluding climatic anomaly (e.g., 
drought), the dry season occurs from April-May to 
October-November and the wet season from 
November to March for the three study sites. The 
vegetation found in these areas is typical of a highly 
heterogeneous dystrophic wooded savanna 
(Arraut, Loveridge, Valls, et al., 2018). The woody 
cover increases with distance from water pans 
(Chamaillé-Jammes et al., 2009) and the open 
grassland is located along drainage lines. In 
Hwange/Dete, the surface water is mainly 
composed of seasonal natural pans of different 
sizes widely distributed across the area 
complemented with artificial pans fed by 
underground water pumping stations during the 
drier months. In Gonarezhou/Malipati and 
Kruger/Pesvi, the surface water is composed of 
river systems having water along their entire 
courses during the wet season. During the dry 
season, intermittent river branch inside the 
riverbed as well as ephemeral rain fed natural pans 
located on sandstones are present and constitute  a 
primary water resource for wild and domestic 
animal species alike.  
 

Telemetry data 
 
Ultra-high frequency Global Positioning System 
(GPS) collars manufactured by African Wildlife 
Tracking have been used in previous studies 
(Miguel, 2012; Valls Fox, 2015) to monitor the 
movements and contacts between selected cattle 
and buffalo herds simultaneously in the three sites 
with a one hour frequency. In total, 10 cattle and 4 
buffalo individuals were monitored in 
Hwange/Dete, while 4 cattle and 8 buffalo 
individuals as well as 4 cattle and 4 buffalo 
individuals were monitored at Kruger/Pesvi and 
Gonarezhou/Malipati respectively (Appendix 1). 
The data (Appendix 1) have been pre-processed in 
order to derive metrics allowing the design and 
validation of the movement model used in this 

study. Pre-processing processes included 1) the re-
projection of the entire telemetry dataset, the  
correction of outlier data and the harmonization of 
time-delays, all following the methodology 
developed by (Wielgus, 2020), 2) the grouping of 
buffalo and cattle telemetry data by locations and 
time of recording for each of the three study sites 
to derive herd entities sharing the same location at 
the same time (Appendix 1).  
 

Remote sensing data 
 
72 Sentinel-2 satellite images (Drusch et al., 2012) 
acquired in 2018 and covering the three study sites 
have been downloaded in level 1C which provides 
Top of Atmosphere reflectance and orthorectified 
images (Appendix 2). The Sen2Cor v2.8 application 
(Sen2Cor, ESA, http://step.esa.int/main/third-
party-plugins-2/sen2cor/) has been used to apply 
the atmospheric corrections, thus transforming 
L1C images to level L2A (Top of Canopy) images. 6 
tiles were necessary to cover the entire study zone 
spatial extent (Appendix 2). The dates of the image 
selected represent days with less than 10% of cloud 
cover for the entire year 2018 with one image per 
month for each tile. For the month of February 
however, no images were cloud free in 2018. As a 
result, Sentinel-2 satellite images from February 
2019 have been selected instead (Appendix 2). The 
20 meters spatial resolution spectral bands of the 
L2A Sentinel-2 images have been resampled by 
bilinear interpolation to 10 meters spatial 
resolution before being projected to the 
WGS84/UTM35S and WGS84/UTM36S projection 
systems and clipped to correspond to the 
respective spatial extent of the three study sites. 
 

Discrimination of surface water 
 
The discrimination of the surface water 
corresponds to the first step of a three steps 
classification process (Figure 7.2) 

 
Classification: The calculation of the modified 
normalized difference water index (MNDWI) and 
the normalized difference water index (NDWI) 
derived from sentinel-2 have been used to classify 
the surface water, following Du et al. 2016. The 
supervised classification using the Random Forest 
(RF) algorithm have then been applied using the 
methodology developed in Rumiano et al. 2021. 
After the application of the RF algorithm, three 
time series (one for each of the study site) of 
classified surface water at 10 meters of spatial 
resolution have been obtained. 

Figure 7.2: Classification general process 
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Post-classification: For each classified raster image, 
the pixels classified as “surface water” have been 
vectorized to allow the removal manually of the 
noise pixels (false positives). As the water surfaces 
reach their maximum spatial extents in March, 
when the peak precipitation occurs, the 
classification images of the month of March (one 
per tile) have been selected to map the maximum 
water extent for each of the three study sites. The 
resulted vector layers of the month of March have 
then been used as a template to mask all of the 
noise pixels present in the 11 other months of the 
year vector layers. 
 
Classification validation: The three sets of reference 
polygons have been used as training and validation 
references to apply a cross-validation on two 
classification accuracy indicators (i.e., overall 
accuracy (OA) and Kappa index) and test the 
robustness and stability of the classification 
method. 50 iterations of classification using 
randomly selected reference polygons were 
performed to run the cross-validation for each of 
the three study sites. 
 

Classification of the landcover 
 
The classification of the landcover is divided into 
two steps that correspond respectively to the 

agricultural area classification (step 2) and the 
landcover classification per se (Step 3) that take 
part of the three step general classification process 
(Figure 7.2) 

 
Classification of agricultural areas: A combination 
of Normalized Difference Vegetation Index 
(NDVI), Enhanced Vegetation Index (EVI) and Soil 
Adjusted Vegetation Index (OSAVI) (Fern et al., 
2018) for the month of March (month of the year 
corresponding to the peak of the wet season and 
where the contrast between the vegetation and the 
bare soil is the strongest) and derived from 
Sentinel-2 images have been realized. These 
spectral indexes have been considered for the 
agricultural areas supervised classification as they 
have been used extensively and proved to be 
efficient in previous studies to characterize 
agricultural areas using medium spatial resolution 
SRS images (Bellón, Bégué, Lo Seen, De Almeida, et 
al., 2017; Y. Zhao et al., 2020). A supervised 
classification using a set of 50 reference polygons 
for the two classification classes (i.e., “agriculture 
areas” and “other”) to derive data from the 
combination of the three produced spectral 
indexes images for each of the three study sites has 
been integrated into a RF algorithm. The reference 
polygons have been extrapolated from photo-
interpretation of a very-high SRS image (i.e., 
Pleïades) and have been split into a 50/50 ratio to 
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constitute a reliable comparison between training 
and validation samples (Mercier et al., 2019). The 
resulting classification raster have then been 
vectorized to manually detect and remove false 
positives.  
 
Classification of other vegetation areas: Afterwards, 
three Sentinel-2 red-edge bands (i.e., band 5, band 
6 and band 7 that are located between the red and 
the Near Infrared of the electromagnetic spectrum) 
have been masked with manually digitalized 
polygons of road networks as well as with 
vectorized surface water and agricultural area 
polygons resulting from the two previous 
classifications. It has been established that the red-
edge bands inclusion into classification scheme 
positively impacts the characterization of 
vegetation classes and improve overall 
classification accuracies (Schuster, Förster, and 
Kleinschmit 2012). The three produced masked 
raster have then been used to classify five classes of 
vegetation and landscape characteristic (i.e., 
woodland, mixed-woodland-shrubland, shrubland, 
mixed shrubland-grassland, bare soil) for each of 
the three study sites via a pixel-based non-
supervised K-means clustering classification 
method (Burrough, van Gaans, and MacMillan 
2000).  
 
Post-classification: For each of the study sites, the 
produced raster from the non-supervised 
classification have been combined with their 
respective surface water, agricultural area, and 
road network raster to form a final landcover 
classification raster of an eight elements typology 
(Figure 7.1) at 10 meters of spatial resolution.  
 
Classification validation: To validate the accuracy 
of the agricultural area classifications, the same 
method as the surface water have been used (as 
described in the previous section). Concerning the 
validation of the non-supervised classification of 
the vegetation and landscape characteristic, three 
sets of reference polygons (one for each study site) 
comprising of 50 reference polygons per class have 
been manually digitalized. The digitalization has 
been done “a priori” before the classification by 
photo-interpretation of a very high satellite image 
(i.e., Pleïades) for the three study sites to 

compensate for the lack of an in-situ landscape 
description database. The reference polygon 
datasets have then been used to calculate the OA 
and the Kappa index of the realized vegetation 
classifications. 
 

A spatialized movement model 
 
Choice of the modelling language: The developed 
spatial model is composed of six main interacting 
spatial entities: (i) the buffalo individuals, (ii) the 
buffalo herd, (iii) the cattle individuals, (iv) the 
cattle herd, (v) the surface water, (vi) the 
landcover. The domain specific language Ocelet 
(Degenne & Lo Seen, 2016) has been used to 
specialized the model and create the relations 
between the different spatial entities of the model.  
 
Animal modelling approach: A model of collective 
motion of self-propelled individuals (Gregoire et 
al., 2003) has been chosen to model the two focal 
species movements at the individual and herd 
scales as developed in Rumiano et al. 2021. In this 
particular model, all individuals move from their 
starting location to the next at discrete time steps 
by a fixed distance v0, their direction defined for 

each time step t as an angle 𝜃𝑖
𝑡 : 

 

𝜃𝑖
𝑡+1 = arg  [𝛼 ∑ �⃗�𝑗

𝑡

𝑗≠ⅈ

+  𝛽 ∑ 𝑓𝑖
⃗⃗⃗

𝑗
 

𝑗≠ⅈ

] +  𝜉𝑖
𝑡  

 
See Rumiano et al. 2021 for more details 
concerning the equation (1). The herd’s cohesion 

force 𝑓𝑖
⃗⃗⃗

𝑗
 that link two individuals i and j and that is 

regulated by 𝛽 is expressed as follows: 
 

𝑓𝑖
⃗⃗⃗

𝑗
=  𝑒𝑖⃗⃗ ⃗

𝑗
 {

−∞                𝑖𝑓 𝑟𝑖𝑗 <  𝑟𝑐 ,           
1

4
 
𝑟𝑖𝑗−𝑟𝑒

𝑟𝑎−𝑟𝑒
       𝑖𝑓 𝑟𝑐 <  𝑟𝑎 ,          

1                   𝑖𝑓 𝑟𝑎 <  𝑟𝑖𝑗 <  𝑟0

  

 

Refer to Rumiano et al. 2021 for more details. 𝑓𝑖
⃗⃗⃗

𝑗
 (2) 

is defined by several parameters (Table 7.1) that are 
representative of buffalo and cattle’s herd behavior 
. These values are based on empirical knowledge 
and in-situ observations.  

 
 
 

Parameters Definition 
Values 

Buffalo 

Values 

Cattle 
v0 Buffalo speed 0.46 km/h* 0.46 km/h* 

𝑟0 limit of interaction distance 500m** 300m** 

(1) 

(2) 
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𝑟𝑐  repulsion distance 5m** 0.5m** 

𝑟𝑒  equilibrium distance 10m** 5m** 

𝑟𝑎 minimal distance 150m** 150m** 

α – free divagation alignment regulation 1.2*** 1.2*** 

α – toward water and 

kraal phases 
aligment regulation 1.6*** 1.6*** 

𝛽 cohesion regulation 1*** 1*** 

 noise regulation 0.4*** 0.4*** 

Table 7.1:  Model parameters estimated from telemetry data (*), expert knowledge (**), or calibration (***)

Buffalo and cattle contact model configuration 
and behavior 
 
The developed buffalo and cattle contact model is 
constituted of two main blocs, the buffalo 
movement model, and the cattle movement model 
(Figure 7.3), that interact with one another and 
determine the geographical location, frequency 
and temporality of the buffalo and cattle contacts 
at the three studied WLI interfaces.  
The buffalo movement model is divided into five 
phases per 24-hour period (Figure 7.3) that are 
based on buffalo behavior (i.e., median speed per 
hour) derived from telemetry data (Rumiano et al., 
2021) (Appendix 3). The first phase corresponds to 
the “rumination phase” where 𝛼 = 0 (buffalo 
movements are only influenced by the cohesion of 
individuals, which is equivalent to standing still) 
when each individual is located over a suitable 
landcover determined by their preferences 
(Appendix 4) or keep moving (𝛼 = 1.6) until they 
reach a suitable landcover. The second phase is the 
“to water” phase where buffalo move towards the 
closest surface water from the buffalo’s herd 
centroid position at the beginning of the phase. 
Once buffalo individuals are within 10 meters of the 
targeted surface water point, the “watering phase” 
starts and 𝛼 take the zero value. At the end of the 
“watering phase”, the “free wandering” phase where 
buffalo individuals randomly move across space 
occurs to signify their departure from the surface 
water point towards their feeding areas. The 
“feeding phase” starts with a selection of suitable 
landcover determined in the same fashion as the  
“rumination phase” to signify areas suitable for 
feeding. After the “feeding phase”, the buffalo starts 
their “rumination phase” once again, thus marking 
the end of a daily cycle that repeats itself for the 
duration of the simulation.  
The cattle movement model is constituted of five 
phases per 24-hour period (Figure 7.3) that are 
based on cattle behavior (i.e., median speed per 

hour) derived from telemetry data (Appendix 3). 
The first phase corresponds to the free wandering 
phase where cattle roam randomly across the space 
and outside the kraal (local name for an enclosure 
where herders keep their cattle during the night 
close to their homestead, to prevent predation and 
theft) from 6am to 8am. During the first phase, 
outside the cropping seasons (from May to 
November in Hwange/Dete, from May to October 
in Kruger/Pesvi and from July to December in 
Gonarezhou/Malipati) (Miguel, 2012; Perrotton et 
al., 2017), cattle are allowed to move in agricultural 
areas to feed on secondary agricultural products. 
On the other end, during the cropping season 
(from December to April in Hwange/Dete, from 
November to April in Kruger/Pesvi and from 
January to June in Gonarezhou/Malipati), cattle are 
herded away from growing fields. To cope with this 
herder’s decision, the selection of landcover pixels 
occurs within a polygon. This polygon represents 
the extent of a buffer corresponding to the average 
maximum daily travelled distance from kraal by 
cattle cropped by a determined angle interval 
polygon (i.e., -60° to +60°) that follows the 
direction of 𝑖𝑗⃗⃗⃗ (speed vector of the cattle’s herd) 
(Figure 7.3). The second phase starts at 8am, when 
cattle move towards the selected surface water 
point. The selection process is influenced by the 
cropping season as the landcover composition 
present within an empirically determined buffer 
(50 meters) around the surface water point is 
considered. For example, during the cropping 
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season, crop pixels present within the buffer are 
given a zero value, making them non attractive by 
cattle. This, in turn, is going to affect the total 
buffer landcover score value indexed to the 
corresponding surface water point. The more 
agricultural area there is in the buffer, the smaller 

the indexed surface water point score will be, 
reducing the chances of the latter to be selected. 
The distance separating the cattle’s herd centroid 
from the surface water point centroid is also 
affecting the probability of the surface water 
selection as it is a multiplier of the total buffer 

Figure7.3: Diagram representing the designed behavioral chronologies of the two focal species movement 
models as well as their respective landcover and surface water selection processes 
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landcover score value. The Figure 7.3 presents the 
example of the non-cropping season water 
selection case where surface water with agricultural 
landcover present within the buffer have a higher 
probability to be selected (Figure 7.3). Once within 
a distance of 10 meters of the selected surface water 
point, 𝛼 take the zero value until the end of the 
“watering phase” (phase three) and the beginning 
of the “go back to kraal” phase (phase four). In the 
fourth phase, cattle starts moving towards their 
respective kraal at 1pm while selecting the 
landcover over which they can freely move 
according to the cropping season, repeating the 
same section process as describe in phase one. 
Once cattle’s herd centroid is located within 30 
meters of their respective kraal, 𝛼 take the zero 
value until 6am to signify the herd’s resting period 
at the same geographical location (fifth phase). 
This fifth phase marks the end of a daily cycle that 
repeats itself for the duration of the entire 
simulation. 
 

Validating the spatial movement model 
 
One herd of 200 buffalo individuals for each of the 
buffalo groups derived from the in-situ telemetry 
datasets (Appendix 1) have been simulated based 
on buffalo herd size observations in the three study 
sites (Miguel, Grosbois, Fritz, Caron, de Garine-
Wichatitsky, et al., 2017). Three simulated periods 
have been synchronized with the respective 
recording periods of each of the three constituted 
buffalo groups derived from the observed telemetry 
data (Appendix 1). As observed groups never 
exceeded 7 individuals recorded at the time in the 
same location (Appendix 1), it has been decided to 
base the analyses on datasets that are composed of 
centroids calculated from four randomly selected 
buffalo individuals within the simulated herds and 
the centroids derived from the constituted groups 
of in-situ buffalo individuals (Appendix 1). 
Concerning the simulated datasets, only one 
centroid per hour (out of the centroid calculated 
every 10 minutes) have been extracted to fit with 
the in-situ centroid datasets that have been 
recorded with a one hour frequency (see section 
“two focal species”). The same approach has been 
applied to the cattle simulated and in-situ datasets  
with the notable difference that simulated cattle 
herds were constituted of randomly numbered of 
individuals within an interval of 5 to 15 individuals 
in accordance with the field observations (Miguel, 
2012). Considering the stochasticity of the model, 
10 iterations have been made for every buffalo and 
cattle movements simulations.  

For every simulated and in-situ centroid dataset, 
maximum convex polygons (MCP) have been 
computed each month and for the entire period 
(Figure 7.4). The maximum MCP (MCP-max) 
corresponds to the maximum spatial extent of one 
of the 10 iteration by superposition of all of them 
whereas the minimum MCP (MCP-min) 
corresponds to the intersection area of the 10 
iterations MCPs. Derived buffalo and cattle MCPs 
of the same study site have then been intersected 
to extract the zone of contact between the two 
species in the shape of a polygon (the MCP-max 
contact area being represented by the yellow line 
and the MCP-min contact area by the dashed black 
line in Figure 7.4). In addition to these zone of 
contact polygons, spatial density raster of the 
simulated and in-situ centroid datasets for the 
entire period and for every month have been 
computed using a quadratic kernel shape from 
planar distances with a search radius of 100m at 
a10m spatial resolution. For the simulated centroid 
datasets, mean and sum density raster have been 
derived from the 10 iterations density raster 
corresponding to the same group and the same 
simulated period (i.e., monthly and the entire 
period). For the in-situ centroid datasets, buffalo 
and cattle groups of the same study site have been 
combined before deriving monthly density raster 
and entire period density raster using the same 
methodology. All the density raster values have 
been normalized within a range of 0 to 1 in order to 
harmonize the density raster dataset and facilitate 
the analyses. These rasters have then been clipped 
to the corresponding zone of contact polygon 
extents allowing the calculation of mean, sum and 
median density of buffalo and cattle contact within 
these zones of contact for every month and for the 
entire duration of the simulations (Figure 7.4).  
 

Results 

 

Environmental variables characterized at 
a landscape scale 
 
Surface water: The mean overall accuracy (OA) of 
the time series surface water supervised 
classification for Hwange/Dete is 0.88 while the 
kappa index is 0.75, the OA is 0.99 while the kappa 
is 0.97 for Gonarezhou/Malipati and the OA is 0.97 
while the kappa is 0.93 for Kruger/Pesvi (Appendix 
5). The supervised surface water classification 
accuracy is very high for the three study sites 
despite some disparities. Indeed, the supervised 
classification was not as efficient in Hwange/Dete 
in comparison to the two other sites. Accuracy 
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variations within the Hwange/Dete time series 
surface water supervised classification are also 
noticeable with an OA ranging from 0.81 to 0.91 and 
a kappa ranging from 0.63 to 0.82. For the two 
other study sites, the classification accuracy 
remains stable for the entire time series.  
 
Landcover: The mean overall accuracy (OA) of the 
time series agricultural area supervised 
classification for Hwange/Dete is 0.91 while the 
kappa index is 0.83, the OA is 0.77 while the kappa 
is 0.53 for Gonarezhou/Malipati and the OA is 0.83 
while the kappa is 0.66 for Kruger/Pesvi (Appendix 
5). Overall, the supervised classification accuracy 
was optimal concerning Hwange/Dete but more 
nuanced concerning Gonarezhou/Malipati and 
Kruger/Pesvi with an equivalent number of 
confusions between the two classification classes 
(i.e., “agricultural areas” and “other”) (Appendix 5). 
The agricultural area classifications of 
Gonarezhou/Malipati and Kruger/Pesvi remain 
usable as most of the extensive agricultural areas 
have been correctly detected after qualitive 
analyses (i.e., accuracy assessment via the 
superposition of a very-high SRS image and the 
produced classification).  
Concerning the non-supervised classifications of 
the three study sites vegetation according to the 
chosen typology (Figure 7.1), the OA and kappa are 

0.75 and 0.67 for Hwange/Dete, 0.71 and 0.64 for 
Gonarezhou/Malipati, and 0.73 and 0.66 for 
Kruger/Pesvi (Appendix 5). The classification 
accuracy is comparable for the three study sites 
with an overprediction of the shrubland class that 
is confused equally with the mixed-woodland-
shrubland class and the mixed-shrubland-
grassland class. The mixed-woodland-shrubland 
class is also confused with the woodland class 
although the confusion is less pronounced in 
Hwange/Dete. Overall, the woodland, the mixed-
shrubland-grassland and the bare soil classes are 
well classified (Appendix 5). 
 

Modelling the buffalo and cattle contacts 
 
In Hwange/Dete, the observed contact area has an 
area of 38.4 km² while the simulated contact area 
defined by the MCP-max has an area of 56.2 km² 
and the contact area defined MCP-min an area of 
27.2 km². Although similar in their morphology, 
the observed contact area and the simulated 
contact area are not overlapping, the simulated 
contact area being closer to the communal area 
(Figure 7.4). The distance separating the centroids 
of the observed area and the different simulated 
contact areas are in the range of 2.2 to 3.1 km 
(Figure 7.4). In Gonarezhou/Malipati, the observed 
contact area has an area of 15.7 km² while the 

Figure 7.4: Maps representing the observed and simulated contact area spatial extensions in regard to the 
proximity of the communal area for the three study sites 
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simulated contact area defined by the MCP-max 
has an area of 24.7 km² and the contact area defined 
MCP-min an area of 11.7 km². Within comparable 
surface area range, observed and simulated contact 
area are not perfectly superposed as their 
respective centroids have distances that range from 
2.7 to 3.1 km. The simulated contact areas are 
located, as in Hwange/Dete, more deeply into the 
communal area (Figure 7.4). In Kruger/Pesvi, the 
observed contact area has an area of 40.7 km² while 
the simulated contact area defined by the MCP-
max has an area of 68.9 km² and the contact area 
defined MCP-min an area of 43.1 km². While the 
simulated contact area defined by the MCP-max 
over-estimates the area of contact, the simulated 
contact area defined by the MCP-min is quite 
comparable to the observed contact area. All the 
contact areas are located within the same area as 
they superposition and respective morphology are 
similar. The distances from the contact areas 
respective centroids range from 1.3 km to 2 km 
(Figure 7.4). 
 

In Hwange/Dete, the monthly variations of the 
observed mean density are well reproduced when 
considering the mean density of the contact area 

defined by the MCP-min, especially the peak of 
mean density observed from January to June 

(Figure 7.5). When comparing the monthly 
variations of the observed sum density, the annual 
trend is well reproduced when considering the  
sum density of the contact area defined by the 
MCP-max, especially during the maximum sum 
density peak in March and the second sum density 
peak in November (Figure 7.5). In 
Gonarezhou/Malipati, the monthly variations of 
the observed mean density is once again more 
comparable when focusing on the mean density of 
the contact area defined by the MCP-min, although 
the seasonal pattern is not well reproduced (Figure 
7.5). Indeed, the mean density peak in March is not 
reproduced by the model simulations and the 
mean density peak of September is simulated with 
a one month delay. When comparing the monthly 
variations of the observed sum density, the model 
simulations tend to over-estimate the density all 
year round when taking into account the  sum 
density of the contact area defined by the MCP-
max despite the fact that the period with the lowest 
density values from September to January is well 
reproduced when considering the contact area 
defined by the MCP-min (Figure 7.5). In 
Kruger/Pesvi, the overall behavior of the monthly 
variations of the observed mean density is well 
reproduced, although both mean density of the 

contact area defined by the MCP-min and the 
MCP-max are slightly over-estimated (Figure 7.5). 

Figure 7.5: On the left, line chart representing the monthly variations of the mean density for the observed 
contact area and the simulated contact areas. On the right, line chart representing the monthly variations 
of the sum density for the observed contact area and the simulated contact areas 
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The same observation can be made when 
considering the monthly variations of the sum 
density (Figure 7.5). 
 

Discussion 

 

Ecological implications 
 
The model demonstrated the capacity to reproduce 
seasonal patterns of contact between buffalo and 
cattle in three different WLI by considering only 
two environmental variables (i.e., surface water 
and the landcover) and livestock practices.  With a 
set of simple rules combining basic daily resources 
requirement (i.e., water and grazing) and herding 
practices (i.e., avoidance of growing crop fields), 
the model simulated the movement of buffalo and 
cattle and their areas and intensity of contacts in 
three different interface areas in southern Africa. 
The observation of modelled vs. observed areas of 
inter-species overlap and contact in space and time 
(Figure 7.4)  as well as the monthly variations of the 
mean density for the observed contact area and the 
simulated contact areas (Figure 7.5) provide a sense 
of overall replicability of ecological patterns by the 
model. For example, in the different landscape, it 
the distribution of available surface water that 
concentrates spatially animal movements around 
surface water and create interfaces. The necessity 
of both buffalo and cattle to look daily for a surface 
water in the vicinity of where they are at any time 
prevent them of “escaping” from the interface area 
and the model replicates just that. In addition, the 
model’s ability to consider grazing behaviors 
improve on the capacity to reproduce buffalo and 
cattle movements as we know that grazing 
behaviors strongly influence the two focal species 
respective movements in space and time (Rumiano 
et al., 2021).  
However, despite coherent model’s outputs, there 
are significant differences in predictions between 
the model outputs and the behavior of the 
observed data. Factors related to the method and 
to variables (environmental, ecological, data 
related) can explain these differences in 
predictions. The fact that cattle are sent farther 
than the search for the nearest available water 
source could potentially suggest political claims to 
the forestry zone by the herders and/or ancestral 
practices as well as other "beliefs" linked to specific 
surface water points. The grazing practices could 
explain the drift of the contact zone towards the 
interior of the park, especially in the Hwang/Dete 
study site. Concerning buffalo, they seem to move 
less towards the communal land boundary than the 

model predicts, which means that there are 
behavioral factors that could explain this particular 
trend such as the already documented avoidance of 
cattle by buffalo (Valls et al., 2018). In addition, the 
time lags exist between the date chosen to 
characterize the environmental variables by 
remote sensing (i.e., 2018) and the recording years  
of the in-situ buffalo (Appendix 1) and cattle 
(Appendix 2) telemetry data. The surface water 
characterized during the year of the SRS satellite 
images does not correspond exactly in its spatial 
and temporal repartition with the one that 
occurred during the year when the telemetry data 
have been collected, thus introducing bias between 
the observed and predicted focal species 
movements and contacts at the landscape scale.   
Another factor concerns the ability to detect, at the 
landscape scale, all the environmental variables 
even if the classification results seem optimal (see 
the section Results). Any classification is inherently 
imperfect because it is subjective and based on 
validation tools that can be subject to caution 
(Pontius and Millones, 2011). Given the landscape 
heterogeneity of our three study sites and the 
strong presence of trees, it is possible that some 
watering ponds under tree canopy have not been 
correctly detected as they could have been located. 
In addition, some watering ponds are ephemeral 
and only related to rainfall occurrences as well as 
soil properties in semi-arid savanna environments 
(Soti et al., 2010). They could have been missed 
given the temporal frequency of the SRS time series 
used by the developed surface water classification 
methodology (one satellite image per month was 
used to classify water surfaces). Also, it is important 
to note that the model is based on the analysis of 
the collective behavior of the targeted species in 
their respective environments (Appendix 4). 
However, regarding cattle, only one individual per 
herd was used as reference. For buffalo, at best 7 
individuals constituted the reference of a herd, 
whereas the herds observed on site are close to 200 
individuals (Miguel, 2012). Thus, model 
parameters such as speed of movement, preference 
for a particular type of vegetation, distance from 
the kraal, time of day, and frequency of use of 
watering holes provide only a partial and 
incomplete view of the ecological behavior of these 
animal species in their respective environments.  
Nevertheless, the model, in its current 
configuration, allows us to make some 
observations that reflect the different influences of 
surface water availability and landcover on the 
frequency and intensity of contact between buffalo 
and cattle at the three study sites. In Hwange/Dete, 
the intensity of contact is the greatest during the 
cropping season and during the wet season, when 
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the water resource is abundant (Figure 7.5). It is 
between December and May that herders drive 
their cattle herds into protected areas to avoid 
cultivated fields damages (Amon et al., 2013), thus 
corroborating the observed trends of the model 
output simulations in this particular study site. In 
Gonarezhou/Malipati, two peaks of contacts 
between buffalo and cattle were observed (Figure 
7.5). The first peak during the cropping season in 
March represent the attraction of buffalo for forage 
in agricultural areas. The model was unable to 
reproduce this trend as the agricultural areas were 
not considered to be a buffalo landcover preference 
based on observations extrapolated from the three 
study sites for genericity purposes (Appendix 3). 
The second peak of activity, occurring from August 
to November, corresponds to the dry season. As 
surface water availability is reduced to a handful of 
pools in the Mwenezi riverbed during the dry 
season and the river being closed to communal 
areas, contacts between buffalo and cattle become 
more frequent. Surface water seasonal variability as 
well as potential forage resource provided by 
agricultural areas are the two factors driving 
contact between buffalo and cattle in 
Gonarezhou/Malipati. In Kruger/Pesvi, the model 
outputs follow similar patterns with the highest 
peaks of contacts occurring during the cropping 
season in January and at the end of the dry season 
in October.  
 

Epidemiological implications 
 
Having the capacity to apprehend the ecological 
and human induced processes that drive the 
frequency, intensity, and localization of inter-
species contacts at the WLI scale through 
mechanistic mathematical models can potentially 
improve the capacity to quantify and characterize 
HWC including pathogen circulation between wild 
and domestic animal species within specific multi-
host systems (Caron et al., 2015;Roche et al., 2012). 
One of the advantages of mechanistic 
mathematical model is that they require few 
empirical data to reproduce complex ecological 
processes such as movements, watering and 
foraging amongst others (Rastetter et al., 2003). In 
that regard, such models are promising as they may 
help guide future data collection or elucidate 
certain traits (e.g., targeted species habitat 
preferences, herding decisions) of potential host 
animal species in areas where in-situ data is lacking 
or residual (Doherty & Driscoll, 2018). While some 
models have explored the sensitivity of pathogen 
dynamics to dispersal and migration rates (L. A. 
White et al., 2018), few studies compared animal 
movements and contacts in relation to spatially 

explicit landscape on pathogen transmission 
(Lane-deGraaf et al., 2013; Tracey et al., 2014). 
Pathogen transmission models with mechanistic 
representations of animal movements in space and 
time remain scarce (Fofana and Hurford 2017) and 
there is a need to fill this gap (L. A. White et al., 
2018).  
Our results indicate that interspecific contacts, 
possibly leading to disease transmission, are 
clustered and driven by the seasonality of natural 
resources (Guerrini et al., 2019) and herding 
practices at the three studied WLI. We argue that 
this information provides opportunities to improve 
pathogen management, by controlling access to 
key natural resources (i.e., forage and surface 
water) or adapting livestock and/or wildlife 
management practices in order to reduce the 
frequency of buffalo-cattle contacts. However, 
pathogen circulations amongst hosts vary along a 
gradient from direct to indirect transmission 
(Altizer, Harvell, and Friedle 2003). Therefore, the 
definition of what is a relevant contact in regard to 
pathogen transmission varies according to the 
pathogen of interest and the considered space-time 
windows (Wielgus et al., 2021) that define potential 
infectious contacts between focal animal species. 
The temporal and spatial scales from which 
contacts are characterized will determine the 
potentiality of a spatialized movement and contact 
model, such as the one developed in this study, to 
be of used to pathogen transmission assessments. 
Indeed, pathogen dynamics are different 
depending on whether we consider a direct 
transmission pathogen such as foot and mouth 
disease (FMD) or a vector-borne pathogen such as 
Rift Valley Fever (RVF) for example. Indeed, there 
is no guarantee that the transmission process, data 
collection (i.e., SRS data and telemetry data) are 
necessarily taking place at the same spatial and 
temporal scale (Riley et al., 2015). Forecasts of 
pathogen transmission based on potential host 
movement alone can be questioned when 
pathogen-environment interactions (e.g., 
pathogen movement, rates of growth or decay, or 
the length of vector life history stages) occur at 
time scales comparable with the host–pathogen 
interactions themselves (e.g.,  lengths of latent and 
infectious periods) (Dougherty, Seidel, Carlson, 
Spiegel, et al., 2018).  
Mechanistic mathematical movement and contact 
models could be combined or potentially replace 
ecological niche modelling as proxy for pathogen 
circulation as the latter often considers host-
pathogen systems as only one coupled 
phenomenon (Kearney & Porter, 2009). It could 
drastically improve the characterization of  average 
and/or seasonal host movement patterns, 
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especially in the case of free-ranging or semi-free 
ranging hosts such as buffalo and cattle and be part 
of an integrative solution to develop real-time early 
warning system for pathogen transmission risk 
assessment.  

 
Room for improvements 
 
Mechanistic mathematical models require 
significant development and implementation costs 
but is less dependent of a correlation between 
ecological processes (e.g., movements, contacts, 
watering,…) and environment properties (e.g., 
surface water, forage, …) compared to empirical 
models (Gaucherel, 2018). The capacity of such 
mechanistic model to develop interactions 
between animal behavior and related environment 
variables improve the capacity to describe holistic 
ecological functioning (Kearney & Porter, 2009) in 
areas where in-situ data are lacking or expensive to 
collect as well as when knowledge on focal animal 
behavior is limited. Despite genericity potential as 
shown by the results of this study, mechanistic 
mathematical models are mostly based on 
quantitative assessments in their design which can 
lead to output redundancy and similarity (Eriksson 
et al., 2010). Intra-herd dynamics are reduced to 
parameters defining the herd’s cohesion (see “A 
spatialized movement model” section) when in 
reality more complex dynamics are occurring, such 
as the fusion-fission dynamics of buffalo herds 
(Wielgus et al., 2020) or cattle herding decisions 
influenced by collective social determinants (Valls-
Fox, Chamaillé-Jammes, et al., 2018). Agent-based 
modelling could provide alternative approaches to 
simulate movement and contact of focal animal 
species. However, these types of models usually 
imply greater complexity in design (i.e., more rules, 
quantitative parameter estimation, complex 
sensitivity analyses), are much less tractable than 
mechanistic mathematical models, have a lower 
reproducibility potential and require more 
empirical knowledge on specific focal species 
ecological behaviors and relation to environmental 
variables (Schulze et al., 2017). Model sensitivity 
analyses (Frey and Patil 2002) could help to find the 
right balance between the different parameters of 
the model (see “A spatialized movement model” as 
well as Figure 7.3) and improve the 
oversimplification of the two animal species 
ecological functioning. Indeed, even if the 
temporal structuration of the model in several 
behavioral phases  (Figure 7.3) is based on 
empirical knowledge, bibliographical analyses and 
data extrapolation, it remains subjective and does 
not prevent, for example, an underestimation of 
the presence of buffalo in areas located at the 

periphery of surface water (Rumiano et al., 2021) or 
the systematic return of the cattle to the kraal at 
the same time of the day (Figure 7.3). Currently, the 
model does not allow to extrapolate qualitative 
analyses such as the propensity of buffalo to avoid 
contact with livestock (Miguel, Grosbois, Caron, 
Boulinier, Fritz, Cornélis, Foggin, Makaya, 
Tshabalala, & Garine-Wichatitsky, 2013). The 
model output is constrained by the temporal scale 
of the in-situ telemetry data. By improving on the 
temporal resolution of field telemetry data, model 
outputs could be much more suited for qualitative 
analyses in regard to buffalo and cattle movements 
and contacts. Furthermore, several variables such 
as anthropogenic and climate changes as well as 
host heterogeneity could be considered and 
implemented into the current model as they play a 
crucial role in influencing the buffalo and cattle 
movements in space and time (Naidoo, Preez, et al., 
2012).  
 
The model developed in this study has the 
advantage of being easily scalable in addition to 
requiring little input data to produce consistent 
and usable results. The democratization of SRS 
technologies utilization by ecologists (Remelgado 
et al., 2018) coupled with the advances in 
technologies that remotely monitor animal’s 
physiology and movements (Kays et al., 2015a) 
constitute opportunities to further enhance 
mechanistic mathematical models such as the one 
developed in this study. Implementing animal 
movements and contacts at the landscape scale 
into spatialized epidemiological models could 
prove to be solution amongst many to tackle the 
increasing risk of pathogen transmission at the 
WLI interface.  
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Appendix 1: 

 

Buffalo and cattle telemetry data characteristics ad specifications 

 

BUFFALO 

Study areas Groups 
Number of 

individuals 
Individual id 

Period of 

recording 
Utilizations 

Hwange/Dete 

Gp 1 3 
AU287/AU291 

/AU297 

20/04/2010 to 

18/08/2011 

Calibration/ 

validation 

Gp 2 4 
SAT524/SAT526 

/11456/11472 

14/11/2012 

 to 

28/09/2013 

Calibration/ 

validation 

Gp 3 4 
SAT526/11456 

/11472/11473 

03/12/2013 

 to 

15/04/2014 

Calibration/ 

validation 

Gonarezhou/Malipati 

Gp 1 3 B80/B83/B85 

13/10/2008  

to 

03/03/2011 

validation 

Gp 2 4 B80/B83/B84/B85 

14/10/2008 

 to 

19/11/2019 

validation 

Kruger/Pesvi 

Gp 1 7 

B31810/B34559/ 

B34564/B34567/ 

B34571/B34572 

/B34575 

31/10/2013  

to 

25/01/2015 

validation 

Gp 2 7 

B31805/B31810/ 

B31811/B31813/ 

B31817/ B31818/ 

B31820 

25/07/2011  

to 

15/09/2011 

validation 

Gp 3 5 

B34562/B34563/ 

B34566/B34574/ 

B34576 

20/12/2013  

to 

12/02/2014 

validation 

Gp 4 4 
B34562/B34566/ 

B34574/B34576 

31/10/2013  

to 

06/02/2015 

validation 

Gp 5 2 B1130/B8526 
04/06/2010 to 

24/12/2011 
validation 

Gp 6 3 
B1130/B8526/ 

B31808 

25/07/2011  

to 

14/04/2012 

validation 

 
 



 CHAPTER 7 – Spatial modelling of buffalo & cattle contacts  

174 
 

 
 

CATTLE 

Study areas Number of individuals Individual id Period of recording Utilizations 

Hwange/Dete 10 

AU387 

 

15/12/2010  

to 

15/08/2011 

calibration/ 

validation 

AU388/AU389 

AU390/AU392 

20/04/2010  

to 

15/08/2011 

U4 

28/11/2012 

to 

22/11/2014 

U6 

30/11/2012  

to 

27/06/2014 

U7 

29/11/2012  

to 

23/01/2014 

U8 

29/11/2012  

to 

04/12/2014 

U9 

29/11/2012  

to 

21/11/2014 

Gonarezhou/Malipati 4 

382/384/386 

26/11/2009 

to 

16/05/2011 
validation 

383 

26/11/2009 

to 

21/10/2010 

Kruger/Pesvi 4 
681/682 

684/685 

16/06/2010 

to 

25/07/2011 

validation 
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Appendix 2:  
 
SRS Images specifications and characteristics 
 

Name of the 
characteristics 

Satellite image characteristics 

Spatial and spectral 
resolutions 

10 x 10 m 

B2 (490 nm), B3 (560 nm), B4 (665 nm), B8 (842 nm) 

20 x 20 m 

B5 (705 nm), B6 (740 nm), B7 (783 nm), B8a (865 nm), B11 
(1610nm), B12 (2190 nm) 

Temporal resolution 5 days 

Swath width 290 km 

Tile size 100 x 100 km 

References of selected 
tiles 

T35KNV – T35KNU – T35KMV – T35KMU – T35KLV – T35KLU 

Dates of the 
downloaded tiles 

T35KNV (2018-01-05 / 2019-02-24 / 2018-03-16 / 2018-04-20 / 2018-
05-05 / 2018-06-04 / 2018-07-04 / 2018-08-18 / 2018-09-12 / 2018-10-
12 / 2018-11-16 / 2018-12-21) 

T35KNU (2018-01-05 / 2019-02-24 / 2018-03-16 / 2018-04-25 / 2018-
05-10 / 2018-06-14 / 2018-07-04 / 2018-08-18 / 2018-09-12 / 2018-10-12 
/ 2018-11-11 / 2018-12-11) 

T35KMV (2018-01-08 / 2019-02-22 / 2018-03-14 / 2018-04-23 / 2018-
05-03 / 2018-06-12 / 2018-07-02 / 2018-08-16 / 2018-09-15 / 2018-10-10 
/ 2018-11-19 / 2018-12-14) 

T35KMU (2018-01-13 / 2019-02-22 / 2018-03-14 / 2018-04-23 / 2018-05-
03 / 2018-06-12 / 2018-07-02 / 2018-08-16 / 2018-09-15 / 2018-10-10 / 
2018-11-14 / 2018-12-14) 

T35KLV (2018-01-08 / 2019-02-22 / 2018-03-14 / 2018-04-23 / 2018-05-
03 / 2018-06-12 / 2018-07-02 / 2018-08-16 / 2018-09-15 / 2018-10-10 / 
2018-11-14 / 2018-12-14) 

T35KLU (2018-01-08 / 2019-02-22 / 2018-03-14 / 2018-04-23 / 2018-05-
03 / 2018-06-12 / 2018-07-02 / 2018-08-16 / 2018-09-15 / 2018-10-10 / 
2018-11-14 / 2018-12-14) 
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Appendix 3: 
 
Graphs that describe cattle behaviors in relation with environmental variables (surface water 
and agricultural areas) 
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Appendix 4 : 
 
Graphs that describe buffalo relation with surface water and landcover preferences 
 
Median speed in relation to the probability to be at proximity to the surface water depending 

on the hour of the day 
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Probability for buffalo to be on a specific landcover in regard to the entire duration of the 
telemetry data recording period for each of the study sites 
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Appendix 5:  
 
Confusion matrices of the supervised surface water classifications. These matrices represent 
the mean of the time series predicted and actual pixel counts for each of the three study sites. 
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Confusion matrices of the supervised agricultural area classifications. These matrices represent 
the mean of the time series predicted and actual pixel counts for each of the three study sites. 
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Confusion matrices of the non-supervised landcover classifications. These matrices represent 
the mean of the time series predicted and actual pixel counts for each of the three study sites. 
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7.2 Chapter summary 

 

 

 
 
 
 

 

- Surface water and vegetation, the primary determinants of movement for these 

ungulate species, have been classified and mapped from a time series of medium 

resolution Sentinel-2 satellite images. 

 

- The resulting classification maps have been integrated into a mechanistic 

mathematical model of collective movement of individuals interacting in relation to 

one another according to group cohesion and alignment. This stochastic model 

allowed the simulation of buffalo and cattle’s herd movements and the location of 

contact areas and their seasonal dynamics in space and time. The movement and 

contact mechanistic model has been applied to the three study sites in order to assess 

its genericity. 

 

- The model outputs have been compared to GPS collar location data of 34 individuals 

(16 buffalo and 18 cattle). The results showed a high spatial and seasonal variability of 

contacts between buffalo and cattle in the three study sites, and a landscape scale 

correspondence between the modeled and observed contact area spatial extensions 

(distance between centroids of the observed and simulated contact areas are strictly 

inferior to 3.1 km). 

 

- These initial results illustrated the potential of spatial modeling combined with 

remote sensing to generically simulate animal movements at the landscape scale while 

offering opportunities to manage these interfaces through, for example, a coupling 

with epidemiological modelling 
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8.1  Summary of the objectives and findings 

 

 

8.1.1 The global approach 

 

 

This thesis had three main objectives. The first one was to develop a classification methodology 

allowing to characterize environmental factors, such as surface water and landcover, at the 

landscape scale (i.e., 10 meters of spatial resolution) and with pertinent temporal resolutions 

(i.e., intra-annual and inter-annual) in three different study sites. The second objective focused 

on developing a mechanistic model that enable the simulation of buffalo and cattle movements 

in space and time while considering the individual and collective dynamics of the focal species. 

And the third objective was to assess the nature, frequency, locations of buffalo and cattle 

contacts and interactions by combining the two spatialized models previously developed, as well 

as to test the generic aspect of the model by simulating buffalo and cattle movements and 

contacts in three different W/L interfaces with different ecological and geographical 

configurations.  

 

This thesis is a continuation of scientific works conducted over the years on these geographical 

areas and made possible thanks to the collect and analysis of observational data (e.g., telemetry 

data) (Miguel, 2012; Valls Fox, 2015). The modelling approach developed during this work has 

always been considered as exploratory in the sense that it is a process-based method no longer 

based exclusively on data, but also considering spatial ecological processes.  

 

The chosen general methodology approach is based on four main steps (Figure 8.1) detailed 

respectively in chapters 3, 4, 6 and 7 of this thesis manuscript. Chapter 3 synthesized the 

scientific literature to identify the environmental variables influencing the movements of the 

two target animal species over time and space. Chapter 4 detailed the methodology developed 

to characterize, via the classification of SRS images, the environmental variables considered (i.e., 

water surface and landcover) that influence the movements of the two focal animal species in 

space and time. Chapter 6 described in detail the principles of the spatialized mechanistic model 

to simulate buffalo movements in relation to seasonal variability of water surfaces in space and 

time. Chapter 7 explained the principles of the buffalo-cattle contact model as a function of 

water availability and the spatial structure of land use at the landscape scale in three different 

W/L interfaces. The other chapters allow us to contextualize and describe the ecological issues 

(Chapter 1 and Chapter 2), methodological issues (Chapter 5) and to discuss these 
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methodological choices and the results produced while considering the perspectives of this 

thesis work (Chapter 8). 

 

 

Figure 8.1: Figure synthetizing the thesis’s general approach, the corresponding chapters in which the 
specific methodologies are detailed as well as the field of research associated with each of the chapter.  

 

 

8.1.2 From a thematical standpoint 

 

 

An extensive literature review (Rumiano et al., 2020) has been conducted to consolidate and 

gather current knowledge on potential uses of SRS to investigate the sympatry of 

wildlife/domestic ungulates in African savanna interface environments as well as identifying 

which environmental drivers influence the buffalo and cattle movements at the landscape scale 

(see chapter 3). In total, 327 references (e.g., scientific papers, thesis) have been selected and 

analyzed. Surface water, precipitation, landcover and fire emerged as key drivers impacting the 

buffalo and cattle movements. The results of this literature review emphasize need for animal 

movement ecologists to reinforce their knowledge of remote sensing and/or to increase 

pluridisciplinary collaborations (Chapter 3). 

 

The three interfaces considered in this study have different geographical and ecological 

characteristics but all are concerned by a pronounced temporal and spatial variability of surface 

water as well as by highly heterogeneous landscapes in semi-arid climate (see chapter 2). These 

two common environmental characteristics de facto influence the availability of water and 

forage resources, conditioning and constraining the movements of buffalo and cattle in space 

and time (see chapter 6 and chapter 7). Wildfires are by essence very heterogeneous in their 
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amplitude and frequency in space and time. Their occurrence can impact the movements of 

buffalo and cattle but in a punctual and non-regular manner. Precipitations are also very 

localized and strictly condition the availability of water and fodder resources in Southern Africa. 

Therefore, surface water and landcover are the two environmental indicators that were chosen 

to spatially model buffalo and cattle movements (see Chapter 7). These two environmental 

variables can be efficiently characterized and discriminated in space and time at the landscape 

scale via the use of SRS (Rumiano et al., 2020).  

 

Miguel, 2012 observations of cattle incursion into protected areas at Hwange/Dete, buffalo 

crossing communal boundaries at Gonarezhou/Malipati and Kruger/Pesvi have been 

reproduced with varying degrees of accuracy across study sites based on analysis of observed 

telemetry data (chapter 7). These results demonstrate that the implementation of two 

environmental factors (i.e., water surface and landcover) and one particular livestock practice 

(i.e., avoidance of growing crop fields) is sufficient to reproduce the spatiotemporal contact and 

movement patterns of buffalo and cattle at the landscape scale in three ecologically and 

geographically contrasted W/L interfaces.  

 

The frequency and location of contacts between these two animal species is therefore to be put, 

first and foremost and before all other natural resources and ecological factors, in direct relation 

to the spatial distribution and temporal availability of the water resource. However, the impact 

of the distribution of the fodder resource as well as the behavior of the herders on the 

movements of these two animal species should not be neglected as they directly influence their 

potential contacts. 

 

 

8.1.3 From a methodological standpoint 

 

 

A simple three steps methodology, yet robust and reproducible, have been developed to 

characterize the surface water spatial availability within a time series and the landcover at a 

spatial resolution of 10 meters (Chapter 4). Using pixel-based supervised and unsupervised 

classifications methods on open-source SRS images (i.e., Sentinel-2), this methodology can 

easily be apprehended even by non SRS specialists. It allows to characterize complex and 

heterogeneous environments on wide areas at a landscape scale where in-situ data (e.g., GPS 

localized landscape samples, empirical knowledge on landscape structures) are lacking or non-

existent. The entirety of the classification procedures have been developed using open-source 
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software (i.e., QGIS) and programming environments (i.e., R), making it accessible and 

reproducible even if computing and financial resources are limited.  

 

A spatialized mechanistic approach integrating a self-propelled particle (SPP) model to simulate 

individual and collective movements in relation with the spatial and temporal variations of the 

surface water availability have been developed using the buffalo telemetry data of the three study 

sites as reference data for the model calibration and validation processes (see chapter 6). This 

modelling approach demonstrated how a mechanistic model can be spatialized and combined 

with SRS data to simulate animal movements in relation with a given environmental variable at 

a landscape scale. The development of this model tested and confirmed the capacity of a domain 

specific language such as Ocelet (see section 5.4.2) to efficiently model heterogeneous entities 

(i.e., buffalo individuals, buffalo’s herd, surface water) in spatialized and temporalized complex 

systems through their interactions (chapter 6). For the first time to our knowledge, buffalo’s 

movements at the individual and collective scales have been simulated in heterogeneous 

environments and at three different W/L interfaces by the use of a self-propelled particle model 

(also called parsimonious swarm model). This simple and replicable modelling framework can 

be considered as an alternative to the existing modelling tools in the understanding of animal 

movements in regard to water selection in several ecological contexts and environments.   

 

The mechanistic model reproducing the buffalo movements in space and time at the landscape 

scale has then been completed by other entities such as cattle and the landcover to model the 

contacts between a wild and a domesticated animal species at the three considered W/L 

interfaces (Chapter 7). This model demonstrated that with a set of simple rules combining basic 

daily resources requirement (i.e., water and grazing) and herding practices (i.e., avoidance of 

growing crop fields), the buffalo and cattle movements as well as their respective areas and 

intensity of contacts in three different interface areas in southern Africa are simulated and 

reproduced. The observation of modelled vs. observed areas of inter-species overlap and contact 

in space and time (chapter 7) provides a sense of overall replicability of ecological patterns by 

the model. For example, in three different study sites with contrasting geographical and 

ecological configurations (see chapter 2), the movement and contact model confirmed that the 

distribution of available surface water spatially concentrates buffalo and cattle movements 

around surface water, thus generating potential localized interfaces. The necessity of both 

buffalo and cattle to look daily for a waterhole in the vicinity of where they are at any time 

prevent them of “escaping” from the interface area. This ecological pattern has been observed 

and is well known in the literature (Miguel, 2012; Valls-Fox, Chamaillé-Jammes, et al., 2018). 

However, for the first time to our knowledge, a spatialized mechanistic model manages to 

realistically replicate and predict this ecological dynamic at the landscape scale (Chapter 7).  
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Overall, this thesis reveals that applying SRS to better understand buffalo and cattle movements 

and contacts in semi-arid environments provides an operational framework that could 

potentially be replicated in other types of W/L interface where different wild and domestic 

species interact. Moreover, the implementation of a spatialized epidemiological compartment 

into the already developed mechanistic movement and contact model could potentially improve 

the general understanding and apprehension of the pathogen transmission and circulation 

between wild and domesticated species at the W/L interface. 

 

 

8.2  Limits and recommendations 

 

 

8.2.1 On the telemetry data used  

 

 

The GPS collars used in this study allow continuous data collection and provide input data to 

examine the buffalo and cattle behaviors spatially and temporally with a frequency of one hour 

over varying periods of time in extensive areas (see section 2.2.1). However, the constraints (e.g., 

costs, difficulty of deployment) associated with the telemetry technology used in this study have 

limited the number of individuals to be monitored simultaneously within the same group (see 

section 2.2.1). Given our aim to translate individual but also collective movements of the buffalo 

and cattle, the composition of the telemetry data used did not give us enough information (i.e., 

time frequency and limited sample within targeted animal species populations) to refine the 

collective movements reproduced by the model. If the buffalo and cattle movement model is 

able to simulate individual movements influencing collective movement dynamics, the 

alignment and cohesion parameters regulating group dynamics were calibrated on Hwange with 

a maximum of four individual buffalo representing the collective (see Chapter 6). As a buffalo 

herd is composed between 50 and 600 individuals in the three study sites (Miguel, Grosbois, 

Fritz, Caron, Garine-Wichatitsky, et al., 2017) an average of 200 individuals have been 

considered. This constraint related to the composition of the data (i.e., gap concerning the 

number of observed individuals and measured individuals) introduces a bias that potentially 

impacts the metrics used by the movement model to accurately reproduce collective dynamics 

at the landscape scale and over a time frequency of one hour. Also, the one-hour frequency of 

the telemetry data did not allow to accurately measure the periods of rumination and rest that 

occur with finer temporal resolution (Cornélis et al., 2011; Kingdon, 2015). As a result, the design 
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of different behavioral phases inherent to the buffalo and cattle movement models have been 

simplified. This gap between the frequency of the focal animal species recorded positions and 

their known ecological behaviors has been compensated by extrapolating their localizations 

with the remotely sensed surface water and landcover at the same time frequency than the 

telemetry data (i.e., 1h). Finally, the social interactions between individuals have not been 

considered given the impossibility to derive such information from the telemetry dataset. This 

conscious oversight could introduce a bias into our developed movement models as social 

behaviors is considered as an important factor to understand the mechanisms for intra-group 

behaviors and inter-group encounters, especially for the buffalo in the case of fission/fusion 

events for instance (Wielgus, 2020).  

 

Reducing the frequency of GPS location acquisition is often considered even if it means trading 

off the temporal resolution to maximize transmitter battery life and onboard memory storage 

(Hebblewhite & Haydon, 2010). Yet, long term and short term intrinsic animal behaviors create 

several levels of decisions that operate simultaneously to dictate animal movements (Benhamou, 

2014). In that regard, assessing animal movements or behaviors only by considering GPS-

locations can potentially lead to incomplete interpretations, therefore inaccurate movement 

models (Bastille-Rousseau et al., 2018). In this study, we have already integrated telemetry data 

with medium spatial resolution SRS imagery. However, the capacity to describe individual and 

collective movements as well as intra-group dynamics in space and time could be further 

improved by combining GPS collars with cost-efficient proximity loggers that could directly 

record synchronous contacts between a larger number of individuals (Robert et al., 2012), 

animal-borne video and environmental data collection systems (AVEDs) which record what the 

animal sees in the field (Moll et al., 2007), or Unmanned Aircraft System (UAS) that give high 

resolution images to study animal herd spatial composition and structure as well as intra-group 

interactions (Inoue et al., 2019; Vermeulen et al., 2013). Despite a variety of existing tracking 

device and their rapid development in the field of ecology (Kays et al., 2015), it is important to 

keep in mind that a given study can only answer a limited set of questions. Therefore, the choice 

and combination of tracking devices is fundamentally linked to the research questions asked, as 

are the costs and constraints involved in installing and monitoring such devices in the field.  
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8.2.2 On the remote sensing methodology to characterize the 

environmental data 

 

 

Pixel-based classification approaches use the pixel as the basic analysis unit and have been 

proven to be efficient in extracting landcover information from SRS images (Mather & Tso, 2016) 

and have been the main used technique for classifying low/medium spatial resolution SRS 

images (Duro et al., 2012). In this study, pixel-based classification methods have been used to 

derive environmental variables (i.e., landcover and surface water) from medium SRS images (i.e., 

Senitnel-2) at the landscape scale (see chapter 4). These methods have been considered as pixel-

based classification does not change the spectral properties of the pixels and have a higher 

chance of preserving landcover details in comparison to other classification methods such as 

object-based classification (Y. Chen et al., 2018). However, it is difficult to use complementary 

properties (e.g., topography) which may lead to the salt and pepper effect (i.e., noise pixels 

covering the majority of a given classified image) in classified maps (Y. Chen et al., 2017), 

especially in areas where the landcover is heterogeneous. 

 

The choice of a classifier algorithm has also its importance as it determines the quality of the 

resulting classification based on training and validating data samples that represent the desired 

typology. In this study, the choice of the RF algorithm (Breiman, 2001) has been made for the 

supervised classifications of the surface water and agricultural areas as it requires simple 

parametrization while being reliable and rapid in its execution as well as being able to efficiently 

process large volume of variables and data in accordance with the spatial extent of the three 

study areas (Inglada et al., 2015) (see chapter 4). In addition, robust classification methods such 

as RF have shown that their performances are likely to remain unchanged even by adding 

insignificant features (i.e., landcover training and validation samples that are inadequately 

referenced) (Pelletier et al., 2016). For the non-supervised classification of the landcover, the K-

means clustering approach (Burrough, van Gaans, and MacMillan 2000) has been used for its 

proven ability to efficiently classify SRS images with a low cost computing time (Chen and Peter 

Ho 2008). However, RF and k-mean algorithms are data dependent as they efficiently rely on 

the quality of the data given in input, especially for the RF algorithm (Pelletier et al., 2016). In 

both cases, it is crucial to spend a fair amount of time verifying the input training and validating 

samples as well as the input SRS images composition used by the classifier algorithms before 

computation in order to avoid classification bias and errors as much as possible. In this study, 

the training and validation samples have been assessed by photo-interpretation of a very-high 

satellite imagery to compensate the lack of in-situ collected data (see section 4.2.1). This 

approach is time and cost effective but can introduce bias that can be discussed and relativized 
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according to the desired use of the produced classifications, even after rigorous visual 

assessment based on empirical knowledge and result sharing amongst peers. Concerning the 

non-supervised classification, Sentinel-2 bands used as input SRS images for the k-means 

algorithm have been visually compared with the produced landcover maps to assess 

dissimilarities (see section 4.4.1). Despite these verifications relative to the user’s interventions, 

the native characteristics of the SRS images used to produce the classifications influence their 

quality. Sentinel-2 SRS images used to produce and assess the classifications have several 

advantages (see section 2.2.2) but also face several limitations that can potentially affect the 

classification results (Transon et al., 2018). Indeed, the medium spatial resolution of the 

Sentinel-2 sensors (i.e., 10-20m) produces SRS images with mixed-pixels, which highly affects 

classification and detection performances (Y. Zhao et al., 2014). Sentinel-2 being equipped with 

optical sensors, they are not exempted of cloud covering and atmospheric perturbations than 

can potentially alter the spectral signal of each and every pixel present in the SRS image despite 

the application of cloud removal procedures (Ebel et al., 2021) or atmospheric correction (Main-

Knorn et al., 2017). In that regard, accuracy assessment of classification derived from SRS images 

is paramount. To further validate the classification methodology developed in this study, 

accuracy assessments using the Kappa index (McHugh, 2012) and the OA index (Alberg et al., 

2004) have been conducted of every produced classification (see sections 4.2, 4.3 and 4.4). Even 

if these indices are widely used in SRS classification accuracy assessment (Foody, 2002), they 

have limitations as it is argued for instance that the Kappa index “attempts to compare accuracy 

to a baseline of randomness although randomness is not a reasonable alternative for map 

construction” (Pontius & Millones, 2011). Classification maps and all the environmental variables 

(e.g., surface water, agricultural areas) derived from SRS images are subjective and must be 

considered as such and not as a ground truth. They do not dispense of in-situ assessments and 

have to be used with caution in accordance with a specific research problematic. For instance, 

the buffalo movement model developed in this thesis only takes into account detected water 

points to simulate buffalo movements in time and space (see section 6.1.4). Therefore, 

undetected surface water via SRS classification or surface water absent during the period of GPS 

measurements in the field, can strongly reduce the model’s capacity to reproduce the observed 

buffalo movements. Thus, the performance of any given spatialized model is closely linked to 

the quality of the environmental data (e.g., SRS detected surface water, collected buffalo 

telemetry data) used as input. 
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8.2.3 On the mechanistic movement and contact model 

 

 

To our knowledge, this study is the first to mechanistically model buffalo and cattle individual 

and collective movements as well as inter-species contacts at three different W/L interfaces. 

However, the observed population samples (i.e., observed telemetry data) represent a small 

proportion of the historic and current geographical range of the two studied species in their 

respective environments. In that regard, the developed movement and contact model can be 

considered as an exploratory model that need to be optimized, refined, and improved upon in 

order to respond in a more in-depth manner to particular sets of research questions related to 

the ecology of buffalo and cattle as well as the risk of pathogen transmission induced by the 

spatial and temporal contacts (direct and indirect) between these two species.  

 

The mechanistic movement and contact model developed in this study is based on behavioral 

metrics that were extrapolated from the analyses done on the observed telemetry data (see 

chapters 6 & 7). These metrics then contributed to define a representative daily behavior based 

on a temporal frequency of one hour, thus composing a cycle of actions of 24 hours repeating 

over the entire duration of the simulation. Therefore, the designed behavioral mechanisms are 

closely linked to the observation of the data potentially introducing bias in the model outputs. 

Indeed, even if the mechanistic movement model induces stochasticity within the simulated 

spatial and temporal movements of the two focal species (se chapter 6 & 7), it does not 

completely free itself from the data and as a result, does not adopt a mechanistic approach purely 

based on empirical knowledge and bibliographical analyses. However, in order to limit bias and 

to test the generality of the model on three W/L interfaces with different ecological and 

geographical configurations, the calibration allowing to fix the alignment and cohesion of 

individuals influencing the collective movement was carried out only on the buffalo herds 

recorded at the Hwange study site (see chapter 6). These parameters remained unchanged for 

the buffalo and cattle movement simulations at the three study sites. However, it is important 

to note that a time lag between the temporal frequency of the simulation (set at 10 minutes) and 

the temporal frequency of the telemetry data (set at one hour) is occurring within the model.  

 

Therefore, for the validation process, only the hourly model outputs from the simulations were 

extracted, thus loosing details in the temporal simulation of the focal species movements. In 

addition, only the herd’s centroids have been used to derivate metrics (e.g., point density, 

maximum convex polygons) to efficiently compare the model outputs with the telemetry data 

and avoid dissimilarities in term of herd’s composition. The contacts extracted from the 
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telemetry database were not in sufficient quantity at the three study sites to be significant 

enough in comparison to the produced simulated data, thus preventing the use of quantitative 

statistical tests. Therefore, the derivation of spatial qualitative metrics (e.g., MCP and point 

density maps) have been used to spatially compare the observed with the simulated movements 

and contacts data (Chapter 6 and 7). 

 

 

8.2.4 On the movement and contact model ecological simulations 

 

 

The movement and contact model produced coherent results in regard to what have been 

extrapolated from the observed telemetry data (Chapter 7). Differences in predictions between 

the model outputs and the behavior of the observed data are noted as the observed and 

simulated contact areas differ in their localization as well as in the total amount of their 

respective surface area. For the three study sites, the simulated and observed contact 

geographical overlays are not totally accurate (especially in Hwange/Dete) and their surfaces, 

even if they are in the same order of magnitude, are not quite similar (Chapter 7). Factors related 

to the method and to variables (environmental, ecological, data related) can explain these 

differences in predictions. The fact that cattle are sent farther than the search for the nearest 

available water source could potentially suggest political claims to the forestry zone by the 

herders and/or ancestral practices as well as other "beliefs" linked to specific surface water 

points. The grazing practices could explain the drift of the contact zone towards the interior of 

the park, especially in the Hwang/Dete study site. Concerning buffalo, they seem to move less 

towards the communal land boundary than the model predicts, which means that there are 

behavioral factors that could explain this particular trend such as the already documented 

avoidance of cattle by buffalo (Valls et al., 2018). Therefore, In-depth field studies in the form of 

semi-structured interviews (Harrell & Bradley, 2009) or multiple-choice questionnaires 

(Mathesius & Krell, 2019), supplemented by detailed information gathering and annotations 

using interactive and/or mental maps (Pánek, 2016) from different stakeholders (e.g., nature 

park agents, herders, local elected officials, village leaders) would significantly help to enrich 

empirical knowledge on buffalo and cattle ecological behaviors (e.g., watering, grazing) over 

time and space, as well as to give a detailed cartographic representation of the specific places of 

watering and grazing privileged according to the seasons and the herder’s decisions. All of these 

data would be processed and analyzed in order to be integrated into the model in the form of 

calibration of already implemented ecological parameters (e.g., alignment, cohesion, frequency 

of water point use, seasonality of grazing areas), thus reinforcing the capacity of the model to 

translate a certain ecological reality as well as more detailed herder’s decision impacting 
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domesticated species movements without harming the potential genericity of the model insofar 

as this questionnaire and mind map protocol can be reproduced on all types of study sites, and 

no additional parameters need to be added to the model in order to simulate movements and 

contacts.  

 

 

8.3  Future directions and perspectives 

 

 

8.3.1 Combining methodologies and approaches to detect and characterize 

a wide array of environmental variables at multi-temporal and spatial 

scales 

 

 

The supervised and non-supervised pixel-based classification of spatial medium resolution SRS 

imagery developed in this study managed to accurately characterize the desired environmental 

variables (e.g., surface water and landcover) at the landscape scale while being open-access, 

semi-automated as well as reproducible. Remote sensing is a burgeoning field of research and is 

increasingly used in ecology where many methodologies are emerging, being tried, tested, and 

discussed (Pettorelli, Laurance, et al., 2014). This development of new methodologies in 

conjunction with an increasing number of SRS sensors (He et al., 2015) could potentially, by the 

combination and thoughtful use of the latter, improve the classification results obtained in this 

study. 

 

To improve on the methodology developed to characterize surface water, the use of satellite 

aperture radar (SAR) images such as European Space Agency’s Senitnel-1 could be decisive and 

potentially allow the detection of open surface water but also vegetated water bodies often found 

in savanna environments (Sankaran & Ratnam, 2013).  A number of approaches automatically 

detect open water based on multi-temporal SAR imagery (Bioresita et al., 2018; Westerhoff et 

al., 2013). These methods could be used as starting point to design an integrative approach ready 

to be applied in the three study sites by combining optical and SAR SRS images with the use of 

a supervised classifier algorithm such as RF. Indeed, surface water has a low backscatter response 

due to its smooth texture in comparison with other types of landcover (Schlaffer et al., 2016). As 

such, surface water can be efficiently identified and discriminated by SAR images, thus providing 

additional information to the classifier algorithm and potentially enhancing its global 

performance in detecting surface water. Moreover, (Hardy et al., 2019) developed an automatic 
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open and vegetated water bodies detection approach using Senitnel-1 SRS images segmentation 

and machine learning (extra trees classifier) that applied to training data automatically derived 

using ancillary data (e.g., digital elevation model, lobal water occurrence layer (Pekel et al., 

2016). The capacity to detect vegetated water bodies in addition to open surface water could 

allow the current surface water classification methodology (see section 4.2.1) to be not only more 

efficient in its overall detection performance but also in its accuracy and wider range of surface 

water spatial assessment. 

 

Concerning the landcover detection, especially the vegetation cover, combining pixel-based and 

object-based classifications could constitutes the way forward as both pixel-based and object-

based classifications have been proven efficient in extracting landcover information from 

different remote sensing images (Blaschke et al., 2014; Lu & Weng, 2007). If these two 

approaches have their respective strengths and weaknesses, by combining the two, the overall 

robustness of the current landcover classification method (see section 4.4.1) can potentially be 

significantly improved. (Chen et al., 2018) developed a classification method through integration 

of pixel-based and object-based classifications for reducing the uncertainties in  mixed objects 

and pixels present in medium spatial resolution SRS images, especially in area with 

heterogeneous landscape such as savanna environments (Huete et al., 1985). In this 

methodology, a pixel-based classification produces class proportions of pixels used to 

characterize the landcover details pixel by pixel. At the same time, the spatial relationships from 

object-based classification results and the spatial relationships between objects are employed to 

characterize the class spatial dependence of each pixel. In the end, the class proportions of pixels 

and the spatial dependence of pixels previously determined are combined to produce a 

classification by a linear optimization model in units of object (Y. Chen et al., 2018). The 

application of such methodology within the framework of this study could potentially reduce 

the current three steps classification methodology (see chapter 4) into a one-step methodology 

while increasing the overall accuracy of the obtained landcover classification.  

 

Another methodological avenue that could be explored with the ambition to potentially improve 

the current methodology developed in this study (see Chapter 4) is the use of deep learning 

algorithms. Deep learning, artificial intelligence derived from machine learning where the 

developed algorithm is able to learn by itself, has become a growing trend in big data analysis 

recently and has been widely and successfully applied in SRS image classification via the use of  

deep convolutional neural network (Minetto et al., 2019). However, the deep convolutional 

neural network methods generally require a large amount of training data as well as a high 

computing power, both considered as limiting factors in the general application of these 

methods in SRS image classification. Nevertheless, more recently, an innovative method 
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emerged using generative adversarial networks based on unsupervised learning process (Duan 

et al., 2018). This approach combines generative and discriminative models as well as the 

incorporation of a non-local layer to the designed deep neural network in order to capture the 

non-local spatial relationships and  improve the network performance. With such methods, the 

automated classified of high and very-high spatial resolution SRS images can be considered 

while providing very accurate results (Cheng et al., 2020; Y. Li et al., 2018). The use of deep 

learning algorithms could prove to be a very good opportunity in characterizing environmental 

variables such as landcover or human infrastructures with very fine details (from 30 centimeters 

of spatial resolution), provided enough computing power as well as sufficient monetary 

investment capacities.  

 

In addition to SRS, unmanned aircraft system (UAS) technology (e.g., drone) is increasingly used 

in ecology (Anderson & Gaston, 2013; Baxter & Hamilton, 2018) as it has several advantages: i) 

user controlled survey and revisit time period allowing potential high temporal resolution, ii) 

balanced spatial resolution enabled by the ability to fly at low altitude and regulate it accordingly 

(Linchant et al., 2015), iii) low operating costs compared to manned airborne and satellite 

observation (Jurdak et al., 2015), iv) can embark various sensors and measuring devices (e.g., 

hyperspectral and multispectral sensors, Lidar, thermal sensors) based on the desired 

application (Anderson & Gaston, 2013), v) reduce interference and disturbance compared to 

direct surveys done by humans (Iv et al., 2006). However UAS monitoring for ecological studies 

involves important decisions such as planning flight paths and heights, considering regulations 

in effect in some areas (e.g., the use of drones to fly over national parks is strongly regulated 

today), as well as image acquisition and analysis that can all contribute to potential radiometric 

(e.g., contrasts in the acquisition image) and geometric (e.g., spatial) errors (J. L. Morgan et al., 

2010). Consequently, trade-offs and decisions have to be made throughout the implementation 

of UAV surveys, from camera positioning or aircraft speed, to the choice of image-processing 

algorithm and embarked sensors (Baxter & Hamilton, 2018). Despite these constraints, the 

versatility and flexibility offered by the use of UAS widen the range of possibilities in addition to 

the already numerous applications offered by remote sensing. Large scale democratization of 

wildlife aerial surveys informing on herd composition, morphology, spatial and temporal 

location is now within grasp (Linchant et al., 2015). Moreover, used in conjunction with SRS 

applications UAS could reinforce the capacity to monitor additional environmental variables 

efficiently and at different spatial and temporal scales (e.g., topographic measurements at very 

high spatial resolution, measurements of soil and vegetation thermal heat). This could 

potentially improve our understanding of how environmental dynamics shape the ecology and 

conservation of large herbivores drastically by providing accurate and very high resolution image 

time series from which environmental variables can be derived. 



 CHAPTER 8 – General discussions & perspectives  

197 
 

 

8.3.2 Improving the intrinsic robustness of the mechanistic movement and 

contact model 

 

 

Although the genericity of the mechanistic model of movements and contacts has been tested 

in this study (Chapter 7), the results produced by the model and their inherent uncertainties 

have not been established and objectively assessed. Indeed, the input to a model is subject to 

potential errors of measurement, absence of information, sampling design, out-of-date 

information, scaling errors, and misreading or poor conceptualization of the driving forces and 

mechanisms of a given system (Burrough et al., 2015). Therefore, by conducting uncertainty and 

sensitivity analyses on the model, it is possible to provide an understanding on how the model’s 

parameters respond to changes in the inputs. Sensitivity analysis (Figure 8.2) study how the 

uncertainty in the output of the model can be apportioned to different sources of uncertainty in 

the model inputs (Saltelli et al., 2006). This analytic procedure could then drastically improve 

the capacity to determine the developed mechanistic model genericity potential. It could also 

allow to efficiently tune the model’s parameters, determine minimum data standards, and 

establish priorities for updating the model.  

 

 

 

Figure 8.2: Figure extracted without modification from (Saltelli et al., 2019). This figure represents a 
schematic of an idealized uncertainty and sensitivity analysis. Uncertainty coming from heterogeneous 
sources is propagated through the model to generate an empirical distribution of the output of interest 
(grey curve). The uncertainty in the model output, captured for example by its variance, is then 
decomposed according to source, thus producing a sensitivity analysis. 
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Amongst the many sensitivity analyses developed for a wide range of models (Iooss & Lemaître, 

2015; Saltelli et al., 2019), most of the existing sensitivity analyses present some conceptual issues 

when applied to spatial models (Lilburne & Tarantola, 2009). Some of the conceptual issues 

concern the need to represent a spatial input with a scalar value, and the desirability of being 

able to simulate auto-correlated inputs and analyze the effect of spatial structure (Lilburne & 

Tarantola, 2009). However, Variance-based sensitivity analyses such as the Sobol method 

(based on the decomposition of the variance) adapted by (Saltelli, 2002) and improved by 

(Tarantola et al., 2006) present several advantages when applied to a spatial model: i) the entire 

model input space is explored; ii) it is a model-free sensitivity measure that is independent of 

the model structure associated assumptions; iii) it is able to distinguish between first-order 

effects (i.e., the impact is comparable to the change) and higher-order effects (i.e., interaction 

modifications or change per capita effect) that account for interactions. This can prove to be 

useful in term of model improvement, parameter estimation, or model simplification; iv) it yields 

more robust sensitivity rankings than other measures such as analysis of variance or regional 

sensitivity analysis (Tang et al., 2007); v) spatial variable inputs are not required to be 

represented in a single scalar value; vi) it can equally be used to assess the sensitivity of time-

dependent input or/and spatial-temporal input (Lilburne & Tarantola, 2009). The application 

of sensitivity analyses to the model developed in this study with the use of the Sobol method 

seems to be the natural and necessary next step. 

 

If the movement and contact mechanistic model developed within the framework of this study 

is intended to be relatively simple with a deliberately limited number of adopted behavioral 

phases and parameters regulating the movements in time and space (chapter 6 and chapter 7), 

more complex mechanisms such as fusion/fission dynamics (Wielgus et al., 2020), influences of 

human infrastructures (Beyer et al., 2016) or inter-species interactions (Schoon et al., 2014) 

could be simulated by judiciously implementing additional spatialized data as model’s input. 

Such data could be the human infrastructures (e.g., fences, settlements) derived from very-high 

spatial resolution SRS images (e.g., Pleïades Neo SRS images from Airbus with a 30 cm spatial 

resolution), high resolution telemetry data (with a frequency of 1 minute) of more individuals 

within the same herd as well as other animal species (e.g., predators, bridge host animal species) 

that drive the food competition/avoidance/pathogen transmission dynamics. These input data 

could reinforce the development of test scenarios to validate or invalidate assumptions based on 

field observations and bibliographical research regarding the influence of the environmental 

variables on the buffalo and cattle movements and contacts at the W/L interface. Moreover, by 

adding these additional data, one could verify their relative importance in regard to model 

accuracy performances, providing a general validation framework confident analyses, 
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extrapolations, and confirmations. The optimal model input determined, the intrinsic 

parameters regulating the movements of the modeled species could then be efficiently 

optimized or modified. The implementation of other self-propelled particle (SPP) models such 

as the Cucker-Smale model (Cucker & Smale, 2007) or models with multiple interaction radii 

(Couzin et al., 2002) (see Yates et al. 2010 for an extensive review of SPP models) in addition to 

the (Grégoire & Chaté, 2004) model already developed within the movement and contact model 

could allow to test, compare and choose the most adequate in reproducing the individual and 

collective movements and contacts, thus reinforcing the model adaptability and genericity.  

 

Important modifications could be applied to reinforce the general robustness and genericity 

capacities of the already developed movement and contact model. By definition, a model is never 

static and in constant evolution. Having this constant in mind, the model have been developed 

as modular and flexible in order to optimize its use and application in a wide array of ecological 

problematics occurring in various ecosystems and environments.  

 

 

8.3.3 Enhancing the model’s capacities to reproduce ecological processes 

 

 

Ecological processes are particularly difficult to model as they are numerous and difficult to 

separate from each other in terms of their explanatory importance (Joergensen & Fath, 2011). 

The aim is not to model as many ecological processes as possible, but to determine those that 

will have an essential impact on a particular behavior of a target animal species. Through the 

development of a model, it is a question of identifying trends and confirming or refuting 

hypotheses in a simple, generic, and reproducible way to promote its apprehension and 

therefore its utilization by multiple stakeholders in a variety of ecological configurations and 

contexts (May, 2019).   

 

In the case of the movement and contact model developed in this thesis, several avenues of 

reflection exist to improve its ability to understand and apprehend the ecological processes of 

buffalo and cattle at the W/L interface scale. One of the first avenue would be to test different 

environmental scenarios and then analyze the impact of these scenarios on the movements and 

contacts of buffalo and cattle at the landscape scale. Based on the principle that the movements 

of the two focal species are a function of the spatial and temporal availability of water and forage 

resources, simulating a drought by modifying the spatial distribution and availability of 

environmental resources in the model input for example, would result in movement and contact 

patterns that could be compared to similar ecological patterns under normal conditions. This 
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would potentially provide indications on the degree of explanatory influence of the 

environmental indicators determined on the movements and contacts of buffalo and cattle 

within their respective environments. In addition, applying these scenarios to the three study 

sites would give us an indication of the developed model’s generality in the sense that the 

different model’s outputs produced would constitute potential comparative indicators of the 

relative weight played by the environmental variables in determining buffalo and cattle contact 

areas. These indicators would then be analyzed in contrast with the landscape configuration of 

the three study sites to ascertain which one mostly influences the buffalo and cattle movements 

and contacts. These drought scenarios could be configured via the different climate models 

already existing (Eyring et al., 2016) and applicable at the landscape scale, as Southern Africa is 

particularly affected by the consequences of climate change (e.g., increase in average 

temperatures, alteration of rainfall frequency and intensity) (Davis & Vincent, 2017).  

 

The second avenue would be to consider and integrate into the model other animal species (e.g., 

carnivores, similar trophic animal species within herbivores) in addition to the two target species 

already considered. Africa is home to more ungulates than any other continent, with the greatest 

species richness (30 species) found in the grass-dominated savannahs (Shorrocks & Bates, 2015). 

In savanna environments, many herbivore species, including ungulates, are known to be 

bottom-up regulated (especially the larger herbivore species) (Codron et al., 2007), which can 

potentially result in competition and increase interaction for browse and grass between 

herbivores especially when food availability is limited (Hopcraft et al., 2010). This competition 

for resources is likely to influence animal movement in regard to specific species interactions. 

In addition, predation can play a crucial role in conditioning the movements patterns and 

interactions of not only wild herbivores but also domesticated species. For example, herbivores 

may reduce the risk of predation proactively, by occupying more secure habitats, by being 

vigilant and by restricting their movements at times when carnivores are most active (Owen-

Smith, 2019). Taking these behaviors into account by the model could only strengthen its ability 

to predict the landscape-scale movements of buffalo and cattle and therefore their potential 

contacts within W/L interfaces where they permanently cohabit with other animal species. Even 

if it means adding complexity into the model it could, in turn, simulate more accurate ecological 

processes (i.e., wild and domestic animal species movements and contacts). This could prove to 

be decisive as Southern African W/L interfaces face an increasing infectious diseases’ threats in 

multi-hosts transmission contexts aggravated by climate change and biodiversity erosion 

(Johnson et al., 2020). Indeed, it is urgent to understand how pathogens are maintained in the 

environment, which implies characterizing the spatio-temporal dynamics of wild animal host 

communities and their role in the chain of diseases transmission (i.e., reservoir, cul de sac, bridge 

species) more accurately (Gortazar et al., 2015). 
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8.3.4 Adding an epidemiological compartment to the movement and 

contact model  

 

 

Having the capacity to model the movement and contacts spatially and temporally between 

wildlife and livestock at the landscape scale offers a wide range of opportunities to expand the 

model’s functionalities. Amongst those functionalities could be the implementation of an 

epidemiological compartment where the movements and contacts of the two focal species in 

relation with their direct environment (e.g., surface water and landcover) would be the starting 

point of pathogen transmission modelling. Pathogen transmission at the W/L interface are 

driven by animal behavior, social structure, and spatial overlap but also by the pathogen 

characteristics (e.g., survival, transmission pathways) as well as environmental and climatic 

factors (e.g., landscape composition and structure, amount of precipitation) (Plowright et al., 

2017). These mono-specific pathogen transmission factors potentially affect, in turn, the inter-

species pathogen transmission dynamics. Facing this multifactorial system, the selection and 

design of an epidemiological modeling compartment into an already developed mechanistic 

model will need to be adapted on the characteristics of a specific pathogen as well as the data 

available to calibrate and assess such approach (Martínez-López et al., 2021). Several modelling 

approaches could be envisioned to understand and apprehend mechanisms involved in 

pathogen transmission dynamics, to quantify transmission rates, to assess how the animal 

population movements and contacts in relation with environmental variables influence 

pathogen transmission. Such models potentially providing means to identify optimal control 

strategies are (Miller et al., 2019): compartment based models (e.g., Multi host Susceptible, 

Infectious, or Recovered (SIR) model) and agent-based models (e.g., network-based models, 

coupled map lattice).  

 

Multi-host SIR models simulate pathogen dynamics in multiple host species explicitly, 

separating these dynamics in different species while considering similar or different 

transmission mechanisms in each species and integrating spatial and environmental modulators 

of disease transmission (Huyvaert et al., 2018). For each host or vector animal species 

considered, independent processes determining transitions among compartments (e.g., disease 

transmission, demographic dynamics, movements, and contacts, …) are designed. These 

compartments are then linked through the specific transmission process (depending on the 

considered pathogen) of infectious individuals to susceptible individuals (Manlove et al., 2019). 

This modelling approach could bring the capacity to infer differences in transmission rates 

(therefore transmission heterogeneity) within and between potential susceptible and host 

animal species at the population scale. Their relative movements and contacts in space and time 
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thanks to the contacts rates and locations provided by the already developed movement model 

would also be considered. 

  

To simulate pathogen transmission and circulation processes at both individual and collective 

scales, where control strategies need to be fine-tuned to a complex system, a spatially explicit 

agent-based models (ABMs) could be considered (see chapter 5). Characteristics of a selected 

pathogen (e.g., infection rates, ability to survive in the environment), agents (considered focal 

animal species attributes and behaviors), as well as interactions between agents and interactions 

between agents and environmental variables would constitute all the elements of the desired 

epidemiological model, following the procedures already developed in research studies (e.g., 

(Martínez-López et al., 2011; Ward et al., 2015). However, such modeling approach should be 

carefully designed as ABMs usually require a lot of computing power, are more difficult to 

replicate, and are subject to caution when fitting the data for validation purposes (Martínez-

López et al., 2021). Moreover, they are still a number of challenges to solve regarding wildlife 

epidemiological modelling as most of the commonly used epidemiological parameters (e.g., 

incubation period, susceptibility, infectiveness, clinical signs, role of environmental factors) are 

difficult to estimate, and isolated, spatialized filed epidemiological data are hard to collect.  

 

Epidemiological models that explicitly include contact networks and spatial structure have 

become increasingly used (Huyvaert et al. 2018). However, it is important to note that estimating 

contacts remains challenging and usually only possible at small scales (see chapter 7) while 

factors influencing interactions, and as a result pathogen transmission, may vary from one area 

to another (Miguel, Grosbois, Caron, Boulinier, Fritz, Cornélis, Foggin, Makaya, Tshabalala, & 

Garine-Wichatitsky, 2013). The spatial and temporal scales have to be carefully determined as 

models integrating the ability to simulate complex phenomenon at different spatial scales within 

a same temporal time frame can be complex. Indeed, W/L interfaces are dynamic environments 

evolving as the environment changes in space and time (Vercauteren et al., 2021). ABMs may 

capture all this complexity and describe ecological/epidemiological processes as they actually 

occur but a complex model does not necessarily ensure more credible results (Martínez-López 

et al., 2021). A model should not be more complex than necessary to fulfill its goals but, at the 

same time, transdisciplinary approaches are increasingly considered as necessary to efficiently 

apprehend wildlife livestock pathogen transmission (De Garine-Wichatitsky et al., 2021). 
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8.3.5 Towards an “Eco Health” approach  

 

 

Pathogen transmissions from wildlife to livestock increases mortality and reduce livestock 

productivity, thus causing economic damages to the agricultural sector through indirect losses 

associated with cost of control, loss of trade, decreased market values and food insecurity 

(Dehove et al., 2012). In addition, pathogen transmission from livestock to wildlife poses 

potential threats to entire ecosystems, affecting biodiversity as well as modifying animal’s 

behavior and composition of animal populations (Daszak et al., 2000). The economic, social, 

health and ecological consequences associated with the inter-species transmission of pathogens 

within animal communities are maintained and amplified by anthropic actions. The conversion 

of natural habitats into production landscapes, the intensification of international travel and 

wildlife trade are all facilitating exposure to novel pathogen communities (Patz et al., 2008). 

The decreasing wildlife diversity and the isolation of ecological communities through habitat 

fragmentation reinforce the circulation of pathogens and their transmission (Keesing et al., 

2010). Facing these global issues, standard public health approaches that are based on the one 

host/one pathogen relationships are out of date, all the more so as some consequences 

associated with the current pathogen transmission trend have yet to be realized.  

 

Until recently, spill-over/spill-back or reservoir hosts frequencies were analyzed within localized 

animal populations living in W/L interfaces and considered as static epidemiological and 

ecological functions (Siembieda et al., 2011). Now, pathogen transmission is considered as 

dynamic, diverse, and bidirectional with transmission phenomenon occurring freely within and 

between wildlife and livestock species at the W/L interface scale (Wells et al., 2018). This change 

of paradigm is explained by the emergence of integrated approaches to health such as One 

Health, EcoHealth and Planetary Health (Buse et al., 2018; Lerner & Berg, 2017). The EcoHealth 

approach (Box 1) is difficult to conduct as it relies on both empirical and flexible, context-specific 

methodologies (Charron, 2012). However, six principles have been designed to facilitate the 

integration and implementation of such approach in a variety of case study: i) system thinking 

that can connect the different components of W/L interfaces (e.g., the ecology, socio-cultural 

context, the governance and the economy) at different temporal and spatial scales to apprehend 

the ecology of a particular pathogen, ii) transdisciplinary research that implies the collaboration 

of a multitude field of research as well as the gathering of academic and non-academic actors to 

tackle health issues at the W/L interface, iii) participation to include local stakeholders and 

populations such as farmers and community members, thus diversifying the shared knowledge 

and creating potential viable alternatives, iv) sustainability as all the tools and methodologies 

developed within the frame of an EcoHealth approach have to protect ecosystems and improve 
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degraded environments, v) gender and social equity as the EcoHealth approach promotes the 

suppression of unequal and unfair sanitary situations that impact the health and well-being of 

already vulnerable populations, vi) knowledge to action as a process involving a wide variety of 

stakeholders, where research, tools and methodologies produce knowledge that are, after 

collegial consultation, integrated into co-designed management options.  

 

So far, examples integrating these various principles are few (Charron, 2012) but research 

projects adopting part or the entirety of EcoHealth principles start to emerge. The Hum-Ani 

project supported by the BNP Paribas Foundation through its “Climate & Biodiversity Initiative” 

and led by Eve Miguel, researcher in Ecology and Epidemiology at the French National Research 

Institute for Sustainable Development (IRD) is one example amongst many (see 

https://en.ird.fr/project-hum-ani-contacts-among-animals-and-humans-and-infectious-risk). 

This project aims to understand how loss of biodiversity and climate change influence the 

contacts between wildlife and domesticated animals, thus increasing the risk of pathogen 

circulation and transmission amongst and in between them. This transdisciplinary project is 

based on the combination of three main research pillars that are the ecology, the epidemiology, 

and the social sciences. The conceptualization of the research questions, the team composition 

and the partnership have all been thought of as part of an integrative approach.  

 

The movement and contact model developed in this thesis followed a pluri-disciplinary 

approach as it combines several fields of research such as remote sensing, spatial modelling, and 

ecology. The model’s capacities to integrate heterogenous spatialized data, to simulate at 

BOX 8.1 

 

The definition of the EcoHealth approach by Dominique F. Charron 

 

“ Ecosystem approaches to health (or EcoHealth research) formally connect ideas of 

environmental and social determinants of health with those of ecology and systems 

thinking in an action-research framework applied mostly within a context of social and 

economic development. Ecosystem approaches to health focus on the interactions 

between the ecological and socio-economic dimensions of a given situation, and their 

influence on human health, as well as how people use or impact ecosystems, the 

implications for the quality of ecosystems, the provision of ecosystem services, and 

sustainability ” (Charron, 2012) 

 

https://en.ird.fr/project-hum-ani-contacts-among-animals-and-humans-and-infectious-risk
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different temporal and spatial scales, to consider multiple animal species at individual and 

collective scales as well as to be implemented with additional complementary features make this 

mechanistic model the perfect tool to address animal population health issues at the interface 

scale while considering using it to promote an EcoHealth approach. This thesis lays the 

conceptual foundations of what could be the first step in the construction of a generic model 

allowing to combine complementary disciplines while remaining within the methodological 

framework imposed by the principles of the EcoHealth approach. The developed model can 

already demonstrate the influence of environmental variables on the contacts and movements 

of a wild and a domesticated animal species at the landscape scale in its current state (see 

chapter 6 and chapter 7). After optimization and improvement, this mechanistic model could 

be a formidable tool to apprehend, explain and prevent the risk of pathogen transmission 

between wildlife and livestock at the W/L interface scale while being used as a catalyst for 

exchange, discussion, and education within the scientific community but also among local 

populations and stakeholders. Such methodological tool could be beneficial as it could 

potentially convince, by incarnating a concrete application of an EcoHealth approach, of the 

need to radically shifting  attitudes toward wildlife (De Garine-Wichatitsky et al., 2021). While 

the challenges concerning the health and well-being of human and animal populations are ever 

increasing due to climate change and anthropic pressure, it is urgent to consider wildlife more 

as an asset than a problem to be controlled (du Toit et al., 2017) as well as to properly establish 

collective and aligned strategic use of ecological complementarities between livestock and 

wildlife in order to promote coexistence (Fynn et al., 2016). We humbly hope that this thesis will 

encourage multi-disciplinary approaches in order to collectively solve major ecological issues 

that face W/L interface in Southern Africa but also in other parts of the world.  

 

 

8.4 A last word 

 

 

Currently, discussions regarding human–nature interactions, which will surely affect W/L 

interfaces, are numerous. Questions are being raised about land sparing (for biodiversity 

protection) versus land sharing (Fischer et al., 2014), about the role of protected areas and how 

multi-use landscapes must be managed (Sayer, 2009), and about sustainable use versus 

protectionist ideologies (Cretois et al., 2019). The science of coexistence that is being opposed 

to the science of spared landscapes (i.e., protected areas) promotes the presence of wildlife in 

multi-use landscapes. However, the strategic utility and practicality of such science are 

contested (Linnell et al., 2020).  
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Pastoralism as well as human societies in general need to reinvent themselves to determine their 

respective contributions to future food and nutrition security systems worldwide, while reducing 

their impact on the climate, the environment and wildlife. Globally, pastoralism constitutes on 

average 37% of the agricultural gross domestic product (Alexandratos & Bruinsma, 2012) and is 

one of the most important and rapidly expanding commercial agricultural sectors worldwide 

(Thornton, 2010). Considering this trend, spatialized mechanistic model inserted into an “Eco 

Health” approach considering livestock, wildlife, humans, and environment in constant 

interactions could contribute to achieve a fair balance and mutual benefits across sectors 

(Kleczkowski et al., 2019) and mitigate the increasing risk of pathogen transmission between 

wild and domestic animal species at the W/L interface. We believe that such approach needs to 

be further developed and encouraged by the scientific community and designed as a diagnostic 

tool to support decision-making in a constantly changing world. This thesis humbly promotes 

the resilience of ecosystems within virtuous and encompassing dynamics for both animal welfare 

and the welfare of human societies.  
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9.1 Contexte général 

 

 

En Afrique australe, les populations humaines vivant sur des terres communales situées en 

bordure d'aires protégées ont considérablement augmenté ces dernières années (Cleland & 

Machiyama, 2017; Wittemyer et al., 2008). Cette explosion de la population humaine favorise 

les contacts entre la faune sauvage, les hommes et leur bétail dans les zones où ils coexistent 

(Bengis, Kock, & Fischer, 2002; de Garine-Wichatitsky et al., 2013). Par conséquent, les zones 

d'interface sont confrontées à plusieurs problèmes liés à la coexistence entre l'homme et la faune 

sauvage (Andersson et al., 2017) et parmi eux, le risque de transmission d'agents pathogènes 

entre les espèces sauvages et domestiques (Caron et al., 2013; Miguel et al., 2013). Depuis 

plusieurs décennies (e.g., l’épidémie du SIDA ayant officiellement commencée en 1981), le 

nombre de maladies humaines émergentes ou ré-émergentes a considérablement augmenté, et 

parmi celles-ci, 75% ont une origine zoonotique. Les ongulés sont partie intégrante des sociétés 

humaines de par les activités d’élevage et sont considérés comme l'un des principaux groupes 

d'espèces responsables des zoonoses (Woolhouse et al., 2012). La proximité spatiale entre les 

populations a été clairement identifiée comme l'un des facteurs de risque cruciaux dans la 

transmission d’agents pathogènes entre espèces (Roche et al., 2012). Cependant, la nature, la 

fréquence et la localisation de ces contacts entre ongulés sauvages et domestiques restent 

largement inconnues. Bien que l’utilisation d’outils telles que la télémétrie ou encore la 

télédétection permettent le suivi dans le temps et dans l’espace d’espèces animales, il existe 

encore de nombreux verrous techniques et scientifiques afin de mesurer, analyser le mouvement 

animal en relation avec l’environnement. Par exemple, les mouvements des espèces animales 

sauvages sont-ils comparables aux mouvements des espèces animales domestiquées ? Est-ce que 

le rapport à l’environnement de chaque espèce animale conditionne leurs mouvements 

respectifs ? Comment simuler, dans le temps et l’espace les mouvements d’espèces animales avec 

des données hétérogènes ? 

 

Dans ce contexte, la présente thèse, qui s'inscrit dans le cadre du projet TEMPO (TElédétection 

et Modélisation sPatiale pour la mObilité animale), vise à 1) Caractériser les variables 

environnementales, à l'échelle du paysage, qui influencent potentiellement les mouvements 

d'une espèce d'ongulés sauvages (le buffle - Syncerus caffer caffer) et d'une espèce d'ongulés 

domestiques (les vaches - Bos taurus & Bos indicus) à trois interfaces différentes situées en 

Afrique australe, et plus particulièrement au Zimbabwe (Hwange/Dete, Gonarezhou/Malipati  

and Kruger/Pesvi), 2) Développer un modèle mécaniste pour simuler les mouvements des deux 

espèces animales cibles, à l'échelle de l'individu et du troupeau, en relation avec la saisonnalité 

des eaux de surface et le type d’occupation du sol représentatif de leurs environnements 
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respectifs, 3) Déterminer la nature, la fréquence et la localisation des contacts entre les deux 

espèces animales cibles, le rôle joué par les variables environnementales (i.e., les eaux de surface 

et l’occupation du sol) et les comportements des éleveurs, en l'occurrence, en combinant les 

modèles mécanistes de mouvements développés. 

 

 

9.2 Une thèse structurée en quatre temps 

 

 

Bien que cette étude s'inscrive dans la continuité des travaux scientifiques menés depuis des 

années sur ces zones géographiques et est rendue possible grâce à la collecte et l'analyse de 

données d'observation (e.g., données de télémétrie) (Miguel, 2012; Valls Fox, 2015), l'approche 

de modélisation développée au cours de ce travail est exploratoire dans le sens où il s'agit d'une 

méthode basée principalement sur des connaissances issues de la littérature scientifique, de 

l'expérience scientifique ainsi que de l’expérience de terrain de l’ensemble des contributeurs. 

 

Cette thèse repose sur une approche pluridisciplinaire en combinant plusieurs disciplines 

complémentaires et est structurée suivant quatre étapes méthodologiques principales (Figure 

9.1) détaillées respectivement dans les chapitres 3, 4, 6 et 7 de ce manuscrit de thèse. Le chapitre 

3 a synthétisé la littérature scientifique afin d'identifier concrètement les variables 

environnementales influençant les déplacements des deux espèces animales cibles dans le temps 

et l'espace (ce chapitre est représenté sous la forme d'un article scientifique déjà publié). Le 

chapitre 4 a détaillé la méthodologie développée pour caractériser, via l'utilisation de méthodes 

de classification dérivées des images SRS, les variables environnementales considérées (i.e., les 

surfaces en eau et l’occupation du sol) qui influencent les mouvements des deux espèces 

animales cibles dans l'espace et le temps. Le chapitre 6 a décrit en détail les principes du modèle 

mécaniste spatialisé permettant de simuler les mouvements des buffles en fonction de la 

variabilité saisonnière des surfaces en eau dans l'espace et le temps. Le chapitre 7 a expliqué les 

principes du modèle de contact buffles-vaches en fonction de la disponibilité en eau et de la 

structure spatiale de l’occupation du sol à l'échelle du paysage dans trois interfaces W/L 

différentes. Les autres chapitres permettent de contextualiser et de décrire les enjeux 

écologiques et thématiques (chapitre 1 et chapitre 2), les enjeux méthodologiques (chapitre 5) 

et de discuter ces choix ainsi que les résultats produits en considérant les perspectives de ce 

travail de thèse (chapitre 8). 
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Figure 9.1: Figure synthétisant l'approche générale de la thèse, les chapitres correspondants dans lesquels 
les méthodologies spécifiques sont détaillées ainsi que le domaine de recherche associé à chacun des 
chapitres. Les chapitres figurant en gris sont des chapitres de contextualisation du travail de thèse réalisé.  

 

 

9.3 Approches méthodologiques 

 

 

Les trois interfaces considérées dans cette étude présentent des caractéristiques géographiques 

et écologiques différentes mais sont toutes concernées par une variabilité temporelle et spatiale 

prononcée des eaux de surface ainsi que par des paysages très hétérogènes, typiques des savanes 

arborées s'épanouissant en climat semi-aride (voir chapitre 2). Ces deux caractéristiques 

environnementales communes influencent de facto la disponibilité des ressources en eau et en 

fourrage, conditionnant et contraignant les mouvements des buffles et des vaches dans l'espace 

et le temps (voir chapitre 6 et chapitre 7). Après analyse de la littérature scientifique, les eaux de 

surface, les précipitations, l’occupation du sol et les feux de savane sont apparus comme des 

facteurs clés ayant un impact sur les mouvements des buffles et du bétail. Les feux de savane 

sont par essence très hétérogènes dans leur amplitude et leur fréquence dans l'espace et le temps. 

Leur occurrence peut impacter les déplacements des buffles et du vaches mais de manière 

ponctuelle et non régulière. Les précipitations sont également très localisées et conditionnent la 

disponibilité des ressources en eau et en fourrage en Afrique australe. Pour ces raisons, les eaux 

de surface et l’occupation du sol sont les deux indicateurs environnementaux qui ont été choisis 

pour modéliser spatialement les mouvements des buffles et des vaches car ils peuvent être 

efficacement caractérisés et discriminés dans l'espace et le temps à l'échelle du paysage via 

l'utilisation de la télédétection (Rumiano et al., 2020). 
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Une méthodologie simple en trois étapes, reproductible, a été développée pour caractériser la 

disponibilité spatiale et saisonnière des eaux de surface, pour discriminer les surfaces agricoles 

et pour déterminer l’occupation du sol à l’échelle paysagère, soit à une résolution spatiale de 10 

mètres (chapitre 4). Des méthodes de classifications supervisées (pour la classification des eaux 

de surface et des surfaces agricoles) et non supervisées (pour les classifications de l’occupation 

du sol) basées sur l’approche pixels des images satellitaires open-source (i.e., Sentinel-2) ont été 

développées. Cette méthodologie permet de caractériser des environnements complexes et 

hétérogènes sur de larges zones à l'échelle du paysage où les données in-situ (par exemple des 

échantillons de paysage localisés par GPS, des connaissances empiriques sur les structures du 

paysage) sont manquantes ou inexistantes. L'ensemble des procédures de classification a été 

développé à l'aide de logiciels (i.e., QGIS) et d'environnements de programmation (i.e., R) libres, 

ce qui le rend accessible et reproductible même si les ressources informatiques et financières 

sont limitées. De plus, cette méthodologie peut être facilement appréhendée même par des non 

spécialistes en télédétection, ce qui accroit potentiellement son usage dans le champ 

disciplinaire de l’écologie.  

 

Une approche de modélisation mécaniste spatialisée intégrant un modèle de particules 

autopropulsées (SPP) pour simuler les mouvements individuels et collectifs en relation avec les 

variations spatiales et temporelles de la disponibilité en eau de surface a été développée (voir 

chapitre 6). Les données de télémétrie des buffles des trois sites d'étude ont été utilisées comme 

données de référence pour les processus de calibration et de validation du modèle (voir chapitre 

6). Le modèle mécaniste a été spatialisé en utilisant le langage métier Ocelet, spécialisé dans la 

modélisation de dynamiques spatiales (Degenne, 2012). Ce langage repose sur le concept de 

graphe d’interactions (Harary, 1969) afin de manipuler l’information géographique au sein d’un 

environnement de développement (voir Chapitre 5).  

 

Le modèle mécaniste reproduisant les mouvements du buffle dans l'espace et le temps à l'échelle 

du paysage a ensuite été complété par d'autres entités telles que le vaches et l’occupation du sol 

pour modéliser les contacts entre une espèce animale sauvage et une espèce animale 

domestiquée sur les trois sites d’étude considérés (voir chapitre 7). 

 

 

9.4 Principaux résultats 

 

Revue littéraire : 

Une analyse bibliographique approfondie (Rumiano et al., 2020) a été réalisée afin de consolider 

et de rassembler les connaissances actuelles sur les utilisations potentielles de la télédétection 
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pour étudier la sympatrie des ongulés sauvages/domestiques dans les environnements 

d'interface de savane d’Afrique australe et pour identifier les facteurs environnementaux qui 

influencent les mouvements des buffles et des vaches à l'échelle du paysage (voir chapitre 3). Au 

total, 327 références bibliographiques (e.g., articles scientifiques, thèses) ont été sélectionnées 

et analysées après référencement et utilisation de mots clé (i.e., "eau de surface" ; "précipitations" 

; "pluie" ; "végétation" ; "feu" avec l'ajout des mots-clés suivants : "télédétection" ; "imagerie 

d'observation de la Terre" ; "couverture du sol" ; "utilisation du sol" ; "indice spectral" ; "radar" ; 

"optique" ; "savane"). Les eaux de surface, les précipitations, l’occupation du sol et les feux de 

savane sont apparus comme des facteurs environnementaux clés ayant un impact sur les 

mouvements des buffles et du vaches au sein des environnements de savane arborée d’Afrique 

australe. Les résultats de cette revue de la littérature scientifique soulignent la nécessité pour les 

écologistes du mouvement animal de renforcer leurs connaissances en matière de télédétection 

et/ou d'accroître les collaborations entre différentes disciplines scientifiques comme l’écologie 

fonctionnelle et la géomatique par exemple (voir chapitre 3) afin de caractériser plus 

efficacement les variables environnementales à différentes échelles spatiales et temporelles sur 

des zones d’étude où les données observées peuvent manquer ou trop couteux et difficiles à 

collecter. 

 

Classification : 

La précision de la classification supervisée des eaux de surface est très élevée pour les trois sites 

d'étude malgré quelques disparités (voir chapitre 4). En effet, la classification supervisée n'a pas 

été aussi efficace à Hwange/Dete par rapport aux deux autres sites d’étude. Les variations de 

précision dans la classification supervisée des eaux de surface de la série temporelle de 

Hwange/Dete sont également notables. Pour les deux autres sites d'étude, la précision de la 

classification reste stable pour l'ensemble de la série temporelle.  

Concernant classification des surfaces agricoles, la précision de la classification supervisée des 

surfaces agricoles est optimale pour Hwange/Dete mais plus nuancée pour 

Gonarezhou/Malipati et Kruger/Pesvi avec un nombre équivalent de confusions entre les deux 

classes de classification (i.e. "zones agricoles" et "autres"). Cependant, la discrimination des 

surfaces agricoles pour Gonarezhou/Malipati et Kruger/Pesvi restent exploitables et sont avant 

tout concernées par des pixels faux positifs (voir chapitre 4). 

Les classifications non supervisées de l’occupation du sol des trois sites d'étude selon la typologie 

choisie (voir chapitre 4) ont des résultats comparables. Pour les trois sites d'étude la classe des 

zones arbustives est principalement confondue avec la classe des forêts mixtes. La classe des 

forêts mixtes et des arbustes est également confondue avec la classe des forêts, bien que la 

confusion soit moins prononcée à Hwange/Dete. Dans l'ensemble, les classes de forêt, d'arbustes 

mixtes et de prairies et de sols nus sont bien classées (voir chapitre 4).  
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Modélisation : 

L’approche de modélisation choisit a démontré comment un modèle mécaniste peut être 

spatialisé et combiné avec des données de télémétrie et de télédétection pour simuler les 

mouvements des animaux en relation avec une ou des variables environnementales caractérisées 

à l'échelle du paysage. Le développement de ce modèle a testé et confirmé la capacité d'un 

langage spécifique au domaine tel que Ocelet (voir section 5.4.2) à modéliser efficacement des 

entités hétérogènes (i.e. individus de buffles, troupeau de buffles, eau de surface) dans des 

systèmes complexes spatialisés et temporisés à travers leurs interactions (chapitre 6). Pour la 

première fois à notre connaissance, les mouvements des buffles à l'échelle individuelle et 

collective ont été simulés dans des environnements hétérogènes et sur trois sites d’étude 

différents par l'utilisation d'un modèle « Self-propelled particle » (SPP). Ce cadre de 

modélisation nécessitant peu de paramètres et reproductible peut être considéré comme une 

alternative aux outils de modélisation existants dans la compréhension des mouvements des 

animaux par rapport à la sélection de l'eau dans plusieurs contextes et environnements 

écologiques.   

 

Le modèle de mouvements et de contacts entre les buffles et les vaches a démontré qu'avec un 

ensemble de règles simples combinant les besoins quotidiens en ressources de base (c'est-à-dire 

l'eau et les ressources fourragères) et les pratiques d'élevage (c'est-à-dire éviter les champs de 

cultures en croissance), les mouvements des buffles et des vaches, ainsi que leurs zones 

respectives et l'intensité des contacts dans trois zones d'interface différentes en Afrique australe, 

sont simulés et reproduits. L'observation des zones de chevauchement et de contact inter-

espèces modélisées et observées dans l'espace et le temps (voir chapitre 7) donne une idée de la 

reproductibilité globale par le modèle des systèmes écologiques étudiés. Par exemple, au sein de 

paysages hétérogènes, c'est la distribution de l'eau de surface disponible qui concentre 

spatialement les mouvements des animaux autour des points d'eau et créée des interfaces 

potentielles entre espèces animales sauvages et domestiques. La nécessité pour les buffles et les 

vaches de chercher quotidiennement un point d'eau les contraint au sein d’une zone d'interface 

délimité par la répartition spatiale de la ressource en eau et l’évolution de sa disponibilité. Le 

modèle parvient à reproduire cette dynamique spatio-temporelle (voir chapitre 7).  

 

Cette étude révèle que la combinaison de la télédétection et de la modélisation spatiale pour 

mieux comprendre les mouvements et les contacts les buffles et les vaches dans les 

environnements de savane arborée semi-arides fournit un cadre opérationnel qui pourrait 

potentiellement être répliqué dans d'autres types d'interfaces où différentes espèces sauvages et 

domestiques interagissent. La capacité de produire des cartes de contacts potentiels peut, à 

terme, permettre d’estimer le risque, sa localisation et prioriser ainsi la surveillance. De plus, 
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l'implémentation d'un compartiment épidémiologique spatialisé dans le modèle mécaniste de 

mouvement et de contact déjà développé pourrait potentiellement améliorer la compréhension 

générale et l'appréhension de la transmission et de la circulation des pathogènes entre les 

espèces sauvages et domestiques à l’échelle spatiale des interfaces entre espaces communaux et 

aires naturels protégées. 

 

 

9.5 Eléments de discussion et perspectives 

 

 

La classification supervisée et non supervisée basée sur les pixels de l'imagerie satellitaire à 

moyenne résolution spatiale développée dans cette étude a réussi à caractériser avec précision 

les variables environnementales souhaitées (par exemple, l'eau de surface et la couverture 

végétale) à l'échelle du paysage tout en étant en accès libre, semi-automatique ainsi que 

reproductible. La télédétection est un domaine de recherche de plus en plus utilisée en écologie 

où de nombreuses méthodologies émergent, sont essayées, testées et discutées (Pettorelli, 

Laurance, et al., 2014). Ce développement de nouvelles méthodologies en conjonction avec un 

nombre croissant de capteurs satellite (He et al., 2015) pourrait potentiellement, par la 

combinaison et l'utilisation réfléchie de ces derniers, améliorer les résultats de classification 

obtenus dans cette étude. Plusieurs méthodes peuvent ainsi potentiellement être envisagées afin 

d’améliorer la méthode de classification développée dans le cadre de cette thèse : i) l'utilisation 

de l’imagerie satellitaire radar (SAR) pour détecter les surfaces en eau (Sankaran & Ratnam, 

2013), ii) la combinaison des classifications orientées pixel et orientées objet (Blaschke et al., 

2014; Lu & Weng, 2007), iii) l'utilisation d'algorithmes d'apprentissage profond comme la 

classification d'images satellitaires via l'utilisation d'un réseau de neurones convolutifs profonds 

(Minetto et al., 2019), iv) la technologie des systèmes d'aéronefs sans pilote (UAS) (par exemple, 

les drones) qui est de plus en plus utilisée en écologie (Anderson & Gaston, 2013; Baxter & 

Hamilton, 2018). 

 

Bien que la généricité du modèle mécaniste des mouvements et des contacts ait été testée dans 

cette étude (voir chapitre 7), les résultats produits par le modèle et leurs incertitudes inhérentes 

n'ont pas été établis et évalués objectivement. En effet, les données d'entrée d'un modèle sont 

sujettes à des erreurs potentielles de mesure, d'absence d'informations, de plan 

d'échantillonnage, d'informations obsolètes, d'erreurs d'échelle et de lecture erronée ou de 

mauvaise conceptualisation des forces motrices et des mécanismes d'un système donné 

(Burrough et al., 2015). Par conséquent, en effectuant des analyses d'incertitude et de sensibilité 

sur le modèle, il serait potentiellement possible de fournir une compréhension sur la façon dont 
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les paramètres du modèle répondent aux changements opérés sur les données utilisées en entrée 

du modèle. L'analyse de sensibilité étudie comment l'incertitude dans la sortie du modèle peut 

être attribuée à différentes sources d'incertitude dans les entrées du modèle (Saltelli et al., 

2006). Cette procédure analytique pourrait améliorer considérablement la capacité à 

déterminer le potentiel de généricité du modèle mécaniste développé tout en ajustant 

efficacement les paramètres du modèle pour corroborer la structure de ce dernier. Cela 

permettrait également d’identifier les régions critiques dans l'espace en fonction des données 

d’entrée, de déterminer les normes minimales de données d’entrées et d’établir les priorités pour 

la mise à jour du modèle. 

 

La capacité de modéliser spatialement et temporellement les mouvements et les contacts entre 

la faune sauvage et le bétail à l'échelle du paysage offre un large éventail de possibilités pour 

étendre les fonctionnalités du modèle. Parmi ces fonctionnalités, on pourrait mettre en œuvre 

un compartiment épidémiologique où les mouvements et les contacts des deux espèces animales 

cibles en relation avec leur environnement direct (e.g., les eaux de surface et l’occupation du sol) 

seraient le point de départ de la modélisation des transmissions et des circulations d'agents 

pathogènes. Les transmissions et les circulations de pathogènes aux interfaces entre faune 

sauvage et bétail sont déterminées par le comportement des animaux, la structure sociale et le 

chevauchement spatial, mais aussi par les caractéristiques des pathogènes (e.g., les voies de 

transmission) ainsi que par des facteurs environnementaux et climatiques (e.g., la composition 

et la structure du paysage, la quantité de précipitations) (Plowright et al., 2017). Face à ce 

système multifactoriel, la sélection et la conception d'un compartiment de modélisation 

épidémiologique dans un modèle mécaniste déjà développé devront être adaptées en fonction 

des caractéristiques d'un pathogène spécifique ainsi que des données disponibles pour calibrer 

et évaluer une telle approche (Martínez-López et al., 2021). Plusieurs approches de modélisation 

peuvent être envisagées pour comprendre et appréhender les mécanismes impliqués dans la 

dynamique de la transmission des agents pathogènes, pour quantifier les taux de transmission, 

pour évaluer comment les mouvements et les contacts des populations animales en relation avec 

les variables environnementales influencent la transmission des agents pathogènes et, à terme, 

pour identifier les stratégies de contrôle optimales (Miller et al., 2019) : modèles basés sur les 

compartiments (par exemple, le modèle SIR (Susceptible, Infectious, or Recovered) multi-hôte) 

et modèles basés agents (e.g., modèles basés sur les réseaux). 

 

Le modèle de mouvement et de contact développé dans cette thèse a suivi une approche 

pluridisciplinaire car il combine plusieurs domaines de recherche tels que la télédétection, la 

modélisation spatiale et l'écologie. Les capacités du modèle à intégrer des données spatialisées 

hétérogènes, à simuler à différentes échelles temporelles et spatiales, à considérer de multiples 
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espèces animales à l'échelle individuelle et collective, ainsi que sa modularité font de ce modèle 

mécaniste un outil utile pour aborder les questions de santé des populations animales à l'échelle 

des interfaces bétail/faune sauvage tout en envisageant de l'utiliser pour promouvoir l'approche 

« EcoHealth » (Charron, 2012). En effet, cette thèse pose les bases conceptuelles de la 

construction d'un modèle générique permettant de combiner des disciplines complémentaires. 

Le modèle développé peut déjà démontrer l'influence des variables environnementales sur les 

contacts et les déplacements d'une espèce animale sauvage et d'une espèce animale domestique 

à l'échelle du paysage dans son état actuel (voir chapitre 6 et chapitre 7). A terme, après 

optimisation et amélioration, ce modèle mécaniste pourrait être un formidable outil pour 

appréhender, expliquer et prévenir le risque de transmission de pathogènes à l’interface 

bétail/faune sauvage tout en servant de catalyseur d'échange, de discussion et de transfert de 

compétences au sein de la communauté scientifique mais aussi auprès des populations locales 

et des divers acteurs concernés (e.g., institution publiques). Un tel outil méthodologique 

pourrait être bénéfique car il pourrait potentiellement convaincre, par la capacité de poser un 

diagnostic concret des contacts entre faune sauvage et domestiquée à l’échelle des interfaces, de 

la nécessité de changer radicalement les attitudes envers la faune sauvage (De Garine-

Wichatitsky et al., 2021). Alors que les défis concernant la santé et le bien-être des populations 

humaines et animales ne cessent d'augmenter en raison du changement climatique et de la 

pression anthropique, il est urgent de considérer la faune sauvage davantage comme un atout 

que comme un problème à contrôler (du Toit et al., 2017) ainsi que de bien établir une utilisation 

stratégique collective et alignée des complémentarités écologiques entre le bétail et la faune 

sauvage afin de promouvoir une coexistence vertueuse (Fynn et al., 2016). Nous espérons 

humblement que cette thèse encouragera les approches pluridisciplinaires afin de résoudre 

collectivement les problèmes écologiques majeurs auxquels les interfaces bétail/faune sauvage 

sont confrontées en Afrique australe mais aussi dans d'autres parties du monde. 
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