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A B S T R A C T

Several internet-based surveillance systems have been created to monitor the web for

animal health surveillance. These systems collect a large amount of news dealing with out-

breaks related to animal diseases. Automatically identifying news articles that describe the

same outbreak event is a key step to quickly detect relevant epidemiological information

while alleviating manual curation of news content. This paper addresses the task of

retrieving news articles that are related in epidemiological terms. We tackle this issue using

text mining and feature fusion methods. The main objective of this paper is to identify a

textual representation in which two articles that share the same epidemiological content

are close. We compared two types of representations (i.e., features) to represent the docu-

ments: (i) morphosyntactic features (i.e., selection and transformation of all terms from the

news, based on classical textual processing steps) and (ii) lexicosemantic features (i.e.,

selection, transformation and fusion of epidemiological terms including diseases, hosts,

locations and dates). We compared two types of term weighing (i.e., Boolean and TF-IDF)

for both representations. To combine and transform lexicosemantic features, we compared

two data fusion techniques (i.e., early fusion and late fusion) and the effect of features gen-

eralisation, while evaluating the relative importance of each type of feature. We conducted

our analysis using a corpus composed of a subset of news articles in English related to ani-

mal disease outbreaks. Our results showed that the combination of relevant lexicosemantic

(epidemiological) features using fusion methods improves classical morphosyntactic repre-

sentation in the context of disease-related news retrieval. The lexicosemantic representa-

tion based on TF-IDF and feature generalisation (F-measure = 0.92, r-precision = 0.58)

outperformed the morphosyntactic representation (F-measure = 0.89, r-precision = 0.45),

while reducing the features space. Converting the features into lower granular features

(i.e., generalisation) contributed to improving the results of the lexicosemantic representa-

tion. Our results showed no difference between the early and late fusion approaches. Tem-

poral features performed poorly on their own. Conversely, spatial features were the most

discriminative features, highlighting the need for robust methods for spatial entity extrac-

tion, disambiguation and representation in internet-based surveillance systems.
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1. Introduction

The globalisation of animal productmovements, the increased

mobility of people, and the deliberate or accidental introduc-

tion of non-native pathogen agents, as well as their possible

vectors, are major drivers of pathogen dissemination across

countries and continents [1,2]. Animal diseases have detri-

mental impacts on animal health and the economy in terms

of lost revenues and societal costs [3]. Some diseases have

the potential to rapidly kill large numbers of animals (e.g.,

avian influenza and African swine fever). Furthermore, other

animal diseases also prompt significant drops in the demand

for animal products through consumer fears of becoming

infected with zoonotic diseases (e.g., avian influenza) [4]. In

recent decades, concern regarding so-called zoonotic diseases,

which are caused by pathogen agents shared by animals and

humans - a common situation - has been growing [5]. In this

context, management of data dealing with animal health is

challenging for improving health surveillance systems.

Epidemic intelligence corresponds to a formalised surveil-

lance process that encompasses ‘‘all activities related to the

early identification of potential health hazards that may rep-

resent a risk to health, and their verification, assessment and

investigation” [6]. It relies on two main channels of informa-

tion: indicator-based surveillance (IBS) and event-based

surveillance (EBS). Indicator-based surveillance is defined as

‘‘the systematic collection, monitoring, analysis and interpre-

tation of structured data (i.e. indicators)” [6]. It corresponds to

conventional surveillance of formal sources and is based on

established case definitions. Event-based surveillance is

defined by the WHO (World Health Organization) as ‘‘the

organised collection, monitoring, assessment and interpreta-

tion of mainly unstructured ad hoc information regarding

health events or risks, which may represent an acute risk to

human [or animal] health” [6]. EBS involves the use of data

streams from informal sources. In the medical domain, the

extraction and use of epidemiological indicators from new

data sources have become a hot research topic over the last

few years. A large range of sources can be used in human

medicine, such as chief complaints [7], electronic medical

records [8] or more informal sources, such as social media

[9]. Symptoms are extracted from unstructured textual data

and gathered into syndromes, manually or through text min-

ing methods. A syndrome can be defined as ‘‘a combination of

clinical signs that repeatedly occurs in different observations,

indicating a possible presence of disease” [10]. Monitoring

those syndromes should allow the detection of an outbreak

before an outbreak has been diagnosed. However, optimal

syndrome definitions adapted to each specific data source

have not yet been determined [11]. The syndromic surveil-

lance approaches are mostly cumulative: an alert is created

when a deviation from a baseline level appears (for example,

an increase in cattle mortality). Other initiatives focus on
noncumulative approaches that can detect weak signals. For

instance, weighted vectors were created from health-related

tweets to gather these tweets into clusters sharing the same

content [8]. This approach aimed to detect ‘‘latent infectious

disease”: when a tweet, represented by its vector, could not

be associated with an existing cluster, it was a candidate for

a potential emerging health event. The association of several

indicators has been studied to improve surveillance [12,13]. In

veterinary medicine, data sources are not as numerous and

can bemore challenging to obtain. Moreover, due to the speci-

ficity of social media users (i.e., the patients themselves),

there is no interest in using those sources to extract animal

symptoms. Therefore, clinical data from practitioners and

laboratory data are currently the main sources used in animal

syndromic surveillance [14]. Nevertheless, an increasing

number of publications evaluate the potential of other data

sources, ranging from production data [15] to disease out-

break news [16].

Several internet-based surveillance systems were created

to monitor disease outbreak news for potential public health

threats [17]: Argus, BioCaster, GPHIN (Global Public Health

Intelligence Network), IBIS (International Biosurveillance Sys-

tem) and MedISys. However, none of them is specifically ded-

icated to animal disease surveillance. In order to assist the

French epidemic intelligence team in the international mon-

itoring of animal health, a platform dedicated to automatic

surveillance of electronic media, PADI-web (Platform for

Automated extraction of animal Disease Information from

the web), has been implemented [18]. This EBS tool automat-

ically detects, classifies, and extracts epidemiological clues

from news (i.e., disease, hosts, symptoms, dates, and loca-

tions) [19]. Since its implementation, a large volume of arti-

cles has been retrieved (i.e., more than 380 000 articles).

In these different systems, one of the major challenges in

the news article processing pipeline is to identify articles that

are related to each other, i.e., that describe the same out-

break. In this paper that is an extension of a preliminary

study [20], we address the task of linking news articles, which

are related in epidemiological terms, collected by PADI-web.

Finding the most relevant documents regarding a chosen doc-

ument (related documents) can be viewed from the perspec-

tive of the document ranking. Document ranking first

requires the transformation of texts into vectors, where each

component of a vector represents the weight of a feature in a

document. Selecting the features used to represent the texts

is essential for information retrieval tasks in animal health

event-based systems and other fields such as genomics [21].

Therefore, this paper aims to identify the best textual repre-

sentation (i.e., features) to associate articles that share epi-

demiological content.

Section 2 presents our process to combine the epidemio-

logical features and our evaluation approach. Sections 4 and

5 discuss the results obtained with different fusion methods.
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2. Material and methods

2.1. Morphosyntactic features

In the information retrieval domain, document ranking gen-

erally consists of computing numeric scores between a query

and documents to retrieve the more relevant documents [22].

A common approach is to convert the text into a structured

representation such as the vector space model [23]. This

model relies on creating a link between textual content and

linear algebra area analysis tools. This representation

encodes a document in a k-dimensional space where each

component wij represents the weight of term j in document

i. The text’s grammatical structure is neglected; this is also

referred to as a bag-of-words representation [24]. The most

basic weight method uses a binary value (i.e., 1 or 0) to repre-

sent whether the term is present in the document. Another

approach is the term frequency–inverse document frequency

(TF-IDF) function, which calculates the weight wij (Eq. (1)).

wij ¼ tf ij � idf j ¼ tf ij � log N
df j

� �
ð1Þ

where tfij is the frequency of term j in document i, N is the

total number of documents in the corpus, and dfj is the num-

ber of documents containing the term j.

A large range of measures can then be applied to compute

the similarity score between the vectors, e.g., the Euclidian

distance, Jaccard coefficient, or cosine similarity [25,26]. The

cosine similarity used in this work (Eq. (2)) between two doc-

uments D1 and D2 is calculated as follows [27]:

sim D1;D2ð Þ ¼
PV

i¼1
wi1�wi2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPV

i¼1
w2

i1
�w2

i2

q ð2Þ

where wi1 is the weight of term i in document D1, wi2 is the

weight of term i in document D2, and V is the total number

of terms (features).

In our work, the morphosyntactic representation is based

on the bag-of-words (BOW) model. The text is first segmented

into words (tokenisation). Then, several steps known as ‘‘pre-

processing” are applied to remove noisy elements from the

vocabulary (Fig. 1). Preprocessing steps include removing stop

words, part-of-speech (POS) tagging, lemmatisation and nor-

malisation to lowercase [28,29]. Stop words are frequently

used terms that are not dependent on a particular topic, such

as conjunctions, prepositions or articles. They are usually

assumed to be irrelevant and removed from the vocabulary.

POS tagging consists of tagging the words according to

their syntactic functions, i.e., verbs, nouns and proper nouns

[30]. Lemmatisation consists of transforming the different

inflected forms of a word into its canonical form (e.g., singular

form for nouns) to be analysed as a single item. Both lower-

casing and lemmatisation aim to compute the occurrence of

derived forms of a term (which are semantically similar) as

a single item. In this work, all of the preprocessing steps were

conducted using the NLTK Python library [31]. To remove stop

words, we used the list of 318 English stop words provided by

the library. After preprocessing, the features can be selected

according to their POS tag (Fig. 1). For instance, only the terms

that are verbs are retained. The methods mentioned above

are illustrated in Table 1. There is no gold standard procedure
for preprocessing steps that should be applied to a text cor-

pus. The choice of whether to include normalisation depends

on the task and the nature of the corpus (e.g., its language)

[28]. Thus, we compared different preprocessing and feature

selection combinations.

As term weighting (Fig. 1), we used the Boolean and TF-IDF

weights (Eq. (1)). Other term weighting methods have been

proposed and successfully applied. For instance, OKAPI mea-

sures consider the document length [32]. Our corpus is homo-

geneous in terms of length, which justified the choice of TF-

IDF weighting.

The morphosyntactic output matrix, MMS, corresponds to

the cosine similarity matrix of the morphosyntactic

document-features matrix. Suppose a document-term matrix

containing N rows (representing the documents) and V col-

umns (representing the terms, or features), the similarity

matrix is an N � N matrix where each component xi,j corre-

sponds to the cosine similarity between the documents i

and j, as defined in Eq. (2).

2.2. Lexicosemantic features

In the lexicosemantic approach, features used to represent

the text are selected according to their lexical type. In our

context, this includes four epidemiological types of lexical

features, or ‘‘entities”: diseases, hosts, dates and locations.

We used the fusion method to evaluate the importance of

each type of entity for our task (i.e., retrieving related docu-

ments). Four types of fusion methods are described in the lit-

erature [33–38], but in this paper, we focus on the two most

commonly used methods, i.e., early fusion and late fusion

(Fig. 2(a) and Fig. 2(b)).

For each type of epidemiological feature (i.e., disease, host,

date and location), we first converted the corpus into a

document-term matrix. The rows represent the documents

(i.e., news articles), and the columns represent the distinct

values of each type (locations, dates, diseases and hosts) of

feature. We used either Boolean or TF-IDF values as term

weights. We fused the spatiotemporal features (i.e., locations

and dates), in addition to the thematic features (i.e., diseases

and hosts), and further combined all the features.

2.2.1. Fusion of thematic and spatiotemporal features
Data fusion methods are increasingly being used in content

analysis and retrieval, especially when handling diverse and

complementary data sources. Fusion methods were initially

used in multimedia analysis to address the problem of com-

bining multimodal data (i.e., different types of data, also

referred to as heterogeneous data). For instance, fusion meth-

ods combine textual and visual data features to improve mul-

timedia retrieval or user recommendation systems [33–35].

These methods can also be applied to the fusion of homoge-

neous data, such as textual features at different linguistic

levels (e.g., lexical, syntactic, and semantic) [36]. Several types

and levels of fusion strategies exist, among which early and

late fusion are the most commonly used [37]. Early and late

fusion functions differ in how they integrate the results from

feature extraction.

Early fusion consists of combining the features into a

unique multimodal representation (e.g., textual and visual



Fig. 1 – Steps to create the document-features matrix based on morphosyntactic features.
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features [38]). This representation is used as an input for the

‘‘decision step”. This step, also called the ‘‘learning phase”,

can be as simple as the calculus of a similarity matrix [37].

However, this step can also involve more sophisticated

approaches, such as the manual attribution of scores by

experts [33] or machine learning methods [38].

The main advantage of early fusion is that one unique

matrix goes through the learning phase, which reduces the
computing time and leverages the correlation between the

concatenated features. Themain disadvantages are increasing

the representation space and the difficulty of combining fea-

tures into a common representation [37]. The decision step is

first performed using unimodal features in the context of late

fusion. Then, the outputs of the decision step are combined

into a single final dataset. The advantage is that the features

are combined at the same representation level (e.g., similarity



Table 1 – Textual preprocessing methods evaluated. BOW: bag-of-words, SW: stop word removal, BOWlem: BOW
lemmatisation, POS: part-of-speech, V: verbs, N: nouns, and PN: proper nouns.

Method name Description Processed text

No transformation Bluetongue cases were declared in France
BOW Breaking the text into words (tokenisation) Bluetongue, cases, were, declared, in, France
BOW, SW Removing stop words Bluetongue, cases, declared,

France
BOWlem Transforming words in their canonical form Bluetongue, case, be, declare,

France
POS selection, V Selecting only the verbs were, declared
POS selection, N Selecting only the common nouns cases
POS selection, PN Selecting only the proper nouns Bluetongue, France

1 https://www.geonames.org/.
2 https://dbs.ifi.uni-heidelberg.de/research/heideltime/.

I n f o r m a t i o n P r o c e s s i n g i n A g r i c u l t u r e 1 0 ( 2 0 2 3 ) 3 4 7– 3 6 0 351
matrices). The main limitation is the increase in computing

time and the potential loss of correlation [37]. A weight can

be applied to control the impact of early and late fusion.

We applied early and late fusion methods to fuse thematic

and spatiotemporal features, as illustrated in Fig. 2(a) and

Fig. 2(b). The fusion methods involve three matrices opera-

tions: the addition, hereafter symbolized by ‘‘+”, the similarity

calculation, hereafter symbolized by the function sim, and

the concatenation, hereafter symbolized by ‘‘|”. The addition

consists in adding the corresponding elements together (the

matrices must have the same number of rows and col-

umns). The similarity calculation is based on the cosine sim-

ilarity function. The concatenation consists in joining the two

matrices along rows. The number of columns in the output

matrix corresponds to the sum of the columns from the con-

catenated matrices, thus increasing the features space (i.e.,

the number of columns). In weighted combination, the ele-

ments of the matrices are multiplied by two different coeffi-

cients before being combined. Here, MD, MH, MS and MT are

the disease, host, spatial and temporal feature matrices,

respectively; and sim is the cosine similarity function.

The combination step for early fusion is based on the con-

catenation. The fused disease-host matrix (MDH) and the spa-

tiotemporal fused matrix (MST) obtained by early fusion are

defined by Eqs. (3) and (4), respectively:

MDH ¼ simðaDH �MD 1� aDHð Þ �MHj ð3Þ

MST ¼ simðaST �MS 1� aSTð Þ �MTj ð4Þ
The combination step for late fusion is based on addition.

The disease-host matrix (MDH) and the spatiotemporal fused

matrix (MST) obtained by late fusion are defined by Eqs. (5)

and (6), respectively:

MDH ¼ aDH � SD þ 1� aDHð Þ � SH ð5Þ

MST ¼ aST � SS þ 1� aSTð Þ � ST ð6Þ
Where SD = sim(MD), SH= sim(MH), SS= sim(MS) and ST = sim

(MT).

For each fusion, aDH and aST ranged from 0 to 1 with a step

size of 0.1.

2.2.2. Fusion of all features
This step consisted of combining the fused matrices from the

previous step into a final matrix. We selected the best MDH

and MST based on their F-measures and concatenated them
by using a weight b ranging from 0 to 1 with a step size of

0.1, obtaining the lexicosemantic matrix MLS (Eq.(7)):

MLS ¼ b�MDHjð1� bÞ �MST ð7Þ
2.2.3. Feature generalisation
The lexicosemantic representation does not consider the sim-

ilarity between related features, i.e., the terms ‘‘pig” and

‘‘boar” are considered as different as ‘‘pig” and ‘‘bird”. To over-

come this shortcoming, we evaluated the influence of con-

verting the features into lower granular features. We defined

one generalisation level for thematic features (i.e., disease

and host) and two granularity levels for spatiotemporal fea-

tures (Table 2).

For disease and host entities, generalisation aims to con-

sider the synonyms used to refer to the same disease or host.

To convert each feature into its generalised form, we manu-

ally built a dictionary with each disease and host variant

mapped to its canonical form and species, respectively. For

spatiotemporal features, we aimed to consider that several

news articles describing the same outbreak may have differ-

ent levels of detail when describing the location and occur-

rence date. We used the GeoNames1 gazetteer to transform

each spatial feature into its first administrative level (level 1)

or into its country (level 2). For temporal features, we used

the normalised values given by HeidelTime2 to transform fea-

tures into their week number (level 1) or month (level 2) [39].

The generalisation step can only decrease the granularity of

features having higher granularity than the chosen thresh-

olds. Features having a lower granularity were not modified.

For instance, the names of continents such as ‘‘Africa” were

not transformed.

The generalisation reduced the number of distinct fea-

tures in each category (Table 3), especially for spatial and tem-

poral features whose vocabulary decreased by 83% and 73%,

respectively, from level 0 to level 2. We further describe the

corpus that supported the experiments and the evaluation

protocol.

https://www.geonames.org/
https://dbs.ifi.uni-heidelberg.de/research/heideltime/


Fig. 2 – Early fusion (a) and late fusion (b) of the disease matrix (MD) and host matrix (MH) representing n documents D, with d

and h features, respectively. SD, and SH are the similarity matrices. aDH is the weight considered in linear combinations.

Fusion of the spatial matrix and temporal matrix is based on the same process, by replacing the disease and the host

matrices by the spatial and temporal matrices, respectively.
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2.3. Corpus

We used a publicly available annotated corpus of 438 docu-

ments (i.e., news articles) related to animal disease events (ei-

ther describing a recent outbreak or providing

complementary insight regarding control measures, eco-

nomic impacts, etc.) [40]. This corpus was initially designed

for training and evaluating the PADI-web information extrac-

tion module [18]. The corpus contains information about the

news article itself (publication date, title, content, URL, etc.)

and epidemiological features (locations, diseases, hosts, dates

and symptoms), which were automatically identified by data

mining and rule-based approaches. A veterinary epidemiolo-

gist and a computer scientist subsequently labelled each can-

didate as correct or incorrect. For each document and type of

feature (i.e., disease, host, date and location), only candidates

manually labelled correct in the corpus were retained for

analysis (including the geographical disambiguation of loca-

tions). An epidemiologist read each of the 438 documents to
detect all disease events they contained. To ensure a consis-

tent and reproducible annotation, events found in the docu-

ments were compared to a gold standard database, i.e., the

EMPRES-i database. Each detected event was labelled using

the unique EMPRES-i identifier. When the epidemiologist

could not link an event to an official event, she created a

new event identifier and manually recorded the epidemiolog-

ical features (location, date, disease and host). News articles

containing at least one event represented 53% of the corpus

(n = 229/438). Among these news articles, 52% (n = 127/229)

reported several events, with a median number of 3 events

(Table 4).

One news article contained a maximum number of 208

events due to the reporting of 200 avian influenza outbreaks

in Taiwan on 28 January 2015. Overall, 771 events were

detected in the corpus. Among these events, 70%

(n = 541/771) were reported in one single news article. The

events present in multiple news articles were reported in up

to 11 news articles (median number of 3 news articles). In



Table 2 – Generalisation levels of the different types of entities in the event corpus.

Type of feature Level Description Example

Disease 1 Canonical name ASF ? African swine fever
Host 1 Species name boars ? pig

ewe ? sheep
Location 1 Administrative Toulouse ? Occitanie

2 Country Toulouse ? France
Date 1 Week 14-02-2015 ? 2015-W015

2 Month 14-02-2015 ? 2015-02

Table 3 – Number of distinct features of each type according to the level of generalisation in the event corpus. The evolution
compared to the number of features at level 0 is indicated between parentheses.

Level 0 Level 1 Level 2

Disease 55 29 (�47%) 29 (�47%)
Host 82 36 (�56%) 36 (�56%)
Spatial 761 591 (�22%) 127 (�83%)
Temporal 561 272 (�52%) 152 (�73%)
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the following experiments, we selected only news articles

containing at least one event (corpus of 229 documents). We

considered two (or more) news articles as related if they

reported at least one event in common. We created sets of

related news articles by linking each document with those

having at least one event (i.e., an event identifier) in common.

A set consists of a document Di and its related documents

{Dk}, where k is in [1, 229] and i–k. We obtained 157 sets of

related documents. Even if it still has a modest size, our cor-

pus is highly specialised regarding both its domain (i.e., ani-

mal health) and its nature (i.e., online news articles).
3. Results

3.1. Evaluation protocol

The matrices obtained by the morphosyntactic and lexicose-

mantic representations (MMS andMLS, respectively) were eval-

uated using ranking functions, i.e., regarding their ability to

give higher similarity scores to relevant elements than to

irrelevant documents. In our process, the related documents

of each set Dk were sorted in decreasing order of their similar-

ity values according to the different ranking functions. Fig. 3

shows an example of two rankings from a fictive corpus con-

taining 7 documents Di, where i 2 ½1 : 7� and D1, D2, D6 and D7

are related. The displayed rankings are obtained by sorting

the documents by decreasing similarity scores with D7.

Cases of equality in the similarity values could lead to ran-

domly ranked lists (a relevant element may artificially have a

higher rank than an irrelevant one, even if they have the same

similarity score). We opted to assign the lowest rank to the

relevant elements in such cases. We thus favoured ranking

functions that were able to discriminate relevant from irrele-

vant elements.

We evaluated the ranking quality according to the ability

of the fusion to give a better rank to relevant pairs (i.e., related
documents) than to irrelevant pairs. The ranking was evalu-

ated in terms of the normalised precision (P), normalised

recall (R) and F-measure (F). R and P are based on the differ-

ence between the sum of the ranks of V relevant pairs

obtained by a ranking function and the sum of the ranks of

an ideal list, respectively, where all relevant pairs are

retrieved before all the irrelevant pairs [41,42]:

R ¼ 1� 1
V� N�Vð Þ �

PV
i¼1ri �

PV
i¼1i ð8Þ

P ¼ 1� 1

log N
V

� ��XV
i¼1

logðriÞ �
XV
i¼1

log ið Þ ð9Þ

where N is the total number of pairs, ri is the rank of the ith

relevant pair in the ordered list, and N
V

� � ¼ N!
V! N�Vð Þ!.

Graphically, R corresponds to the area under the curve

(AUC) of the receiver operating characteristic (ROC) curve or

AUC. F-measure is the harmonic mean between the recall

and the precision:

F ¼ 2� P� R
Pþ R

ð10Þ

We also evaluated the r-precision (rP), corresponding to

the precision after r documents have been retrieved, where

r is the number of relevant documents for a set [43]. This is

calculated as follows:

rP ¼ 1
r �

Pr
i¼1xi ð11Þ

where xi ¼ 1 if the ith element is relevant
0 if the ith element is irrelevant

�

R, P and F evaluate the ranking in terms of the entire set of

documents. The r-precision considers only a single precision

point for each set; thus, it is a more stringent measure. Here-

after, we used the first three indicators to evaluate the global

ranking and the r-precision to evaluate the local ranking. For

each evaluated model, we calculated the average perfor-

mances of these 4 measures over the 157 sets of related

documents.



Table 4 – Descriptive statistics of the number of articles (Narticle) per event and number of events (Nevent) per article in the event
corpus.

Min Median Mean Max

Nevent per article
Articles with Nevent >= 1 (n = 229) 1 2 5.1 208
Articles with Nevent >= 2 (n = 127) 2 3 8.4 208
Narticle per event
Events with Narticle >= 1 (n = 771) 1 1 1.5 11
Events with Narticle >= 2 (n = 230) 2 3 2.8 11

Fig. 3 – Evaluation pipeline for information retrieval. MMS and MLS represent the two output matrices obtained by the

morphosyntactic and lexicosemantic representations, respectively. RMS and RLS represent the two rankings obtained by the

morphosyntactic and lexicosemantic representations, respectively, relative to a document D7 by decreasing order of

similarity. Documents related to D7 are shown in green. (For interpretation of the references to colour in this figure legend, the

reader is referred to the web version of this article.)
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3.2. Morphosyntactic features

Table 5 shows the ranking performances obtained for differ-

ent baseline representations. The vocabulary length indi-

cates the number of distinct features used to represent

the document (number of columns in the document-term

matrix). Among all of the evaluated models, the normalised

recall (R) was better than the normalised precision (P), i.e.,

reaching up to 0.98. The BOW representation with stop

word removal outperformed the other types of representa-

tions (F = 0.89, rP = 0.45), with a vocabulary length of 14

996. In comparison, the lemmatised BOW with the selection

of proper nouns obtained very close results (F = 0.87,

rP = 0.42), with a representation space of 5 129 features.

The lowest performances were obtained by lemmatisation

and verb selection only (F = 0.53, rP = 0.09), which corre-

sponds to the lowest space dimensionality (vocabulary

length of 2 151).

3.3. Lexicosemantic features

3.3.1. Fusion of thematic and spatiotemporal features
First, we evaluated the ranking performances of the output

matrices from step 1 without applying any feature generalisa-

tion. Feature fusion improved the ranking of both disease-

host (Fig. 4) and spatiotemporal features (Fig. 5). For the

disease-host fusion, the lowest F values were obtained with

the unimodal matrices (corresponding to aDH equals 0 or 1

in Eq. (3)).

For spatiotemporal fusion, the lowest F values were

obtained with the temporal matrix alone (aST = 0) while the

spatial matrix alone (aST = 1) performed better than fused

matrices, with aST < 0.6. In both fusionmodels, the TF-IDF rep-

resentation outperformed the Boolean representation. Early

and late fusion obtained very close results, especially when

the F values peaked. The disease-host fusion performance

slightly differed with aDH, ranging from 0.2 to 0.8. For spa-

tiotemporal fusion, the performances significantly increased

when aST ranged from 0 to 0.5.

Tables 6 and 7 show the best results obtained by the differ-

ent studied models (based on the best F values) for the

disease-host and spatiotemporal fusion. The best disease-

host fusion models were obtained with aDH = 0.4 (level 0)

and aDH = 0.7 (level 1). The best spatiotemporal fusion models

were obtained with aST = 0.7 (level 0), aST = 0.8 (level 1) and

aST = 0.7 (level 2).
Table 5 – Ranking performances of morphosyntactic features. B
lemmatisation, V: verbs, N: nouns, and PN: proper nouns), in te
(rP).

R P

BOW 0.96 0.77
BOW, SW 0.98 0.82
BOWlem, SW 0.98 0.82
BOWlem, V 0.74 0.41
BOWlem, N 0.89 0.61
BOWlem, PN 0.96 0.80
As in the baseline approaches, the normalised recall was

better than the normalised precision among all of the studied

models. Disease-host fusion obtained a maximal F of 0.77 and

a poor r-precision value (0.28). Spatiotemporal fusion per-

formed better than disease-host fusion, especially regarding

the r-precision results (rP = 0.47).

Feature generalisation had different impacts on the perfor-

mance metrics. In the TF-IDF models, the normalised recall

and precision increased when applying the generalisation

steps. When applied to Boolean representations, it decreased

the recall R for the first and second disease-host and spa-

tiotemporal fusion levels, respectively. For disease-host

fusion, generalisation decreased all of the r-precision values,

except for TF–IDF early fusion. For spatiotemporal features,

generalisation at level 1 (administrative level) increased all

the r-precision values (up to 0.47). However, generalisation

of the country (level 2) decreased these values sharply (from

0.47 to 0.28 for Boolean early fusion).

3.3.2. Fusion of all features
The second fusion step improved the global ranking of the

bimodal matrices (from step 1), as illustrated in Fig. 6. For

each distinct b value, the model based on the highest general-

isation level (level 1 for MDH and level 2 for MST) outperformed

themodels with lower generalisation levels. In the threemod-

els, the highest F-measure was obtained when more weight

was given to the spatiotemporal matrix (b ranging from 0.5

to 0.8). Table 8 compares the performances obtained with

the best fusion and baseline models. For the fusion models,

the vocabulary length corresponds to the number of features

used, i.e., the sum of vocabulary lengths of each type of fea-

ture. The best final fusion model (MDH, level 1 + MST, level 2)

slightly outperformed the best F-measure obtainedwith base-

line models (from 0.89 to 0.92) and improved the r-precision

(from 0.45 to 0.58). Compared to baseline models, the repre-

sentation space was reduced to 344 features (sum of all dis-

tinct disease-host and thematic feature values). The ranking

performance and vocabulary length of morphosyntactic and

lexicosemantic representations and the best fused models

at step 1 (disease-host and spatiotemporal fusion) and step

2 (fusion of all features) are shown in Tables 6 and 7.

4. Discussion

In this paper, we evaluated the performance of morphosyn-

tactic and lexicosemantic representations for the retrieval of
OW: bag-of-words, SW: stop word removal, BOWlem: BOW
rms of recall (R), precision (P), F-measure (F) and r-precision

F rP Vocabulary length

0.85 0.39 15 278
0.89 0.45 14 996
0.89 0.44 13 794
0.53 0.09 2 151
0.72 0.25 4 185
0.87 0.42 5 129



Fig. 4 – Comparison of fusionmethods to combine disease and host features in terms of F-measure. The arrows correspond to

the use of unimodal matrices (disease matrix MD and host matrix MH).

Fig. 5 – Performance of fusion methods to combine spatiotemporal features in terms of F-measure. The arrows correspond to

the use of unimodal matrices (spatial matrix MS and temporal matrix MT).
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related documents. In both representations, the TF-IDF term

weights outperformed the Boolean ones. The best mor-

phosyntactic and lexicosemantic representations obtained

comparable performances in terms of the global ranking (F-

measure). However, the lexicosemantic models significantly

increased the local precision (r-precision) compared to the

morphosyntactic approach.
Regarding the lexicosemantic features, the spatial features

were the most efficient features when considered separately.

Besides, the best retrieval results were achieved when more

weight was given to the spatiotemporal matrix in the bimodal

representation and the final fusion. These results were con-

sistent with the task performed, i.e., the retrieval of related

documents corresponds to the retrieval of the related events



Table 6 – Ranking performances of disease and host features (matrix MDH) using different types of fusion, term weighting
(Boolean or TF-IDF) and generalisation levels (level 0: no generalisation and level 1: first generalisation level), in terms of
recall (R), precision (P), F-measure (F) and r-precision (rP).

Early fusion Late fusion

R P F rP R P F rP

Boolean
level 0 0.91 0.60 0.72 0.23 0.91 0.60 0.72 0.23
level 1 0.92 0.59 0.72 0.19 0.91 0.58 0.71 0.19
TF-IDF
level 0 0.91 0.63 0.74 0.27 0.92 0.63 0.75 0.27
level 1 0.93 0.65 0.77 0.28 0.93 0.63 0.75 0.25

Table 7 – Ranking performances of spatial and temporal features (matrix MST) using different types of fusion, term weighting
(Boolean or TF–IDF) and generalisation levels (level 0: no generalisation, level 1: first generalisation level, and level 2: second
generalisation level), in terms of recall (R), precision (P), F-measure (F) and r-precision (rP).

Early fusion Late fusion

R P F rP R P F rP

Boolean
level 0 0.88 0.75 0.81 0.44 0.88 0.74 0.80 0.42
level 1 0.89 0.77 0.83 0.47 0.89 0.76 0.82 0.46
level 2 0.91 0.70 0.79 0.28 0.92 0.73 0.81 0.32
TF–IDF
level 0 0.89 0.76 0.82 0.46 0.89 0.76 0.82 0.46
level 1 0.89 0.77 0.83 0.47 0.89 0.77 0.83 0.46
level 2 0.93 0.77 0.84 0.38 0.93 0.79 0.85 0.43

Fig. 6 – Performance of all lexicosemantic features to retrieve relevant documents according to different fusion weights b, in

terms of F-measure. The arrows correspond to the bimodal matrices (thematic matrix MDH and spatiotemporal matrix MST).
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Table 8 – Comparison of ranking performances of morphosyntactic and lexicosemantic representations in terms of recall (R),
precision (P), F-measure (F), r-precision (rP) and vocabulary length. The morphosyntactic representations include the bag-of-
words with stop-word removal (BOW, SW) and the lemmatized bag-of-words with selection of verbs (BOWlem, V). The
lexicosemantic representations include the best bimodal disease-host and spatio-temporal fusions (MDH and MST) from
Tables 6 and 7, and the combinations of the best bimodal fusions at different generalisation levels (level 0: no generalisation,
level 1: first generalisation level, and level 2: second generalisation level). We show the best combinations in terms of F-
measure and the corresponding weight b.

Morphosyntactic features: R P F rP Vocabulary length

BOW, SW 0.98 0.82 0.89 0.45 14 996
BOWlem, V 0.74 0.41 0.53 0.09 2 151
Lexicosemantic features (bimodal):
MDH 0.93 0.65 0.77 0.28 65
MST 0.93 0.79 0.85 0.43 279
Lexicosemantic features (all):
(MDH, level 0 + MST, level 0), b = 0.8 0.97 0.83 0.89 0.54 1 459
(MDH, level 1 + MST, level 1), b = 0.6 0.97 0.85 0.91 0.58 928
(MDH, level 1 + MST, level 2), b = 0.6 0.98 0.87 0.92 0.58 344
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contained in the documents. These events were characterised

by their thematic attributes (disease and host) but were truly

identified by their spatiotemporal attributes. Contrary to the

spatial features, the temporal features obtained poor perfor-

manceswhen used alone. News articles often refer to the date

of the official notification of an event, but the true occurrence

date may be unknown. Hence, several systems such as

HealthMap only use the publication date as a proxy for the

occurrence date rather than extracting temporal information

from the news article content.

Our final best model combined both an early fusion matrix

and a late fusion matrix. During our tests, we did not find any

clear trend favouring one type of fusion over another. We

believe that the impact of the different types of fusion may

be reduced when combining the same type of features (here,

textual). Thus, from a practical viewpoint, it would be reason-

able to choose the early fusion method due to its reduced

computational time.

The ranking performances were significantly impacted by

the weights used. While we recommend giving equal weight

to disease and host features, we advise attributing a higher

weight to spatial features than to temporal features (0.6

� aST � 0.8).

Feature generalisation allowed us to increase the global

model performances (in terms of the F-measure) while reduc-

ing the representation space. However, increasing generalisa-

tion at the country level for spatial features reduced the local

precision. Thus, a balance has to be found between the global

ranking and the precision over a set of retrieved documents.

This balance depends on the user’s needs, as well as the size

of the corpus. If many news articles contain events from the

same country, mapping each entity with its country would

certainly decrease the retrieval performance. Our generalisa-

tion approach is similar to an ontological approach [44], i.e.,

we used predefined conceptual structures to enrich the docu-

ments with ‘‘meta” entities (e.g., a country instead of a city

name). The core of the BioCaster system relies on a complex

ontology that maps each named entity to a canonical form

[45]. However, the event extraction performances with and

without the use of the ontology were not compared in that

study.
Regarding the morphosyntactic features, all lemmatised

representations that included the proper nouns gave very

good results, i.e., outperforming the other representations.

We assumed that the vocabulary in terms of verbs and com-

mon nouns was homogeneous between news articles report-

ing outbreaks (e.g., ‘‘reported”, ‘‘declared”, ‘‘cases”, etc.).

Including these features to compare the epidemiological con-

tent would not be very informative. Conversely, as proper

names include locations and disease names, they contain

much accurate and rich information. This is consistent with

previous results that showed that the spatiotemporal matri-

ces should be assigned a higher weight.

Moreover, proper names include other types of named

entities, such as organisation names, which we did not con-

sider in the fusion models. Such types of features could be

of interest to link two related news articles when, for

instance, referring to a local official source.

5. Conclusion

In this paper, we propose a lexicosemantic representation for

the retrieval of disease-related news articles. We show that

the fusion of two groups of features, i.e., thematic (disease

and host) and spatio-temporal, combined with appropriate

weights and generalisation steps, outperformed the classical

morphosyntactic (bag-of-words) representation. In the lexi-

cosemantic context, spatial features were the most discrimi-

native features, thus highlighting the need for robust

methods for spatial entity extraction, disambiguation and rep-

resentation. Conversely, temporal features performed poorly

on their own. The lexicosemantic approach provides a the-

matic and comprehensible representation of the disease-

related news articles. Besides, the approach has the advantage

of being based on a reduced number of features, thus limiting

the computing time when handling larger corpora.

In this paper, we focused on animal disease monitoring.

Even if veterinary surveillance has some specificities, such

as detecting the host, it has similarities with human disease

surveillance. Indeed, we used PADI-web to detect early signals

of COVID-19 [46]. Thus, we believe that our approach could be

easily applied to public health surveillance.
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Expansions of text content before applying fusion

approaches by using word embedding architectures such as

the bidirectional encoder representations from transformers

(BERT) model could be proposed. This model achieved new

state-of-the-art results on several NLP tasks [47,48]. BERT pro-

duces word representations that are dynamically informed by

the words around them (i.e., context-dependent). As dis-

cussed in [47], considering the time complexity of BERT, sim-

ple representations could be adapted, especially when the

proportion of the training data is low. These general conclu-

sions could be further evaluated in our specialised context

dedicated to animal disease surveillance.
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Lancelot R, et al. Web monitoring of emerging animal
infectious diseases integrated in the French Animal Health
Epidemic Intelligence System. PLOS One 2018;13:e0199960.

[19] Valentin S, Arsevska E, Falala S, de Goër J, Lancelot R, Mercier
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