

When the seed breaks, when the fibre sticks...

Some contaminants of cotton

Bruno Bachelier & Jean-Paul Gourlot

Centre for International Cooperation in Agricultural Research for Development

Montpellier (France)

When the seed breaks, when the fibre sticks... Some contaminants of cotton

- Some words about CIRAD
- Cotton contamination
- Seed-coat fragments
- Stickiness
- Conclusion

Some words about CIRAD

In a nutshell

- French Agricultural Research Centre for International Development
- A public establishment (under the joint authority of the Ministry of Higher Education, Research and Innovation and the Ministry for Europe and Foreign Affairs)
- A staff of 1,800 incl. 800 researchers in 33 research units
- Goal: sustainable development of tropical and Mediterranean regions
- Activities: life sciences, social sciences and engineering sciences, applied to agriculture, food, the environment and territorial management
- Main topics: food security, climate change, natural resource management, reduction of inequalities and poverty alleviation

When the seed breaks, when the fibre sticks... Some contaminants of cotton

- Some words about CIRAD
- Cotton contamination
- Seed-coat fragments
- Stickiness
- Conclusion

In which products?

• In seed-cotton or in cotton fibre

What is it (in the broad sense)?

• Exogeneous material = Foreign matter (anything that is not part of the cotton plant): non-cotton fibres, strings, yarns and fabrics, organic and inorganic matters (grass, sand...), chemicals...

What is it (in the broad sense)?

• <u>Endogeneous material</u> = Parts of the cotton plant: trash, seeds, organic matters, abnormal fibers

Which origins?

<u>Endogeneous</u>

• <u>Vegetal</u>: physiological sugars, cotton fibre (neps, short, immature, dead, bleached...), cotton seeds (complete, broken, aborted=motes, seed-coat fragment), trash (leaf, bract, grass, bark, non-cotton seeds), fungi (sooty mould)...

Exogeneous

- Animal: honey dew, feather, hair, pest...
- Mineral: stone, sand, soil, dust...
- <u>Human</u>: plastic (woven, film), natural fibre/fabric (jute, hessian, cotton, wool...), paper, leather, metal, wire, rust, stamp color, tar, grease, oil, rubber...

Which possible consequences?

- At seed-cotton level:

 more intensive cleaning
 - → higher ginning cost
 - → more fibre or seed damages
 - → lower fibre and seed quality
- At fibre level:

 more intensive cleaning
 - → higher spinning cost
 - → more fibre damage
 - → more processing problems
 - → lower productivity

Which possible consequences?

- At yarn level: → defects (neps, thin & thick places)
 - → lower quality

Which possible consequences?

Which possible consequences?

• At fabric level:

defects

→ lower quality

What figures are available?

Cotton Contamination
 Surveys from 1989 to 2016
 by ITMF (International Textile
 Manufacturers Federation)

→ nearly 1/4 of cottons evaluated are contaminated by foreign matter

Contamination (foreign matter)

What figures are available?

Cotton Contamination
 Surveys from 1989 to 2016
 by ITMF (International Textile
 Manufacturers Federation)

→ nearly 1/3 of cottons evaluated contain SCF

Seed-coat fragments

What figures are available?

Cotton Contamination
 Surveys from 1989 to 2016
 by ITMF (International Textile
 Manufacturers Federation)

→ nearly 1/5 of cottons evaluated are sticky

Stickiness

When the seed breaks, when the fibre sticks... Some contaminants of cotton

- Some words about CIRAD
- Cotton contamination
- Seed-coat fragments
- Stickiness
- Conclusion

Back to the 30's - 50's

- Pearson, N. L. (1937). Naps, neps, motes, and seed-coat fragments. A description of certain elements of cotton quality. <u>Technical Bulletin</u>. <u>Washington</u>, <u>D.C. (USA)</u>, <u>USDA</u>, <u>Bureau of Agricultural Economics</u>: 7 p.
- Pearson, N. L. (1939). Relation of the structure of the chalazal portion of the cotton seed coat to rupture during ginning. <u>Journal of Agricultural Research</u> **58**(11): 865-873.
- Pearson, N. L. (1955). Seed coat fragments in cotton an element of yarn quality. <u>Technical Bulletin. Washington, D.C. (USA), USDA: 17 p.</u>

SCF « are bits of tissue from either motes or seeds with tufts or fibers attached »

More publications from the 60's

- Gupta, P. S. and M. Radhakrishnan (1961). Some observations on seed coat nep proneness in relation to lint index
- ASTM (1963). Standard test methods for seed coat fragments and funiculi in cotton fiber samples
- Mangialardi, G. J. J. and J. V. Shepherd (1968). Seed Coat Fragment and Funiculus distribution in ginned lint as affected by lint cleaning
- Perkins, H. H. J. (1971). Determination of seed-coat fragments in cotton by solvent-extraction and infrared spectrophotometric analysis
- Bargeron, J. D. and T. H. Garner (1987). Predicting seed-coat fragment contamination in cotton
- Anthony, W. S., et al. (1988). Seed-coat fragments in ginned lint: the effect of varieties, harvesting, and ginning practices

•

And still a problem in 2020...

OUT ¥ LIVESTOCK ¥ ROW CROPS ¥ CITRUS

UF IFAS Extension UNIVERSITY of FLORIDA

Home Ag Service Directory

y Vide

Useful Links 🗸

Cotton Seed Coat Fragments – A Serious Issue for Panhandle Farmers in 2020

by external | Jan 22, 2021 | Cotton, Field Crops, Weather

Seed Coat Fragments Another Problem for Alabama Cotton Producers

■ JANUARY 8, 2021 /

A trained cotton classer opening samples to inspect for extraneous matter. Credit: AMS Cotton & Tobacco

20

Many sources of variability

Variability of fibres attached to SCF

From Krifa et al., 2002

© CIRAD

SCF outside the yarn

→ SC nep

From Krifa, 2001

SCF inside the yarn

→ Thick place

From Krifa, 2001

Histological examination

Histological examination

External mesophyl

Internal mesophyl

Lateral face

of the seed

External mesophyl at chalaza level

Counting and sizing on card fleece

70

1.12

1.4

1.68

1.96

Counting and sizing on yarn

Ring spinning (RS)

Open-end spinning (OE)

Microspinning + scanner + image analysis (TRASHCAM software)

Counting and sizing on yarn

Ring spinning (RS)

Microspinning + Uster Tester 3

Relationship between Trashcam count on fibre and SCF count on yarn

Genetic control of Trashcam count on fibre

- Evaluation using a diallel analysis (8 parents)
- Genetic variance: mainly due to additive effects
- Phenotypic variance: reciprocal effects > combining abilities (general and specific)
- Transmission to offspring: maternal effects > paternal effects
- Low but significant heritability
- High expectation of genetic gain, up to an almost 50% reduction in SCF
 - **→** Basis for improvement by plant breeding

Application in breeding: divergent selection

Seed-coat fragments

Application in breeding: divergent selection

Seed-coat fragments

Application in breeding: divergent selection

Correlations between Trashcam count on fibre and some fibre characteristics

	F5 lines with	F5 lines with
	low Trashcam count	highTrashcam count
GOT (%)	ns	0,58 **
SL2,5 (mm)	ns	ns
SL50 (mm)	ns	0,62 **
UR (%)	ns	0,65 ***
T1 (g/tex)	ns	0,79 ***
E1 (%)	ns	ns
IM	ns	0,60 **
Rd (%)	-0,45 *	-0,66 ***
+b	ns	ns
Area	0,53 **	0,51 **
Count	0,60 **	0,55 **
Leaf	0,49 *	0,51 **
SI (g)	ns	ns
Linter (%)	ns	ns
Nb lines	25	25
Count Leaf SI (g) Linter (%)	0,60 ** 0,49 * ns ns	0,55 ** 0,51 ** ns

ns: not significant *, **, ***: significant at 5%, 1%, 1%

Seed-coat fragments

Application in breeding: divergent selection

Relationship between Trashcam count in fibre and SC neps in yarn

When the seed breaks, when the fibre sticks... Some contaminants of cotton

- Some words about CIRAD
- Cotton contamination
- Seed-coat fragments
- Stickiness
- Conclusion

 Deposits from insect honeydew mainly onto fibers; composed by several individual sugars

Pictures by Cirad

Insect	Trehalulose	Melezitose
A. gossypii	1.1 %	38.3 %
B. tabaci	43.8 %	16.8 %

Hendrix, 1992

differentiated practical behaviors during processing stages

 Fibers + honeydew stick on machine parts such as cylinders at spinning with yarn quality (un-evenness) and productivity (lower turnout) incidences

Contents in individual sugars

Material thickness

Ambient air conditions

Fiber and honeydew conditions (MC%,...)

Duration, pressure and machine parts temperature...

- Fibers + honeydew stick on machine parts such as cylinders at spinning with yarn quality (un-evenness) and productivity (lower turnout) incidences
- Economical incidences (claims, discounts, reputation)

Counted as neps in eveness testers

Hequet E. & Frydrych R., 1992

- Fibers + honeydew stick on machine parts such as cylinders at spinning with yarn quality (un-evenness) and productivity (lower turnout) incidences
- Economical incidences (claims, discounts, reputation)
- Solutions exist
 - Choose cottons
 - Blend origins
 - Change spinning mills conditions
- → Need reliable measurement :
 - ... from appreciation to metrology ...

ITMF Contamination Surveys over time

1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2016

Stickiness: appreciations about origins not permanent nor stable

Presented in the International Cotton Conference, Bremen, 2021

Minicard grading: reference method

ITMF:0

ITMF: 0-1

ITMF: 3

Cirad grades 6-7

Based on: Frydrych R., 2003

SCT-Cirad® vs Minicard

Based on: Frydrych R., 2003

H2SD-Cirad® vs SCT-Cirad®

Based on: Frydrych R., 2003

ITMF-ICCTM stickiness task force

- Chair of the task force since 2006
- Organization of inter-laboratories round-tests
 - In 2013-14 with micro-spinning experiment
 - → thermo-mechanic methods able to predict spinning behavior
 - Development of HarCoStic* project, but no funding
 - Every 6 months since 2017, with FIBRE and BBB without micro-spinning
 - 2 RT / year since 2017
 - 3 to 5 cottons / RT covering a stickiness range
 - 10-12 methods used by 25-35 participating laboratories
 - 1 to 6 results per instrument and cotton
 - Reports on https://www.itmf.org/committees/international-committee-on-cotton-testing-methods
- Supervision (with R. Van Der Sluijs & A. Drieling) of the "ITMF-ICCTM Recognition" for the Contest-S method by Mesdan, Italy (2020)

^{*:} Harmonization of Cotton Stickiness Characterization

Contest-S vs Minicard, SCT-Cirad® & H2SD-Cirad®...

Significant correlations
* between thermomechanical methods,
Minicard.
Good correlation to
SIP.

*: All together 26 cottons, tests [2017-2 : 2019-2]

Contest-S vs Minicard, SCT-Cirad® & H2SD-Cirad®...

Good correlations *
between thermomechanical methods,
Minicard.
Good correlation to
SIP.

- → Methods kept for further harmonization
- Contest-S
- H2SD
- SCT
- Minicard

*: All together 26 cottons, tests [2017-2 : 2019-2]

Variability in results: two bales

Bale A: 73 sticky points

Places of samples collected by the 'cutter' method

Bale B: 11 sticky points

Distribution of stickiness within bales

Extreme variation even within bales

→ Difficulty to get representative samples

Min, Max and mean numbers of H2SD sticky points 32 samples per bale, 24 bales from various origins (Frydrych *et al.* 2004).

Application: testing, litigation risk, classification, trading

Bale mean (Number of sticky points)

^{*:} Negative binomial distribution, k=9.43, 2 replications

Application: testing, litigation risk, classification, trading

Gourlot J.-P., Frydrych R., 2001.

Observations on variations in round-tests

Easy to compare instrument variations within each method

- within lab.
- between labs.
- → Labs improve
- → Difficult to compare methods
- → Need indicators

Statistics and indicators of harmonization progress

When the seed breaks, when the fibre sticks... Some contaminants of cotton

- Some words about CIRAD
- Main contaminants of cotton
- Seed-coat fragments
- Stickiness
- Conclusion

Seed-coat fragments

- Histocytological examination of the seeds:
 - Makes it possible to visualise the origin of the seed-coat breakage
 - \$\to\$ Can explain the differences in SCF content between varieties
 - \$\square\$ Is not an appropriate breeding tool

Seed-coat fragments

- Image analysis (Trashcam tool):
 - \$\square\$ Gives a count in fibre or yarn well correlated with SC neps in yarn
 - \$\square\$ Is an appropriate breeding tool

Seed-coat fragments

- Trashcam count:
 - Has a low but significant heritability
 - Makes it possible to breed cotton lines with low SCF
 - ♦ Allows a genetic gain of up to -50% SCF
 - \$\square\$ Is significantly linked with GOT, fibre length, uniformity, tenacity, and reflectance

Stickiness

Work in progress!

- 1. Keep the link to spinning observations (predictive measurement)
- 2. Take care of the huge variability of stickiness and its measurement results and develop the best indicators to measure stickiness and performance
- 3. Harmonize methods able to predict spinning behavior as a priority (mechanical & thermo-mechanical methods with SCT, H2SD and Contest-S, Minicard as reference)

Stickiness

- 4. Continuation of RT as is (<u>welcome laboratories and sticky fibers</u>) with all method (please contact <u>jean-paul.gourlot@cirad.fr</u> or <u>drieling@faserinstitut.de</u> at any time)
 <u>Total confidentiality assured</u>
- Adoption of best practices guide to laboratories with support of Manufacturers including the development of a common categorization for all methods (for trade purposes), and suitably include stickiness testing in trade rules

