
RoBoost-PLS2-R : An extension of RoBoost-PLSR1

method for multi-response2

Maxime Metza,b, Maxime Ryckewaerta,b, Silvia Mas Garciaa,b, Ryad3

Bendoulaa,b, Pierre Dardenned,b, Matthieu Lesnoffc,b, Jean-Michel Rogera,b
4

aITAP Univ Montpellier INRAE Institut Agro Montpellier France
bChemHouse Research Group Montpellier France

cSELMET Univ Montpellier CIRAD INRAE Montpellier SupAgro Montpellier France
dWallon Agricultural Research Centre Gembloux

Abstract5

Recently, a novel robust PLSR method was developed to address the6

problem of outliers in the data. In this paper, an extension of this method,7

called RoBoost-PLS2-R is proposed to predict multi-response variables.8

Robustness and efficiency of this new approach have been validated on9

two simulated data sets and one real data set containing different outlier10

scenarios. Its performance was also compared with reference methods11

(PLS2-R and RSIMPLS) for predicting multi-response variables. Results12

confirm that RoBoost-PLS2-R greatly reduces prediction errors when data13

contain outliers. Prediction performances of RoBoost-PLS2-R are close14

to the optimal model (PLS2-R) calibrated without outliers and also to15

RSIMPLS method. This method seems to be a reliable and a competitive16

robust regression tool for predicting multi-response variables.17

Keywords: Robust regression methods, outliers, multi-response,18

multivariate data analysis19

1. Introduction20

Partial Least Square Regression (PLSR) [1] is a common data analysis21

method and a well-established tool in chemometrics. PLSR calculates22

a linear relationship between explanatory variables (X) and response23

variables (Y). PLSR can be used to predict one response (PLS1) or24

several responses (PLS2). PLSR is particularly useful for processing25

high-dimensional data, especially when the number of explanatory variables26
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exceeds the number of samples. This method is widely used in analytical27

chemistry for predicting constituent concentrations of a sample based on its28

spectrum obtained by spectroscopic techniques, such as near-infrared (NIR)29

spectroscopy, Fluorescence spectroscopy and ultraviolet (UV) spectroscopy.30

The PLSR model is known to be affected by the presence of atypical31

observations (outliers) in the data set. Outliers can negatively affect the32

calibration of PLSR models. To deal with outliers, several robust PLSR33

methods were proposed in the literature [2–12]. These methods were34

particularly developed to deal with outliers when the response matrix is35

uni-dimensional [13] (PLS1-R). However, robust methods that address the36

case of multi-responses (PLS2) are few. Among them, RSIMPLS is one37

of the most used method [14]. RSIMPLS proposes to robustly estimate38

the cross-covariance matrix Cxy and the empirical covariance matrix Cx39

used in SIMPLS algorithm. For this, a robust principal component analysis40

(ROBPCA) is performed on the concatenated data matrix of X and Y.41

RSIMPLS uses additional information from the previous ROBPCA step to42

perform a reweighted multiple linear regression.43

Recently, a new robust method called RoBoost-PLSR has been developed44

[15]. RoBoost-PLSR aims at determining the measure of relevance of45

the samples for PLSR model calibration. Indeed, in practical cases, the46

samples of a database are not defined as outliers, i.e. not relevant for the47

calibration of a PLSR model. RoBoost-PLSR proposes to calculate a weight48

on each latent variable to define the relevance of the samples. The relevance49

measurement is defined according to three criteria calculated for each latent50

variable (X-residuals, Y -residuals, leverage). This method has proven to be51

effective for outliers in both Y and X. However, this algorithm was only52

developed for a one-dimensional PLSR response variable (PLS1). This paper53

contributes to the RoBoost-PLSR method which will be able to manage54

outliers in a multiple response context.55

The first section introduces the extension of RoBoost-PLSR named56

RoBoost-PLS2-R and the associated algorithm. The following section57

presents the data and the methods used to evaluate and compare the58

predictive ability of RoBoost-PLS2-R. Finally, the prediction performance59

of RoBoost-PLS2-R and its comparison with standard methods are shown60

in the last section.61
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2. Notations62

Capital bold characters will be used for matrices, e.g. X ; small bold63

characters for column vectors, e.g. xj will denote the jth column of X ; row64

vectors will be denoted by the transpose notation, e.g. xT
i will denote the ith65

row of X ; italic characters will be used for scalars, e.g. matrix elements xij66

or indices i. Constant scalars will be denoted with italicised characters, e.g.67

number of samples n. 1 will represent a column vector of ones, of proper68

dimension. med defines the median. X and Y are the spectral and the69

responses matrices. g is the weight function. D is the matrix of sample weights70

where the diagonal of the matrix is the sample weight and the other terms71

are zero.72

3. RoBoost-PLSR extension for multi-responses73

3.1. Algorithm74

The new algorithm allowing an extension in a multi-response context is75

the following :76
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Algorithm RoBoost-PLSR for K LV
For a definite number of K latent variables, the algorithm proceeds as described
below :
1: Initialisation step

k = 1

D = diag(d1, d2, ..., dn) with di =
1

n

2: Center the data :

Xk = X− 11TDX

Yk = Y − 11TDY

3: Define uk as an arbitrary column of Y
4: Calculate one weighted latent variable NIPALS :

wk =
XT

kDuk

||XT
kDuk||

tk = Xkwk

pk =
XT

kDtk
tT
kDtk

qk =
YT

kDtk
tT
kDtk

ck =
uT
kDtk

tT
kDtk

5: Derive (F), (E), (l) :

E = Xk − tkp
T
k

F = Yk − tkq
T
k

l = tk
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6: Update the weights for each i ∈ [1, n] sample :

di =
1

n
× g(||ei||, α)×

m∏
j=1

g(fij , β),×g(li, γ)

7: Return to (step (2) for k = 1, otherwise return to step (4) ) until convergence
of successive c’s.

8: Deflation step

Xk+1 = Xk − tkp
T
k

Yk+1 = Yk − tkq
T
k

uk+1 = Ykqk

set k = k + 1 → then go to step (4)

The regression coefficients resulting for K latent variables are estimated
as follows :

B = RcT

With R :

R = W(P⊤W)−1

3.2. Theoretical discussions77

The algorithm RoBoost-PLS2-R have similar properties to the algorithm78

proposed in [15], but also new properties :79

80

— The RoBoost-PLS2-R framework is designed foremost to facilitate81

the leverage measurement. Leverage is defined as the distance to the82

centre of the model (see step 6 in the algorithm). In usual strategies,83

to define distances between the model centre and individuals,84

different metrics can be used. Euclidean or Mahalanobis distances85
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between scores and the model centre are strategies commonly used86

in chemometrics. However, in the case of a Euclidean distance, the87

latest LVs could have a minor contribution to the leverage value.88

This is due to the decreasing magnitude of scores.Nevertheless,89

the predictive potential of these latest LVs may not be necessarily90

negligible. In the case of a Mahalanobis distance, contributions of91

all LVs become equal in the computation of the leverage value. This92

can be also detrimental, since the predictive potentials of the LVs are93

most usually uneven. Considering these limitations, RoBoost-PLSR94

proposes to estimate the sample leverage for each latent variable. This95

avoids the need to define specific metrics for the leverage calculation.96

However, the use of this strategy may make it difficult to assign a low97

weight to individuals with a leverage effect that is only identifiable98

with a large number of latent variables.99

100

— The proposed method takes into account X-residuals (see step 6 in101

the algorithm). Usually only Y-residuals are considered in robust102

PLS approaches. The inclusion of these residuals provides additional103

information that cannot be expressed by leverage and Y-residuals104

alone.105

106

— The algorithm proposed in this article provides regression coefficients.107

This makes the constructed RoBoost-PLSR models more easily108

interpretable. Contrary to the first algorithm proposed in [15], the109

rotation matrix R used to estimate the regression coefficients can be110

estimated. This is due to data centring which is only done for the111

first model with a single latent variable. In the previous algorithm,112

repeated centring of X and Y matrices led to a bias which made it113

impossible to estimate the rotation matrix.114

115

— Like PLSR, RoBoost-PLSR makes it possible to deduce any of the116

1 to K LVs models from the calibration of a single K LVs model.117

This preserves the operability during validation and parameterisation118

process of the RoBoost-PLSR method. Indeed, from this set of119

one-variable latent models it is possible to define the rotation matrix120

R which enables to compute all previous PLS models.121

122

— The algorithm proposed in [15], determines the convergence with q.123
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However, q is multidimensional when Y is multidimensional. In the124

new algorithm convergence estimation is facilitated by using c which125

is a scalar when responses matrix Y is multidimensional (see step 7126

in the algorithm).127

— The weights of the sample according to the Y-residuals are the128

product of the estimated weights for each Y-variable (see step 6 in129

the algorithm). A specific sample weight for each residual of each130

Y variable is calculated and then multiply them to give an overall131

weight. This strategy enables sample weights to be estimated in a132

way that is appropriate to the multivariate nature of Y. This strategy133

takes in consideration the fact that Y variables may have different134

variances. If this aspect is not taking into account, some outliers could135

be considered as inliers by the method. For instance, atypical samples136

on a specific variable of Y can mask the outliers of other columns137

of Y which present a lower variability. This strategy also allows a138

fast operation by applying the bisquare function on each column of139

Y -residuals matrix for each LV according to the β hyperparameter.140

Finally, the global weights associated with Y -residuals are defined as141

a product of each weight calculated on the Y -residual. This strategy142

of combining weights is a commonly used strategy. It is basically143

used to combine the weights calculated according to the three criteria144

(X-residuals, Y -residuals, leverage) in RoBoost-PLSR. However,145

different strategies are possible. Like calculating the Mahalanobis146

distances on Y or making a combination of weights different from the147

product. In particular, it is possible to perform a sum of weights, so148

that the weighting strategy can eliminate individuals who only have149

weights at 0 for each criterion.150

151

— In this article, the weight function g is the bisquare function :

B(zi) = (1− z2i )
2 for |zi| < 1 and B(zi) = 0 for |zi| > 1

with zi :
xi

c×med(|x|)
However, any weight function can be considered and tested in order152

to improve the algorithm to obtain better predictive capacity. In153

RoBoost-PLS2-R xi (associated with the bisquare function) is specific154
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according to the chosen statistic. This means that when the weights155

are calculated according to the residuals of X, xi corresponds to156

the norm of the vector ei and x to the norms of the individuals of157

E. When the residuals Y are taken into account, xi is the value158

of the residual yij and x is the vector of residuals fj. Finally, the159

leverage effect is taken into account, xi corresponds to the score of160

a latent variable tik and x is the vector of scores tk for all samples.161

Furthermore, the constant c in the bisquares function corresponds to162

the parameters α, β and γ in step 6 of the algorithm. This constant163

has to be adjusted according to the type of outlier.164

4. Materials and methods165

4.1. Simulated Data166

To evaluate the performance of RoBoost-PLS2-R in comparison with167

standard PLS2-R and RSIMPLS, two simulations were performed. The168

first simulation represents the Y -outlier case and the second simulation the169

X-outlier case. For each simulation, 1000 samples were generated according170

to the framework proposed by [16]. Among these samples, 200 outliers171

were generated. The spectral signatures used for the simulations were the172

spectral signatures of water, ethanol and glucose estimated in [16]. Using173

this approach, the matrix of explanatory variables (X) was generated by :174

X = tupu
t +TdPd

t + E (1)

And the relationship f between X and Y by :175

Y = f(tu) + F (2)

Where pu is the spectral signature in the useful space and Pd are176

spectral signatures in the detrimental space. tu and Td are their associated177

contributions. The E and F matrices are defined as gaussian noises of X178

and Y, respectively.179

The parameters of the simulations are represented in tables (Table 1180

and Table 2) where differences between simulated inliers and outliers were181

highlighted in bold in the tables. Scripts of the simulations are available at182

this link : https://github.com/maxmetz/data_simulation183
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4.1.1. Simulation 1, Y -outliers184

The Y -outliers were defined by their relationship f between X and Y.185

All other simulation parameters were common between inliers and outliers.186

The construction of the simulated data set 1 is represented in table 1.187

Table 1 – The different choices in the simulation 1

Inliers Outliers

pu Pure spectrum of glucose

tu Folded-normal distribution

Pd Pure spectrum of water

Pure spectrum of ethanol

Spectrum of water-ethanol Interaction

10 Artificial spectra

Td Folded-normal distribution

Folded-normal distribution

Product between Twater and Tethanol

Folded-normal distribution

E Gaussian distribution

f Y1 = 10 ∗ Tethanol Y1 = 10 ∗ Tethanol

Y2 = 10 ∗ Tglucose Y2 = −10 ∗Tglucose

Y3 = 10 ∗ Twater Y3 = 10 ∗ Twater

F Gaussian distribution

4.1.2. Simulation 2, X-outliers188

The X-outliers were defined by others artificial spectral signatures.189

These signatures correspond to minority compounds. All other simulation190

parameters were common between inliers and outliers. The simulation is191

represented in table 2.192
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Table 2 – The different choices in the simulation 2

Inliers Outliers

pu Pure spectrum of glucose

tu Folded-normal distribution

Pd Pure spectrum of water Pure spectrum of water

Pure spectrum of ethanol Pure spectrum of ethanol

Spectrum of water-ethanol Interaction Spectrum of water-ethanol Interaction

10 Artificial spectra 10 Artificial spectra

10 Artificial spectra

Td Folded-normal distribution Folded-normal distribution

Folded-normal distribution Folded-normal distribution

Product between Twater and Tethanol Product between Twater and Tethanol

Folded-normal distribution Folded-normal distribution

Folded-normal distribution

E Gaussian distribution

f Y1 = 10 ∗ Tethanol Y1 = 10 ∗ Tethanol

Y2 = 10 ∗ Tglucose Y2 = 10 ∗ Tglucose

Y3 = 10 ∗ Twater Y3 = 10 ∗ Twater

F Gaussian distribution

4.2. Real data set193

The real data set was formed by 261 spectra of raw cow milk collected194

from farms in Wallonia in 2014 and 2015. Spectra were recorded over195

a spectral range 397-4000 cm-1 with a resolution of 4 cm-1 by using a196

FTIR spectrometer (Delta LactoScope, PerkinElmer). For each sample,197

chemical measurements were performed to obtain two-responses variable :198

fat content and protein content. Fat and Protein content were determined in199

accordance with reference methods "ISO 1211 :2010 [IDF 1 :2010]" and "ISO200

8968-1 :2014 [IDF 20-1 :2014]", respectively. This database is particularly201

interesting because it contains missing data whose values have been replaced202

by 0.203

4.2.1. Evaluation strategies204

RoBoost-PLS2-R was evaluated and compared with two standard205

regression algorithms : PLS2-R and RSIMPLS.206

In the case of the simulations, the 1000 samples were divided into two207

groups : 800 for calibration and 200 for validation. The reference method in208
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terms of prediction performance was PLS2-R calibrated without outliers. For209

the real data set, calibration set was composed of 209 samples. The validation210

was conducted on 52 samples. These samples were selected from a study of the211

data in order to represent the samples as well as possible without containing212

potential outliers. The reference method in terms of prediction performance213

was RSIMPLS.214

The method performance was evaluated according to the validation sets215

and Root Mean Square Error of Prediction (RMSEP) as a figure of merit.216

Only the results achieved using the optimal parameters (i.e. the parameters217

that provide the minimum value of the RMSEP) of RoBoost-PLS2-R and218

RSIMPLS were presented.219

The evaluation strategy also aimed at assessing the weights attributed to220

each sample. Indeed, the RoBoost-PLS2-R method allows the visualisation221

of the weight given to each sample for each LV. In this work, the parameters222

of the methods RoBoost-PLS2-R and RSIMPLS such as the constants used223

in the weight functions were adjusted to obtain the minimum RMSEP.224

4.3. Software225

PLS2-R was performed with “rnirs” and RoBoost-PLS2-R is available226

RoBoost-PLSR functions available in R. RSIMPLS was performed using the227

function of the LIBRA package available in MALTLAB.228
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5. Results and discussions229

5.1. Simulation set 1230

5.1.1. Data visualisation231
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Figure 1 – Graphical representation of simulation 1 : (a) spectral data (b) value
distribution of Y1 response variable (c) value distribution of Y2 response variable (d)
value distribution of Y3 response variable. Outliers are shown in red and inliers in blue.

Figure 1 shows the graphical representation of simulation 1. From the232

spectra plot (Figure 1a), it can be seen that is difficult to identify outliers233

(in red) from a simple visual inspection. In this case, the outliers were234

defined by a distinct relation f on one of the response variables (see Table235

1). Therefore, no spectral difference between the two groups is expected.236

From the plot of value distributions of the response variables (see Figure237

1b,c,d) it can be observed that Y1 and Y3 variables present the same238

distribution for both outliers and inliers. However, different distribution for239
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these two groups is presented in Y2 variable. Moreover, the variances of Y1240

are smaller than the variance of Y3.241

5.1.2. Method evaluation242
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Figure 2 – Evolution of the RMSEP as a function of the number of latent variables for
the PLS2-R with and without outliers, RSIMPLS and RoBoost-PLS2-R for the simulation
1 set

Figure 2 shows the prediction performances for each method and response243

variable Y on the basis of simulation 1. For the variables Y1 and Y3, the244

error curves obtained by PLS2-R with and without outliers, RSIMPLS and245

RoBoost-PLS2-R are similar. This is due to the fact that outliers are only246

atypical on Y2 and hence, no impact on the Y1 and Y3 predictions is247

expected. For the variables Y2 the error curves obtained by PLS2-R with248

and without outliers are different. The PLS2-R model calibrated with outliers249

perform poorly in inliers prediction. The prediction performance of RSIMPLS250

is close to the PLS2-R without outliers. This means that the RSIMPLS251

method can deal with these outliers and provides satisfactory results. These252

results show that RoBoost-PLS2-R performs as well as RSIMPLS on this253

dataset. Therefore, RoBoost-PLS2-R can handle the presence of outliers in254

the response variables regardless of the variance of the responses.255
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Figure 3 – Weights assigned to samples by the RoBoost-PLS2-R method for the
simulation set 1 according to the number of LV from 1 to 13. Outliers and inliers are
in red and blue, respectively.

Figure 3 shows the weights assigned to the samples of simulation 1 by256

the RoBoost-PLS2-R method as a function of the number of LV with the257

best performing hyperparameters. It can be noted that outliers have a very258

low weight while some inliers have a weight close to zero. This may be due259

to three reasons. Firstly, the hyperparameters of bisquare function must260

be strict enough to assign a weight close to 0 to the outliers for each LV.261

Taking into account that some inliers could be very similar to some outliers,262

assignation of low weights to these inliers could be expected. Secondly, the263

weights associated to Y -residuals are a combination of weights defined for264

each Y variables. The hyperparameter beta(see Section 3) is assumed to be265

constant for each variable in Y. This means that the higher the number of266

variables, the more dispersed the weights assigned to the inliers could be.267

To achieve a more homogeneous weighting on the outliers, the multivariate268

aspect of Y should be taken into account. For example, a potential solution269

can be to calculate the robust Mahalanobis distance at the centre of the data270

on the residuals of Y for each Latent Variable. Thirdly, some outliers are not271

detrimental to the model but are also irrelevant and can therefore have a272
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low weight without impacting on the prediction performance of the model.273

In conclusion, RoBoost-PLS2-R has assigned a low weight to a large number274

of samples without impacting on the prediction performance of the model.275

However, it is potentially possible to improve this approach by modifying the276

weighting criteria associated with the Y residuals.277

5.2. Simulation 2278

5.2.1. Data visualisation279
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Figure 4 – Graphical representation of simulation 2 : (a) spectral data (b) PCA score
plot of the two first components (c) value distribution of Y1 response variable (d) value
distribution of Y2 response variable (e) value distribution of Y3 response variable. Outliers
are shown in red and inliers in blue.

Figure 4 shows the graphical representation of simulation 2. From spectra280

plot of the sample (Figure 4 a), it can be seen that outliers are not identifiable.281

Indeed, in this simulation, outliers are different only for spectral signatures282

and hence, they contribute slightly to the construction of the spectra. Figures283

4b represents the score plot on the two first principal components. Two284
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centroids can be seen but there is no clear separation between outliers and285

inliers. This is due to the outliers having their major compounds in common286

(see Table 2). From the value distributions plot of the responses (see : Figures287

4c,d,e), it can be seen that outliers and inliers present similar distribution288

in all Y response variables. Outliers are different only on the basis of the289

spectral signatures that compose them.290

5.2.2. Method evaluation291
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Figure 5 – Evolution of the RMSEP as a function of the number of latent variables for
the PLS2-R with and without outliers, RSIMPLS and RoBoost-PLS2-R for the simulation
2 set

The figure 5 represents the prediction performances of the applied292

methods on validation set for each response variable on the basis of the293

simulation. As expected, the outliers impact negatively the predictive294

capacity of the PLS2-R for all responses. For the RSIMPLS method, all295

performance curves are between those of the PLS2-R method with and296

without outliers. However, with a large number of latent variables, the297

prediction performances of RSIMPLS approach the best performance of298

PLS2-R without outliers. This may be due to the fact that RSIMPLS does299

not directly take into account the residuals of X but also that the estimation300
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of the leverage effect is not directly taken into account. Indeed, in RSIMPLS301

it is the cross-covariance matrices Cxy and the empirical covariance matrix302

Cx that are robustly estimated.303

For the RoBoost-PLS2-R method, it can also be seen that for the three304

responses, performance curves are close to those of PLS2-R without outliers.305

However the optimal number of components is higher for RoBoost-PLS2-R306

than the PLS2-R without outliers. To conclude, these results highlight307

the fact that RoBoost-PLS2-R can reach the best performance of PLS2-R308

without outliers. Thus, RoBoost-PLS2-R can handle these X-outliers for309

the prediction of multiple responses.310
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Figure 6 – Weights assigned to samples in simulation set 2 according to the chosen number
of latent variables from 1 to 14. Outliers and inliers are in red and blue, respectively

Figure 6 shows the weight assigned to samples by RoBoost-PLS2-R311

according to the number of LV. It can be observed that the weights of312

outliers decrease progressively when the number of LV increases. This313

gradual decrease is partly explained by the fact that both outliers and inliers314

were simulated using common majority spectral signatures. Indeed, only315

some minor spectral signatures differentiate the inliers from the outliers (see316

Section 4). After 8 latent variables, all outliers have a weight equal to 0,317
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whereas almost all inliers present a high weight. Nevertheless, it is possible318

to note that the majority of the inliers have a strong weight and therefore a319

large number of them are used to calculate the model.320

5.3. Real data set321

5.3.1. Data visualisation322
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Figure 7 – Graphical representation of real data set : (a) spectral data (b) PCA score
plot of the two first components (c) value distribution of Y1 (c) value distribution of Y2

Figure 7 shows the graphical representation of real data set. From the323

spectra plot (Figure. 7a), it can be seen that there is no visible atypical324

spectrum. This means that is not possible to identify or detect outliers in this325

data set based on spectra visualisation. Figure 7b shows the PCA score plot326

of the two first components. It can be observed that some samples scores are327

really different from those of other samples. It is possible that some atypical328

samples are outliers but some sample can be also relevant to calculate a329

model. From the value distributions plot of the responses (see Figures 7c,d),330

it can be seen that some samples show extreme response values in Y1 and331
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Y2. In conclusion, this real data set potentially contains samples that are332

detrimental to the model.333

5.3.2. Method evaluation334
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Figure 8 – Evolution of the RMSEP as a function of the number of latent variables for
the PLS2-R, RSIMPLS and RoBoost-PLS2-R for the real data set

Figure 8 represents the prediction performances of the methods on335

validation set for each reference Y. As there are not all known outliers336

in the calibration set, it was not possible to define a PLS2-R with and337

without outliers. Therefore, only the PLS2-R has been calculated on the338

data with potential outliers. In the figure 8 it can be seen that for both339

responses the PLSR performance curve is higher than those of the two340

robust methods.This means that RSIMPLS and RoBoost-PLS2-R method341

have higher prediction performances than the PLS2-R method applied on342

this data set. Therefore, some samples are detrimental in the calibration343

set to the calculation of a PLS2-R model that predicts the samples in the344

validation set. The two methods RoBoost-PLS2-R and RSIMPLS have close345

results in terms of RMSEP for a number of latent variables close to 15. This346
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means that both methods were able to deal with potential outliers samples347

and therefore enable more accurate predictions.348
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Figure 9 – Graphical Representation of the mean weights (for 15 LV) assigned by
RoBoost-PLS2-R through PCA score plot of the first two components(a) and Y2 as a
function of Y1(b). A colour gradient from blue to red represents the weights assigned to
the samples (smallest to largest).

Figure 9 shows the weights assigned to the samples by RoBoost-PLS2-R349

through PCA score plot of the first two components and the Y2 as a function350

of Y1 plot. It can be seen in figure 9a that not all samples far from the centre351

were considered as potential outliers (i.e. with low weights). Some extreme352

samples seem to be relevant for the model and were therefore given high353

weights. The figure 9b shows that some samples have extreme Y-values (0).354

These samples have a 0 average weight in RoBoost-PLS2-R. This is due to355

missing value. In this data set, missing data has a value of 0 assigned. It can356

be concluded through these observations that the RoBoost-PLS2-R method357

can eliminate outliers on Y but also on X while limiting the assignment of358

low weights to extreme samples.359

6. Conclusion360

In this paper, RoBoost-PLS2-R method is proposed to predict361

multi-response. This method was evaluated and compared to reference362

methods on two simulated data sets and one real data set containing363

different outlier scenarios. For all data sets, prediction performances364

of RoBoost-PLS2-R are close to those of PLS2-R models calibrated365

without outliers and to RSIMPLS method. Simulations have shown that366

RoBoost-PLS2-R extension was very effective when outliers are defined367
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by their spectral properties. In the case of real data, results obtained for368

both robust methods are better than the PLS2-R method. To conclude,369

RoBoost-PLS2-R seems to be a reliable and robust regression tool for370

predicting multi-response variables when data potentially contain outliers.371

However, some method developments are possible. First of all, the estimation372

of the criterion evaluated on the Y -residuals can be estimated in another373

way to take into account the multivariate aspect of Y. In addition, the374

optimisation of the hyperparameters allowing the weighting of the individuals375

is complex, it would be relevant to look at automatic parameterisation376

approaches. Moreover, it could be interesting to use the formalism of the377

RoBoost-PLS2-R method for cases of categorical variables and thus propose378

a robust discriminant method. Finally, new RoBoost-PLS2-R algorithm now379

enables the estimation of regression coefficients contrary to the previous380

algorithm proposed for RoBoost-PLS1-R. It would be interesting to study381

these regression coefficients to assess the method’s behaviour outside the382

prediction capacities. In future work, it would be relevant to use the RoBoost383

formalism for concrete applications involving multi-response variables.384

It would also be interesting to modify the strategy for visualising the385

weights of individuals in the calibration. Indeed, here the weights are386

displayed for each latent variable, so it could be interesting to find a strategy387

to obtain a weight for each individual allowing to summarise all the weights388

of each latent variable.389
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