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Abstract 20 

Accurate estimations of ammonia (NH3) emissions due to nitrogen (N) fertilization are 21 

required to identify efficient mitigation techniques and improve agricultural practices. Process-based 22 

models such as Volt’Air can be used for this purpose because they incorporate the effects of several 23 

key factors influencing NH3 volatilization at fine spatio-temporal resolutions. However, these 24 

models require a large number of input variables and their implementation on a large scale requires 25 

long computation times that may restrict their use by public environmental agencies. In this study, 26 

we assess the capabilities of various types of meta-models to emulate the complex process-based 27 

Volt’Air for estimating NH3 emission rates from N fertilizer and manure applications. Meta-models 28 

were developed for three types of fertilizer (N solution, cattle farmyard manure, and pig slurry) for 29 

four major agricultural French regions (Bretagne, Champagne-Ardenne, Ile-de-France, and Rhône-30 

Alpes) and at the national (France) scale. The meta-models were developed from 106,092 NH3 31 

emissions simulated by Volt’Air in France. Their performances were evaluated by cross-validation, 32 

and the meta-models providing the best approximation of the original model were selected. The 33 

results showed that random forest and ordinary linear regression models were more accurate than 34 

generalized additive models, partial least squares regressions, and least absolute shrinkage and 35 

selection operator regressions. Better approximations of Volt’Air simulations were obtained for 36 

cattle farmyard manure (3% < relative root mean square error of prediction (RRMSEP) < 8 %) than 37 

for pig slurry (17% < RRMSEP < 19%) and N solution (21% < RRMSEP < 40%). The selected 38 

meta-models included between 6 and 15 input variables related to weather conditions, soil properties 39 

and cultural practices. Because of their simplicity and their short computation time, our meta-models 40 

offer a promising alternative to process-based models for NH3 emission inventories at both regional 41 

and national scales. Our approach could be implemented to emulate other process-based models in 42 

other countries. 43 



3 

 

Keywords: 44 

Meta-modeling, Volt’Air, ammonia emission, fertilization, process-based model. 45 

 46 

1. INTRODUCTION 47 

In France, 98% of ammonia (NH3) is  emitted by the agricultural sector of which 35% is due 48 

to the application of nitrogen (N) fertilization and 65% to manure management including manure 49 

spreading (CITEPA, 2017a). A better estimation of the quantities of NH3 emitted is necessary to 50 

define effective strategies for reducing emissions at national and regional levels, and mitigating the 51 

potential negative impact of NH3 on human health (Moldanová et al., 2011) and ecosystems 52 

(Bobbink et al., 1998; IPCC, 2006). Accurate NH3 volatilization estimations are also required for 53 

improved fertilization management and better adjustment of N fertilization to soil and climate 54 

characteristics (Dupas et al., 2015; Parnaudeau et al., 2012). 55 

Currently, the French national inventories of NH3 emissions use the default Tier 2 emission 56 

factors (EF) proposed by the EMEP Guidebook (CITEPA, 2017; EMEP/EEA, 2016a, b). Tier 2 EF 57 

do not take into account national specificities such as agricultural practices that may differ between 58 

countries. EF values were estimated from an international literature review of experimental 59 

measurements of volatilization collected in different conditions (EMEP/EEA, 2016a, b) and with 60 

various measurement methods (Sintermann et al., 2012). Process-based models represent an 61 

interesting alternative by describing the effect of different factors on NH3 volatilization. They can be 62 

used to calculate EF for different regions with different pedo-climatic conditions and various types 63 

of fertilizer, as shown by Ramanantenasoa et al. (2018). In France, Volt'Air was developed to 64 

predict NH3 volatilization after N fertilizer and manure applications. This model incorporates the 65 

effect of the main agronomic, soil and meteorological factors influencing NH3 volatilization in 66 

agricultural fields (EMEP/EEA, 2016a, b; Garcia et al., 2012; Génermont and Cellier, 1997; 67 
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Huijsmans et al., 2014; Le Cadre, 2004; Smith et al., 2009; Sommer et al., 2003). However, Volt'Air 68 

includes a rather large number of input variables and its implementation on a large scale requires 69 

long computation times that may restrict its use by public environmental agencies. 70 

In this study, we emulate the Volt’Air process-based model using simple statistical meta-71 

models. A meta-model is a model of a model. It may be seen as a simplified version of the original 72 

model. A meta-model may be run as a substitute for the original complex model when that model 73 

cannot be conveniently used, such as when the number of inputs in the original model is high, when 74 

these inputs cannot be easily measured, or when the computation time of the original model is too 75 

high for some applications. Meta-models are currently used in various research areas, for example, 76 

in hydrology (Razavi et al., 2012), ecology (Conti and O’Hagan, 2010) and agronomy (Makowski et 77 

al., 2015; Britz and Leip, 2009). However, not many publications describe meta-models for 78 

estimating emissions of gas produced by agricultural practices, such as nitrous oxide (N2O) 79 

emissions (Giltrap and Ausseil, 2016; Villa-Vialaneix et al., 2012) and CH4 emissions (Katayanagi 80 

et al., 2016). Regarding NH3 emissions, this study is the first attempt to develop meta-models 81 

emulating an NH3 volatilization process-based model as complex as Volt’Air. 82 

Here we present an approach to producing meta-models used as surrogates of the Volt’Air 83 

process-based model for estimating N emission rates after mineral fertilizer and manure applications 84 

in France. We develop and compare a large number of meta-models based on different statistical 85 

methods and on different sets of input variables for three types of fertilizer (N solution, pig slurry 86 

and cattle farmyard manure (FYM)) with average agronomic properties, at regional and national 87 

scales. All developed meta-models are fitted to a set of NH3 emissions simulated by the Volt'Air 88 

process-based model. The meta-models are evaluated by cross-validation for their ability to 89 

approximate the emissions simulated by Volt’Air, and the results are used to select parsimonious 90 

meta-models providing a good approximation of Volt’Air. 91 
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2. MATERIALS AND METHODS 92 

2.1. The Volt’Air model 93 

Volt’Air is a process-based model predicting NH3 emissions after N fertilization and manure 94 

applications on bare soils. It explicitly describes the physical and chemical equilibria between the 95 

various types of ammoniacal N (N as NH4
+ and NH3) using Henry’s law for air/water equilibrium, 96 

the acid-base equilibrium for ionic dissociation and the Freundlich adsorption equation for soil 97 

minerals and organic matter. This model takes into account the effect of agricultural, soil and 98 

meteorological factors on NH3 volatilization (Garcia et al., 2011; Garcia et al., 2012; Génermont and 99 

Cellier, 1997; Voylokov et al., 2014; Le Cadre, 2004). It simulates NH3 emissions following 100 

applications of organic manures, such as typical slurries and farmyard manure, and mineral 101 

fertilizers, such as ammonium nitrate and urea in granular form as well as N solutions. Volt’Air runs 102 

at an hourly time step and at field scale for a period of several weeks, i.e., covering the duration of 103 

the volatilization event after fertilizer application. A more detailed description of the model may be 104 

found in Génermont and Cellier (1997) and Garcia et al. (2012). 105 

Here we consider a single model output: the N emission rate over 30 days after fertilizer 106 

application, i.e., the cumulative N emission over 30 days after fertilizer application divided by N 107 

fertilizer dose. In most cases, volatilization simulated using Volt’Air is complete 30 days after the 108 

date of fertilizer application, even for mineral fertilizers showing longer volatilization periods 109 

compared to organic manure (Theobald et al., 2014). Volt’Air can be run for real or virtual fields, 110 

with an average computation time of 32 s per simulation using a Dell precision T7910 workstation 111 

with two Intel Xeon 2.4 GHz processors (20 cores) and 128 GB RAM.  112 

2.2. Simulated datasets used to develop the meta-models 113 

The dataset used to develop the meta-models includes 106,092 NH3 emission simulations 114 

performed within the CADASTRE_NH3 framework using the Volt’Air model (Ramanantenasoa et 115 
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al., 2018). These simulations encompass three types of fertilizer, five geographical areas, and 116 

weather conditions corresponding to three contrasted crop years.  117 

Simulation units of CADASTRE_NH3 are the Small Agricultural Areas (SAR): a SAR is 118 

considered to be geographical entity with homogeneous characteristics of agricultural activities, 119 

weather and soil conditions (http://agreste.agriculture.gouv.fr). SAR sizes range from 1,096 to 120 

440,650 ha, and the number of SAR per region varies from 6 to 74. Within our dataset, each SAR is 121 

characterized each year by the area of the cultivated crop species, the weather conditions, and soil 122 

types. Fertilization management is characterized at the regional scale.  123 

Areas of cultivated crop species were derived from the European Land Parcel Identification 124 

System for France (Martin et al., 2014). Data on weather conditions were provided by the French 125 

national meteorological service “Météo-France”. Data on the spatial distribution of soils were 126 

derived from the European Soil DataBase (ESDB) (Panagos et al., 2012) and the soil properties 127 

were derived from the Harmonized World Soil Database (FAO et al., 2012). Data on cultural 128 

practices were derived from the survey conducted in 2005-06 by the Service de la Statistique et de la 129 

Prospective of the French Ministry of Agriculture, for 10 main arable crops (soft wheat, durum 130 

wheat, barley, grain maize, forage maize, oilseed rape, sunflower, peas, sugar beet and potato) and 131 

two types of grasslands (grass leys and intensive permanent grasslands) in 21 French regions (Corse 132 

region was excluded) (AGRESTE, 2006), following the methodology of Mignolet et al. (2007). 133 

Fertilization was defined as a succession of fertilizations on a given crop species. Each fertilizer 134 

application was characterized by the date of application, type of fertilizer (3 mineral fertilizers: 135 

ammonium nitrate, N solution, urea; 5 organic manure: cattle farm yard manure (FYM), cattle 136 

slurry, sheep FYM, pig slurry, and vinasse), and dose applied. For the simulations with Volt’Air, 137 

fertilizers were assumed to be applied on the surface without abatement techniques, at a single time, 138 

8:00 am UTC.  139 



7 

 

Each simulation covered the cumulative NH3 emissions over 30 days after a specific 140 

fertilizer application on a specific SAR*crop*fertilization*year combination. A more detailed 141 

description of the dataset and of the simulation procedure may be found in Ramanantenasoa et al. 142 

(2018). Part of the dataset including the simulations of Volt’Air was made freely available in the 143 

related data paper (Génermont et al., 2018).  144 

 145 

Meta-models were developed separately for each type of fertilizer. The three selected 146 

fertilizers (N solution, cattle FYM, and pig slurry) were among the most applied fertilizers in France 147 

in 2005-06; N solution accounted for 38% of N applications from simple mineral N fertilizers 148 

(UNIFA, 2015); cattle FYM and pig slurry accounted for 82% and 7% of N applications from 149 

organic fertilizers, respectively (AGRESTE, 2006, 2010).  150 

Meta-models were developed separately for the national and the regional scales. Four French 151 

regions characterized by contrasting agricultural, climatic and soil conditions were selected; the 152 

North-Western Bretagne region is characterized by a high use of organic manure due to the 153 

dominance of livestock farming, an oceanic temperate climate, and acidic soils; the North-Eastern 154 

Champagne-Ardenne region is a major arable crop farming area, encountering a semi-continental 155 

temperate climate, with a dominance of alkaline soils; Ile-de-France, located in the North Center of 156 

France, is an arable crop farming area, with soil and weather conditions in-between these two former 157 

regions; the South-Eastern Rhône-Alpes region is a more agriculturally diverse region, with 158 

southern semi-continental climatic conditions. 159 

In order to capture the possible effect of weather variables between years, weather conditions 160 

of two contrasting crop years were added: 2007-08 and 2010-11. Crop year 2005-06 was 161 

characterized by a dry spring and a hot summer (AGRESTE, 2010); 2007-08 enjoyed favorable 162 

conditions for crop growth, i.e., a humid spring with temperatures close to the seasonal average and 163 

a hot summer with rainfall close to the seasonal average (JRC, 2008); 2010-11 was characterized by 164 
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a very dry, hot spring and a rainy summer (AGRESTE, 2014). The same sites and cultural practices 165 

were analyzed for the three years; only the weather conditions were changed. 166 

The sizes of national and regional datasets per fertilizer type and per geographical area and 167 

the numbers of SAR per geographical area are given in Table 1. Note that no simulation was 168 

available for pig slurry in Champagne-Ardenne, Ile-de-France and Rhône-Alpes. This type of 169 

fertilizer is barely used in these three regions.  170 

Table 1: Numbers of simulations of the Volt’Air model in the national and regional datasets and 171 

numbers of SARs per geographical area 172 

Type of 
fertilizer 

  
France Bretagne 

Champagne-
Ardenne 

Ile-de-
France 

Rhône-
Alpes 

N solution 
Number of 
simulations 

70,299 2,388 3,852 5,286 6,951 

Share of total (%) 100 3 5 8 10 

Cattle FYM 
Number of 
simulations 

13,725 147 804 558 1,452 

Share of total (%) 100 1 6 4 11 

Pig slurry 
Number of 
simulations 

405 225 0 0 0 

Share of total (%) 100 56 0 0 0 

Total number of simulations 84,429 2,760 4,656 5,844 8,403 

Total number of SARs 706 25 34 36 76 

2.3. Inputs of the meta-models 173 

A total of 16 original input variables were chosen from all the Volt’Air input variables for 174 

meta-modeling (Table 2) because they were expected to have an impact on NH3 volatilization and 175 

showed a wide range of variation in the data sources. Some of these 16 inputs were not taken into 176 

account in a few fertilizer * region combinations considered. Thus, Dose of application was not used 177 

for cattle FYM and pig slurry because its range of variation for these two types of fertilizer was too 178 

narrow. Bulk density was not used for Bretagne, for the same reason. Note that variables describing 179 

fertilizer and manure properties were not considered here because specific meta-models were 180 

developed for each fertilizer separately. 181 
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The variables describing geographical location, soil and cultural practices were not time-182 

dependent. In contrast, all variables describing weather conditions were defined for 23 different 183 

time-periods: 184 

- 10 different daily periods; 1st (i.e., the day of fertilizer application), 2nd, 3rd, 4th, 5th, 6th, 7th, 185 

8th, 9th and 10th days following fertilizer application. 186 

- 10 different cumulative periods; 2, 3, 4, 5, 6, 7, 8, 9, 20 and 30 days following fertilizer 187 

application. 188 

- three ten-day periods; 1st, 2nd and 3rd, from the 1st to the 10th day, from the 11th to the 20th 189 

day, from the 21th to the 30th day respectively following fertilizer application,. 190 

For each period, the values for Mean air temperature, Relative air humidity, Incident solar 191 

radiation, and Wind speed were averaged over the period considered. The values for Minimum air 192 

temperature and Maximum air temperature were set at the minimum and maximum air temperature 193 

over the period. The values for Cumulative rainfall were set at the sum of rainfall over the time-194 

periods considered. A separate meta-model was constructed for each time-period. 195 

Two additional non-weather related variables were considered to account for regional effects 196 

on volatilization; the categorical variable Region and the continuous variable Longitude. Note that 197 

the continuous variablen Latitude is a Volt’Air variable. With these three variables, we were able to 198 

produce a unique meta-model per fertilizer type at the France scale while accounting for regional 199 

specificities. 200 

Table 2: List of input variables of the meta-models 201 

Category Variable Unit 

Location of site 
- Latitude  
- Longitude 
- Region(a) 

° 
° 
Categorical variable 

N fertilization 
management 

- Date of N application 
 

- Dose of application(b) 

- Number of days from 
origin 01/01/2005 

- kg N.ha-1 
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Soil properties 

- pH 
- Bulk density 
- Silt content 
- Clay content 
- Organic carbon content 
- Initial water content 

 
- kg.m-3 
- g.kg-1 of dry soil 
- g.kg-1 of dry soil 
- g.kg-1 of dry soil 
- g.kg-1 of dry soil 

Weather conditions 

- Minimum air temperature 
- Mean air temperature 
- Maximum air temperature 
- Specific air humidity 
- Incident solar radiation  
- Wind speed 
- Cumulative rainfall 

- K 
- K 
- K 
- kg.kg-1 
- W.m-2 
- m.s-1 
- mm.s-1/ 3600 

(a) The Region variable was added for the development of meta-models at the national scale only. 202 

(b) Dose of application was not used for cattle FYM and pig slurry meta-models. 203 

(c) Bulk density was not used for Bretagne. 204 

 205 

Boxplots of the 17 quantitative explanatory variables chosen are presented in Figure S2 in 206 

the supplementary material. 207 

 208 

Additional input variables were defined from the original variables listed in Table 2 for 209 

potential inclusion in the meta-models; the quadratic terms of several variables (see Tables S1 and 210 

S2 in the supplementary material) and interaction terms between pairs of variables (i.e., 211 

multiplication between two variables). Interactions were chosen with respect to formalisms chosen 212 

to describe the processes of Volt’Air. Interaction between Cumulative rainfall and Air temperatures 213 

(minimum, mean, maximum) (i.e., three pairs), interaction between Cumulative rainfall and Wind 214 

speed, and interaction between Cumulative rainfall and Soil texture (Silt, Clay) were chosen because 215 

infiltration depends on both the quantity of water and the state of the soil surface, which in turn 216 

depends on evaporation potential, driven by both temperature and wind-speed, and on soil texture 217 

(Garcia et al., 2012). The interaction between Cumulative rainfall and Air temperatures reflects the 218 

effect of these factors on physicochemical equilibria, through dilution by rainfall and the high 219 
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dependence of the equilibrium constants on temperature. For N solution and pig slurry, interactions 220 

between Soil pH and Air temperatures (minimum, mean, maximum) were also considered. As those 221 

products are incorporated to the first soil layer, soil pH together with N solution pH or pig slurry pH 222 

directly drive physicochemical equilibria, which are also highly dependent on temperature. 223 

2.4. Types of meta-model 224 

For a given type of fertilizer, meta-models were fitted to each regional dataset of simulated 225 

NH3 emissions and then to the whole dataset at the national scale. Five different types of meta-226 

model were developed with each dataset. The first three types of model (ordinary linear regression, 227 

Least Absolute Shrinkage and Selection Operator, and Partial Least Squares Regression) assumed a 228 

linear relationship between N emission rate over 30 days (or its transformed-value) and input 229 

variables. The last two types of model (Generalized additive model, Random Forest) dealt with 230 

nonlinear relationships between volatilization rates and input variables. The inputs of generalized 231 

additive model and random forest were selected using a regression method (ordinary linear 232 

regression, Least Absolute Shrinkage and Selection Operator, or Partial Least Squares Regression, 233 

see section 2.5 for details on the selection procedure). Below, we briefly present the main 234 

characteristics of each type of model. Details on the meta-model selection procedure are given in 235 

Section 0. The equations of the meta-models are described in Table 3 together with the R functions 236 

used for their implementation. The R functions mentioned in Table 3 are freely available from 237 

https://cran.r-project.org. They can be easily used to develop meta-models from the dataset 238 

described in 2.2. The present study was performed with the 3.2.3 version of R. 239 

Ordinary linear regression (LM, Linear Model) was used to relate emission rates (noted y in 240 

Table 3) to quantitative and categorical input variables (noted X1, …, Xp in Table 3) through a linear 241 

equation. Here the flexibility of linear models was increased through the inclusion of quadratic 242 

terms and interactions between inputs. Several variants of ordinary linear regression models were 243 
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developed. In some variants, model inputs were selected using a stepwise or a forward selection 244 

procedure based on the Akaike Information Criterion (AIC) (Figure 1). All linear models were fitted 245 

using Ordinary Least Squares (OLS) with the R function lm(). 246 

Least Absolute Shrinkage and Selection Operator (LASSO) is a well-known regularization 247 

technique that can be applied to reduce variance of the parameter estimators in linear regression 248 

models (Tibshirani, 1996). LASSO is based on the same model equation as LM, i.e., a linear 249 

equation relating the emissions rates to the input variables. However, instead of using OLS for 250 

obtaining the parameter estimates, LASSO is subjected to constraints on parameters defined through 251 

a penalty term based on the absolute values of the parameters. With this approach, some parameters 252 

become equal to zero by tuning the penalty term for minimizing prediction errors, leading to the 253 

selection of a reduced subset of input variables. LASSO was implemented here using the R function 254 

cv.glmnet() of the package glmnet. 255 

Partial Least Squares Regression (PLSR) can improve the accuracy of linear regression 256 

models when the input variables are strongly correlated (Abdi, 2010). PLSR may be seen as an 257 

improved version of principal component regression (PCR). In PCR, principal components are 258 

expressed as linear combinations of original variables, such that the variability in the data may be 259 

described by a small number of these new variables. In PLSR, the original input variables are also 260 

replaced by linear combinations of inputs, but these combinations are selected to describe most of 261 

the input data variability while showing a strong correlation to the response (Table 3). PLSR was 262 

implemented here using the R function plsr() of the pls package. 263 

Generalized Additive Models (GAM) assume that the response variable Y (emission rate) 264 

can be expressed as a linear combination of several unknown smooth functions of the inputs (Wood, 265 

2017). The equation used by GAM is more general than the linear equations used by LM, LASSO, 266 

and PLSR and is expressed as μ + s(X1) + ⋯ + s(XP), where s(.) are several smoothing functions 267 
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(splines) of the inputs. Here, the volatilization rate is expressed as a linear combination of the 268 

smoothing functions. We used smoothing splines as smoothing functions because these types of 269 

function are very flexible. This model does not assume that the volatilization rates are linearly 270 

related to the inputs and can describe complex response curves. As the model is expressed as a sum 271 

of independent functions, the effect of each input on the output can be easily interpreted. GAMs 272 

were fitted here using the R function gam() of the mgcv package. 273 

Random Forest (RF) is a machine learning technique that builds an ensemble of 274 

classification (or regression) trees (Breiman and Cutler, 2003). RF creates a set of binary decision 275 

rules based on the input variables. The first step of the method is the random selection, with 276 

replacement, of a sample of data (called the “in-bag”) of equal size to the total number of data. The 277 

remaining part of the data is referred to as “out-of-bag” (OOB) data. The second step involves the 278 

random selection of explanatory variables. The third step involves the building of a tree based on the 279 

in-bag data and a subset of variables selected. The tree is built by recursively partitioning the initial 280 

data into smaller groups, called nodes, through binary splits based on a single input variable. 281 

Examples of regression trees are given in Figure S3 in the supplementary material. The whole 282 

process is repeated several thousand times, to generate many trees. At each iteration, the OOB data 283 

are used to evaluate the accuracy of the fitted trees. The output of RF is calculated by averaging the 284 

outputs of the individual trees (Table 3). Here RF models were fitted with the R function 285 

randomForest() of the randomForest package and the R function ranger() of the ranger package. 286 

Ranger is a fast implementation of random forests (Breiman 2001) and was used here to fit the RF 287 

meta-model for N solution in France to reduce computation time. 288 
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Table 3 : Description of the statistical and machine learning methods used to develop the meta-models of Volt’Air. The methods are 289 

based on different types of models whose parameters are estimated using an optimization algorithm implemented with R functions of specific R 290 

packages. Each meta-model computes NH3 volatilization rates y (or log/box-cox transformed volatilization rates) from a series of inputs X1, 291 

X2…, Xp. 292 

Acronym Method Equation Optimization algorithm R package R function used for parameter estimation 
LM Ordinary linear 

regression model 
with stepwise 
selection 

y =μ + α1X1 + α2X2 +… + 
αpXp 
where X1, X2…, Xp are p 
input variables, and μ, α1, 
…, and αp are parameters 
estimated from the dataset 
of volatilization rates.   

Least squares. Input 
variables are selected 
using a stepwise 
procedure based on the 
AIC criterion.  

stats lm(Volat_rate ~ X1+X2+…+Xp) 

LASSO Least Absolute 
Shrinkage and 
Selection Operator 

y =μ + α1X1 + α2X2 +… + 
αpXp 
where X1, X2…, Xp are p 
input variables, and μ, α1, 
…, and αp are parameters 
estimated from the dataset 
of volatilization rates.   

Penalized least squares. 
A penalty term is used 
to select input 
variables. The optimal 
value of the penalty 
term is chosen by cross 
validation in order to 
minimize prediction 
errors.  

glmnet cv.glmnet(X, Volat_rate) 
 
where X is a matrix including the values of the 
inputs X1, X2 ,…, Xp. 

PLSR Partial Least 
Squares Regression 

Y=UQ’ 
X=TP’ 
where X is an n x p matrix 
including the values of the p 

inputs for the n 
volatilization rate data. Y is 
a vector including the n 
volatilization rate data, T 
and U are projections of X 
and of Y, respectively. P 

Partial least squares. 
The number of inputs 
(components) are 
selected by cross-
validation.  

pls plsr(Volat_rate ~ X, validation="CV") 
 
where X is a matrix including the values of the 
inputs X1, X2 ,…, Xp. 
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and Q are orthogonal 
loading matrices. The 
decomposition of X and Y 
are made so as to maximize 
the covariance between U 
and T. 

GAM Generalized additive 
model 

y =μ + s(X1) +s(X2)+… 
+s(Xp) 
where the functions s(.) are 
smooth functions of the 
input variables (regression 
splines). Each smooth 
function defines the 
response of y to a given 
input.  

Penalized maximum 
likelihood. Penalty 
terms are used to 
specify the smooth 
functions.  

mgcv gam(Volat_rate ~ s(X1)+ s(X2) + …+s(Xp)) 

RF Random Forest 
� = 1

� � ℎ�	
��


���
 

with ℎ�	
��… ℎ�	
� a 
collection of outputs of Q 
decision trees. Each tree 
consists in a series of 
partitions based on a subset 
of inputs 	
� . Each subset 
of inputs includes variables 
chosen at random among X1, 
X2, …, Xp. 

Mean squared error 
calculated using “out-
of-bag” data (i.e., data 
not used for fitting the 
regression trees).  

randomForest randomForest(Volat_rate ~ X1+X2 + …+Xp) 

 293 

 294 
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2.5. Selection of meta-models  295 

For each type of fertilizer and each geographical area, 602 meta-models were developed and 296 

assessed according to the four-step selection procedure presented in Figure 1 and detailed below. 297 

Each model was defined by a specific statistical method (among LM, LASSO, PLSR, RF, GAM), 298 

the type of response variable (untransformed or log/box-cox-transformed emission rate), the time-299 

period used to define the weather inputs, the inclusion or not of quadratic terms and interactions, and 300 

the input selection method (none, stepwise, forward). The box-cox transformation has the form wi = 301 

yi λ, if λ ≠ 0 and wi = log (yi), if λ = 0 with wi the transformed variable, yi the initial response 302 

variable, and λ the parameter for the transformation (estimated from the data). 303 

In Step 1, three types of linear model were fitted and compared by cross-validation: ordinary 304 

linear models (LM), LASSO, and PLSR. Two sets of inputs were considered successively: the 305 

inputs listed in Table 2, and an expanded set of inputs including quadratic terms and interactions. 306 

With LM, input variables were selected using either a stepwise or a forward selection procedure 307 

based on the AIC criterion (Akaike, 1974). The total number of models tested in Step 1 was 598. 308 

In Step 2, the two best linear meta-models were selected using cross-validation. Cross-309 

validation is a standard method for evaluating the accuracy of the model predictions (Efron, 1983). 310 

It allows one to estimate how the model is expected to perform when used to make predictions on 311 

data independent from those used for estimating the model parameters. The general principle is to 312 

split the dataset into K groups. The first group is removed from the dataset. The remaining part of 313 

the dataset is used to fit the model. The fitted model is then used to predict the discarded group of 314 

data. The whole procedure is repeated over all groups, and the accuracy of the prediction is 315 

evaluated by computing the root mean square error of prediction (RMSEP) over the K groups. Here, 316 

two procedures were used successively to define the groups of data, leading to two different types of 317 

cross validation. The first type of cross-validation was implemented SAR by SAR in order to 318 



17 

 

estimate the root mean square error of prediction of each meta-model (RMSEP_SBS). RMSEP_SBS 319 

measures the ability of each meta-model to approximate the emission rates simulated by Volt’Air in 320 

a new SAR, i.e., a SAR not originally included in the dataset used to develop the meta-model 321 

considered. The second type of cross-validation consisted of dividing the dataset by years. This is 322 

also referred to as year-by-year cross-validation and the associated RMSEP is denoted 323 

RMSEP_YBY. This value of RMSEP measures the ability of each meta-model to approximate the 324 

emission rates simulated by Volt’Air for a new year, not originally included in the dataset used to 325 

develop the meta-model. 326 

In Step 3, two RF and two GAM meta-models were developed. They included the input 327 

variables of the two best linear models selected in Step 2, i.e., the linear models characterized by the 328 

lowest values of RMSEP_SBS and RMSEP_YBY (Linear MM_SAR and MM_YEAR). These 329 

models were thus developed from the input variables selected in Step 2. The output and input 330 

variables were used in their original form, i.e., without transformation or interaction. 331 

In Step 4, cross-validations (SAR-by-SAR and year-by-year) were carried out again to select 332 

the two best meta-models from the two best linear models, RF, and GAM. The two meta-models 333 

selected at this step were denoted Final MM_SAR and MM_YEAR. 334 

The whole procedure was applied for each fertilizer type, for each region and for France. 335 

When two or more meta-models had similar RMSEPs (to two decimal places), we favored the meta-336 

model including the smallest number of inputs (inputs related to the geographical location of the 337 

site, i.e., latitude, longitude and region, were not counted because they are always available at zero 338 

cost). When two meta-models had similar RMSEPs and the same number of inputs, we chose the 339 

meta-model with weather condition variables calculated over the longest time-period because these 340 

variables were smoother than variables calculated over shorter time-periods, and were thus less 341 

sensitive to extreme, short-term meteorological events. 342 
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SELECTION OF THE FINAL TWO BEST METAMODELS AMONG THE TWO BEST LINEAR MODELS, THE TWO GAMs, 
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Final MM_SAR with the lowest RMSEP_SBS 
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(1) For each type of linear model, 23 variants were developed; each variant corresponds to a specific time-period. 343 

Figure 1: Meta-modeling selection procedure. This four-step approach is applied for each type of fertilizer for each region and at the national scale. The 344 

selected models are those minimizing the root mean square error of prediction (RMSEP) computed by cross-validation. Two types of cross-validation are 345 

implemented, i.e., by removing each small agricultural region (SAR) in turn, or each year in turn. The two cross-validations lead to two different RMSEPs 346 

(RMSEP_SBS and RMSEP_YBY, respectively). Two sets of inputs were considered: Set 1with the original variables, and Set 2 including in addition 347 

quadratic terms and interactions. LM1-LM2: ordinary linear models (with/without quadratic and interaction terms). LASSO1-LASSO2: LASSO regression 348 

models (with/without quadratic and interaction terms). PLSR1-PLSR2: PLSR regression models (with/without quadratic and interaction terms). RF: random 349 

forest. GAM: generalized additive models. 350 



19 

 

2.6. Comparison of meta-models at the regional scale 351 

After the selection described in Figure 1, two types of meta-model were available for estimating 352 

emission rates in a given region: the regional meta-models derived from the set of simulated NH3 353 

emissions obtained for that region specifically, and the France meta-models derived from the whole set 354 

of simulated emissions at the national level (i.e., over the 21 French regions).  355 

The meta-models selected at the national level can be used to estimate emission rates in a 356 

specific region because they include the categorical input Region and/or the quantitative inputs Latitude 357 

and Longitude accounting for a possible regional effect. So we compared regional and France meta-358 

models for their ability to estimate emission rates for each selected type of fertilizer and each region. To 359 

do this, the best France meta-models were run on site*crop*fertilization*year of the regional datasets, 360 

and the resulting RMSEP values were compared with those calculated with the best regional meta-361 

models. For each selected region and fertilizer type, the RMSEP of the regional and France meta-models 362 

were compared and the model producing the lowest value was finally selected. 363 

 364 

3. RESULTS 365 

3.1. Comparison of Volt’Air and meta-model outputs 366 

Over all meta-models (before selection), values of RMSEP range from 0.002 to 0.729 kg N.kg-1 367 

N and values of RRMSEP range from 3% to 755% of the mean emission rates. For N solution, values of 368 

RMSEP range from 0.033 to 0.729 kg N.kg-1 N and values of RRMSEP range from 24 to 755 % of the 369 

mean emission rates. For cattle FYM and pig slurry, values of RMSEP range from 0.002 to 0.074 kg 370 

N.kg-1 N and 0.045 to 0.598 kg N.kg-1 N, respectively, and values of RRMSEP range from 3 to 105 % 371 

and 17 to 260 % of the mean emission rates, respectively. 372 
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For a given fertilizer type, the RMSEP of the best meta-models fitted at the regional and national 373 

scales are close, and the regional meta-models do not systematically outperform the national meta-374 

models (Figure 2). For N solution, the France meta-model produces a smaller RMSEP, thus providing a 375 

more accurate approximation of Volt’Air than regional meta-models in all considered regions except in 376 

Bretagne for the meta-model selected using a year-by-year cross-validation. For pig slurry in Bretagne, 377 

the France meta-model performs better than the regional meta-model. For cattle FYM, regional and 378 

France meta-models show very similar performances.  379 

In the following, only the meta-models showing the lowest RMSEP are considered. Regional 380 

emission rates are thus further estimated using either France or regional meta-models, depending on 381 

their RMSEP values. Similar results are observed for SAR-by-SAR and year-by-year cross-validation 382 

methods.  383 
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 384 

 385 

Figure 2: Comparison of RMSEP by (a) SAR-by-SAR cross-validation and (b) year-by-year cross-386 

validation, obtained for each region and each type of fertilizer with meta-models fitted at the regional 387 

and France scales. 388 

The RMSEP values from the best meta-models are shown in Figure 3, as absolute values and as 389 

relative values compared to the mean emission rates (relative root mean square error of prediction 390 

(b) Year-by-year cross-validation 

(a) SAR-by-SAR cross-validation 
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(RRMSEP) as %). For cattle FYM, the RMSEP values were very low (<0.005 kg N.kg-1 N) and the 391 

RRMSEP did not exceed 8% of the mean emission rates. Values of RMSEP were higher for pig slurry 392 

and the corresponding RRSMEP ranged from 17 to 19% for this type of fertilizer. For N solution, the 393 

RMSEP values were of the same order of magnitude as those obtained for pig slurry; they never 394 

exceeded 0.06 kg N.kg-1. But as the mean emission rates were low for N solution, the corresponding 395 

RRMSEP values were systematically higher than 21% (Figure 3). These results show that the meta-396 

models provided a better approximation of Volt’Air for cattle FYM than for pig slurry and N solution. 397 

This result is confirmed in Figure 4, where the relationships between the meta-model and the Volt’Air 398 

outputs are stronger for cattle FYM (RRMSEP<8%) than for the other two types of fertilizer 399 

(RRMSEP>17%). 400 
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 401 

 402 

 403 

Figure 3: Root Mean Square Error of Prediction (RMSEP) of the best meta-models selected per type of 404 

fertilizer per region. The letters R and F refer to the regional and France meta-model, respectively, for 405 

each fertilizer type. The percentages indicate the relative root mean square error of prediction 406 

(RRMSEP) of each meta-model (i.e., RMSEP/mean of emission rates). 407 

The performances of the meta-models did not differ much among regions. No single region 408 

showed systematically lower RMSEP or RRMSEP. The RMSEP tended to be higher when calculated 409 

year by year than SAR by SAR (Figure 3ab). This result was expected, because a larger number of data 410 

were removed at each iteration of the cross-validation when implemented year by year. The differences 411 

were large for N solution, small for pig slurry, and non-detectable for cattle FYM. 412 

The distributions of the emission rates obtained with the selected meta-models were very similar 413 

to those obtained with Volt’Air, both at regional and national scales. This is illustrated in Figure 5 for 414 

(a) SAR-by-SAR cross-validation 

(b) Year-by-Year cross-validation 
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the meta-models selected by year-by-year cross-validation; results were similar with the meta-models 415 

selected by SAR-by-SAR cross-validation and are therefore not shown. In Figure 5, each box-plot 416 

presents the minima, 1st quartiles, medians, 3rd quartiles, and maxima calculated over the entire 417 

considered site*crop*fertilization*year, using the selected meta-models and Volt’Air. Differences 418 

between the meta-models and Volt’Air were very small, especially for the minima, 1st quartiles, 419 

medians, and 3rd quartiles. These results indicate that the emission rate distributions produced by the 420 

meta-models and by the process-based model shared similar characteristics. 421 
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 422 

Figure 4: Scatter plot of meta-models selected by year-by-year cross-validation versus Volt’Air 423 

simulated emission rates (in kg N.kg-1 N). The letters R and F stand for regional and France meta-424 

model, respectively, for each fertilizer type.  425 
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 426 

Figure 5: Distributions of the nitrogen emission rate calculated with the meta-models selected by year-by-year cross-validation (MM_YEAR) and 427 

with the process-based model Volt'Air (in kg.kg-1 N). Each box-plot describes the minimum, 1st quartile, median, 3rd quartile and maximum values 428 

of the emission rates over the considered site*crop*fertilization*year. 429 
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3.2. Characteristics of selected meta-models 430 

Over the five considered geographical areas (four regions plus France) and the three types of 431 

fertilizer, four different meta-models were selected by SAR-by-SAR cross-validation, versus seven 432 

by year-by-year cross-validation (Table S1 in the supplementary material). This difference is due to 433 

the number of meta-models selected for N solution and cattle FYM. For N solution, a single meta-434 

model (the France meta-model) was indeed selected using SAR-by-SAR cross-validation for four 435 

different regions (Table S1) while the same meta-model was selected using year-by-year cross-436 

validation for three different regions (Table S2). For cattle FYM, a single meta-model (the France 437 

meta-model) was selected using SAR-by-SAR cross-validation for three different regions (Table S1) 438 

while the same meta-model was only selected using year-by-year cross-validation for one region, Ile-439 

de-France (Table S2). 440 

Half of the meta-models selected by SAR-by-SAR cross-validation were Random Forest 441 

models; while the other half were ordinary linear regression models (Table S1). The two linear 442 

regression models selected by SAR-by-SAR cross-validation included quadratic and interaction 443 

terms and one of them (Meta-model 4) was fitted using a box-cox transformation of the output. The 444 

interaction Wind speed * Cumulative rainfall and the quadratic terms Latitude2, Longitude2, Date of 445 

N application2, Mean air temperature2 and Cumulative rainfall2 were frequently selected (see Tables 446 

S1 and S2 in the supplementary material2). The quadratic terms of “Dose of fertilizer application”, 447 

“Soil organic carbon content” and “Maximum air temperature” were never selected, nor was the 448 

interaction “Mean air temperature * Cumulative rainfall”. Among the considered statistical methods, 449 

GAM, PLSR, and LASSO were never selected whatever the type of cross-validation used. 450 

In the four meta-models selected by SAR-by-SAR cross-validation, a number of weather 451 

input variables (e.g., Mean air temperature, Wind speed, Cumulative rainfall and Incident solar 452 

radiation) and Initial soil water content were systematically selected. The Soil organic carbon 453 
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content was selected in one meta-model only, as was the Region variable, which was an input 454 

candidate for three meta-models. The Dose of fertilizer application was never selected but it was an 455 

input candidate for one meta-model only (Table S1). All other variables were selected in at least half 456 

of the meta-models. The number of selected inputs ranged from 6 to 15 (if we exclude the quadratic 457 

and interaction terms), depending on the meta-model considered. These numbers should be 458 

compared to the total number of candidate inputs, comprised between 15 and 18 (Table 2). Meta-459 

models 1 and 3 were the most parsimonious; they included 10 selected inputs from the 18 input 460 

candidates and 6 selected inputs from the 17 input candidates, respectively, i.e., about half or one 461 

third of the number of candidate inputs (Table S1). Conversely, the meta-models 2 and 4 included a 462 

large share of the input candidates (12/15 and 15/18, respectively). The time-period used to calculate 463 

the weather inputs ranged from six to seven successive days for N solution and from one to three 464 

successive days for cattle FYM; for pig slurry, it was five successive days (Tables S1 and S2). 465 

The seven meta-models selected by year-by-year cross-validation shared certain similarities 466 

with the four meta-models selected by SAR-by-SAR cross-validation. The inputs of these meta-467 

models (Table S2) were often the same as those reported in Table S1. Initial soil water content, 468 

Mean air temperature, Incident solar radiation, Wind speed and Cumulative rainfall were frequently 469 

selected, while the Dose of fertilizer application, Soil organic carbon content, Region, Latitude, 470 

Longitude and Relative air humidity, were less frequently selected. Soil properties (Bulk density, Silt 471 

content, Clay content and Organic carbon content) were less frequently selected in N solution meta-472 

models. The total number of selected inputs also ranged from 6 to 15 (if we exclude the quadratic 473 

and interaction terms), depending on the meta-model considered. These meta-models exhibited 474 

several differences compared to those selected by SAR-by-SAR cross-validation. In particular, most 475 

of the meta-models selected by year-by-year cross-validation were ordinary linear regression models 476 

(Table S2); RF was used by only two meta-models. All the five selected ordinary linear regression 477 

models included quadratic and interaction terms (Table S2); two out of them included a box-cox 478 
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transformation of the output while the other three linear meta-models included untransformed output. 479 

In the five selected linear regression meta-models, the interactions Minimum air temperature * 480 

Cumulative rainfall, Maximum air temperature * Cumulative rainfall, and the quadratic terms Wind 481 

speed2, Soil bulk density2, Mean air temperature2, Incident solar radiation2 and Cumulative rainfall2 482 

were frequently selected (see Tables S1 and S2 in the supplementary material2). 483 

 484 

The R objects of the meta-models based on linear regression and Random Forest are available 485 

on request from the authors. 486 

 487 

4. DISCUSSION 488 

Our meta-model assessments show contrasting results. For cattle FYM and pig slurry, on the 489 

one hand, meta-models provide a good approximation of Volt’Air, with an RRMSEP always lower 490 

than 8% and 19% of the mean emission rates, respectively. For N solution, meta-models provide a 491 

good approximation of Volt’Air for Champagne-Ardenne, Ile-de-France and France when they were 492 

assessed by the SAR-by-SAR cross-validation: RRMSEP ranged from 21% to 24% of the mean 493 

emission rates. The meta-models are less accurate for N solution in other situations, specifically in 494 

Bretagne and Rhône-Alpes with SAR-by-SAR cross-validation, and in all the geographical areas 495 

with year-by-year cross-validation; RRMSEP ranged from 31% to 40% of the mean emission rates in 496 

these situations. Despite these contrasting results, our meta-models provide a good approximation of 497 

the distributions of emission rates at the regional scales for all fertilizer types, including N solution 498 

(Figure 5). They give realistic ranges of emission rates and could thus be used for regional NH3 499 

emission inventories.  500 
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The relatively poor performances of the N solution meta-models may be due to the small 501 

number of soil variables selected (see below). Other variables may have a strong influence on 502 

volatilization, at least for some of the considered years. Our meta-models may not fully account for 503 

the soil characteristics influencing soil transfer of heat, water and ammoniacal-N species. The better 504 

performance obtained for N solution by year-by-year cross validation may be due to a higher inter-505 

annual variability of volatilization for this type of fertilizer, or to the fact that more data are needed 506 

to develop an accurate meta-model for this fertilizer. 507 

Almost all the selected meta-models incorporate some nonlinear effects. The regression 508 

models include quadratic terms and interactions, and Random Forest models deal with nonlinear 509 

responses through their splitting rules. The presence of nonlinear terms in the selected meta-models 510 

emphasizes the need to take nonlinear responses and interactions into account. The results of our 511 

selection are consistent with those reported in previous meta-modeling studies. Regression meta-512 

models including linear, interaction, and quadratic terms and transformation of the output were 513 

indeed commonly used for meta-modeling (Britz and Leip, 2009; Giltrap and Ausseil, 2016). RF 514 

meta-models were also already used by Villa-Vialaneix et al. (2012) and were found to be an 515 

accurate meta-modeling method for emulating models of nitrous oxide (N2O) emission and N 516 

leaching. 517 

Four weather variables (Wind speed, Air temperature, Cumulative rainfall, Incident solar 518 

radiation) were always selected in the meta-models regardless of the type of fertilizer and 519 

geographical area. This is consistent with the Volt’Air sensitivity analyses performed by Theobald et 520 

al. (2005, 2014) which showed that air temperature and wind speed are the most influential climatic 521 

factors in the Volt’Air model. This result is due to the fact that Henry’s Law and the acid-base 522 

equilibrium constants are both expressed as exponential functions of temperature, increasing 523 

temperatures leading to increased volatilization (Sommer et al., 2003). Furthermore, wind speed 524 

promotes the dispersion of NH3 in the gas phase and thus volatilization. Volt’Air is also sensitive to 525 
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rainfall (Génermont and Cellier, 1997); rainfall events after fertilizer application decrease NH3 526 

emissions by promoting the infiltration of slurry and soil solution containing ammoniacal N (Sanz-527 

Cobena et al., 2011; Sanz-Cobena et al., 2008; van der Weerden and Jarvis, 1997). 528 

The time-periods selected to calculate the effect of the weather variables correspond to the 529 

period of high volatilization for each type of fertilizer. The time-period selected for cattle FYM is the 530 

shortest (less than three successive days versus five days or more for other fertilizers); there are two 531 

reasons for this. First, cattle FYM has high dry matter content and is known not to infiltrate into the 532 

soil: this was conceptualized in Volt’Air by adding a cattle FYM layer on the soil surface (Garcia et 533 

al., 2012; Voylokov et al., 2014) whereas pig slurry and N solution are directly added to the first soil 534 

layer. Second, cattle FYM has a higher pH (8.00) than pig slurry (7.50) and N solution (5.77), and 535 

Volt’Air is highly sensitive to pH; the higher the pH, the higher the volatilization (Génermont and 536 

Cellier, 1997; Le Cadre, 2004; Theobald et al., 2005). This information on the time-period during 537 

which weather factors drive NH3 volatilization is useful for further recommendations to adapt the 538 

experimental design to capture the dynamics of NH3 volatilization, as the time window for applying 539 

abatement techniques depends on fertilizer type. 540 

Soil properties were less frequently selected than weather variables in all meta-models, 541 

especially for N solution (Tables S1 and S2). These variables had smaller variation ranges than the 542 

meteorological variables, which probably led to their elimination during automatic variable selection. 543 

Moreover, several soil properties are strongly correlated with Soil pH and Initial soil water content 544 

(see Figure S1 in the supplementary material1), which were always selected in our meta-models 545 

(except for cattle FYM, as explained below). As stated above, Volt’Air is highly sensitive to Soil pH. 546 

Similarly, Initial soil water content is among the most influential parameters in the Volt’Air model 547 

(Theobald et al., 2005). It influences the availability of volatile N on the soil surface by conditioning 548 

the infiltration of the fertilizer's liquid fraction. The fact that cattle FYM stays on the soil surface and 549 
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does not infiltrate also explains why soil properties (especially Soil pH) are less frequently selected 550 

for FYM meta-models. 551 

The variable Region at the France level was selected only for N solution meta-models. For 552 

cattle FYM and pig slurry, this variable was not selected in the France meta-models regardless of 553 

cross-validation type but regional meta-models performed better than France meta-model. For these 554 

two types of fertilizer, the meta-models account for regional characteristics through their soil and 555 

weather inputs, Latitude and Longitude, and the Dates of fertilizer application.  556 

The first advantage of using meta-models instead of Volt’Air is their extremely short 557 

computation time. For example, the meta-model for N solution in France required less than 1s to 558 

make 70,299 simulations whereas Volt’Air required approximatively 1.5 days for the same number 559 

of simulations with a parallel implementation on a Dell precision  T7910 workstation with two Intel 560 

Xeon 2.4 GHz processors (20 cores) and 128 GB RAM. Meta-models can thus easily be 561 

implemented at large scales or in other applications requiring large amounts of data. The time 562 

required to build the meta-models and to select the best meta-models according to the selection 563 

method in Figure 1 was approximately three days with the R software on a desktop computer 564 

(Processor 2.7 GHz, 8Go RAM). SAR-by-SAR cross-validation was the most computationally 565 

expensive step, especially for calculations at the France scale where the number of SARs was 706 566 

while it ranged from 25 to 76 for the four selected regions. RF and GAM required more computation 567 

time than the other techniques, especially when the dataset was large, as with N solution in France. 568 

Ordinary linear regression had the lowest computational cost. 569 

The second advantage of using the meta-models is that they need fewer inputs than the total 570 

number required for running Volt'Air. In our case study, Volt’Air required 16 types of input variable, 571 

and five of them (i.e., the weather variables) needed to be provided at an hourly time-step for one 572 

month (Section 2.1) leading to at most a total of 3,611 input variables. The use of Volt’Air is thus 573 
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relatively costly in terms of data acquisition. The total number of selected inputs in the meta-models 574 

ranged from 6 to 15 (if we exclude the quadratic and interaction terms). In the meta-models, weather 575 

inputs need to be supplied over at most seven days.  576 

The meta-models produced here combine qualities of both the process-based model Volt’Air 577 

and the empirical models developed and used for calculating NH3 volatilization in the field 578 

(Génermont, 2014). Our meta-models include a small number of input variables and have a very 579 

short computation time. But they do not suffer from the same drawbacks as purely empirical models 580 

based on a limited number of experimental datasets. The domain of validity of our meta-models is 581 

related to the domain of validity of Volt’Air and the extent of the dataset used to build the meta-582 

models. Thus we can expect a larger domain of validity than for the empirical models which 583 

generally focus on specific conditions, for example, that of Menzi (Menzi et al., 1998), which was 584 

constructed for cattle slurry applied to grassland with a splash plate, a total ammoniacal nitrogen 585 

(TAN) content of 0.7 5 g. kg-1, a mean temperature ranging from 0 to 25°C, mean relative humidity 586 

of air ranging from 0.5 to 0.9 % and no rain. The model constructed by Misselbrook et al. (2004) and 587 

adjusted by Chadwick et al. (2005) does not account for the effect of wind speed on NH3 588 

volatilization from mineral fertilizers.  589 

Our meta-models offer a good alternative to the default emission factors proposed by the 590 

EMEP guidebook for the official French NH3 emission inventories (CITEPA, 2017; EMEP/EEA, 591 

2016), because of their relative simplicity compared to process-based models. The meta-models 592 

could also be connected to crop models (e.g., CERES-EGC, Gabrielle et al., 2006; STICS, Brisson et 593 

al., 2003; SYST’N, Dupas et al., 2015; Parnaudeau et al., 2012) to improve decision support tools 594 

used for fertilization management. 595 

The meta-modelling approach presented here is generic. It can be implemented again with 596 

new sets of simulations provided by an upgraded version of Volt’Air, in new geographical areas, for 597 
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new management techniques (i.e., abatement techniques), or for new types of fertilizer. Our approach 598 

can thus be used to produce a variety of meta-models suitable for a diversity of situations and 599 

applications. 600 
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