Agritrop
Accueil

Phenotyping and modeling of root hydraulic architecture reveal critical determinants of axial water transport

Boursiac Yann, Pradal Christophe, Bauget Fabrice, Lucas Mikaël, Delivorias Stathis, Godin Christophe, Maurel Christophe. 2022. Phenotyping and modeling of root hydraulic architecture reveal critical determinants of axial water transport. Plant Physiology, 190 (2):kiac281 : 1289-1306.

Article de revue ; Article de recherche ; Article de revue à facteur d'impact
[img]
Prévisualisation
Version post-print - Anglais
Sous licence Licence Creative Commons.
kiac281.pdf

Télécharger (9MB) | Prévisualisation
[img]
Prévisualisation
Version Online first - Anglais
Sous licence Licence Creative Commons.
601188.pdf

Télécharger (6MB) | Prévisualisation
[img]
Prévisualisation
Version publiée - Anglais
Sous licence Licence Creative Commons.
601188-ed.pdf

Télécharger (6MB) | Prévisualisation

Url - jeu de données - Entrepôt autre : https://www.arabidopsis.org/servlets/TairObject?name=AT3G55990&type=locus

Résumé : Water uptake by roots is a key adaptation of plants to aerial life. Water uptake depends on root system architecture (RSA) and tissue hydraulic properties that, together, shape the root hydraulic architecture. This work investigates how the interplay between conductivities along radial (e.g. aquaporins) and axial (e.g. xylem vessels) pathways determines the water transport properties of highly branched RSAs as found in adult Arabidopsis (Arabidopsis thaliana) plants. A hydraulic model named HydroRoot was developed, based on multi-scale tree graph representations of RSAs. Root water flow was measured by the pressure chamber technique after successive cuts of a same root system from the tip toward the base. HydroRoot model inversion in corresponding RSAs allowed us to concomitantly determine radial and axial conductivities, providing evidence that the latter is often overestimated by classical evaluation based on the Hagen–Poiseuille law. Organizing principles of Arabidopsis primary and lateral root growth and branching were determined and used to apply the HydroRoot model to an extended set of simulated RSAs. Sensitivity analyses revealed that water transport can be co-limited by radial and axial conductances throughout the whole RSA. The number of roots that can be sectioned (intercepted) at a given distance from the base was defined as an accessible and informative indicator of RSA. The overall set of experimental and theoretical procedures was applied to plants mutated in ESKIMO1 and previously shown to have xylem collapse. This approach will be instrumental to dissect the root water transport phenotype of plants with intricate alterations in root growth or transport functions.

Mots-clés Agrovoc : système racinaire, relation plante eau, absorption d'eau, conductance hydraulique des racines, phénotype, modélisation, physiologie végétale, Arabidopsis thaliana, architecture des racines, phénotypage

Mots-clés libres : OpenAlea, Root architecture, Hydraulic structure, Arabidopsis thaliana

Classification Agris : F61 - Physiologie végétale - Nutrition
U10 - Informatique, mathématiques et statistiques

Champ stratégique Cirad : CTS 2 (2019-) - Transitions agroécologiques

Agences de financement européennes : European Commission, European Research Council

Programme de financement européen : H2020

Projets sur financement : (EU) Targeting Root Hydraulic Architecture to improve Crops under Drought

Auteurs et affiliations

  • Boursiac Yann, INRAE (FRA)
  • Pradal Christophe, CIRAD-BIOS-UMR AGAP (FRA) ORCID: 0000-0002-2555-761X
  • Bauget Fabrice, Université de Montpellier (FRA)
  • Lucas Mikaël, Université de Montpellier (FRA)
  • Delivorias Stathis, Université de Montpellier (FRA)
  • Godin Christophe, UM2 (FRA)
  • Maurel Christophe, CNRS (FRA) - auteur correspondant

Source : Cirad-Agritrop (https://agritrop.cirad.fr/601188/)

Voir la notice (accès réservé à Agritrop) Voir la notice (accès réservé à Agritrop)

[ Page générée et mise en cache le 2024-03-11 ]