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Summary 

Fresh berries are a popular and important component of the human diet. The demand for high-quality 

berries and sustainable production methods is increasing globally, challenging breeders to develop 

modern berry cultivars that fulfill all desired characteristics. Since 1994, research projects have 

characterized genetic resources, developed modern tools for high-throughput screening, and published 

data in publicly available repositories. However, the key findings of different disciplines are rarely 

linked together and only a limited range of traits and genotypes has been investigated. The Horizon2020 

project BreedingValue will address these challenges by studying a broader panel of strawberry, 

raspberry and blueberry genotypes in detail, in order to recover the lost genetic diversity that has limited 

the aroma and flavor intensity of recent cultivars. We will combine metabolic analysis with sensory 

panel tests and surveys to identify the key components of taste, flavor and aroma in berries across 

Europe, leading to a high-resolution map of quality requirements for future berry cultivars. Traits linked 

to berry yields and the effect of environmental stress will be investigated using modern image analysis 

methods and modeling. We will also use genetic analysis to determine the genetic basis of complex 

traits for the development and optimization of modern breeding technologies such as molecular marker 

arrays, genomic selection and genome wide association studies. Finally, the results, raw data and 

metadata will be made publicly available on the open platform Germinate in order to meet FAIR data 

principles and provide the basis for sustainable research in the future. 

Keywords: berry breeding, trait/genotype association, genomics, metabolomics, image analysis, 

consumer preference, plant genetic resources, BreedingValue project 

 

Significance statement  

The BreedingValue project will address challenges faced by strawberry, raspberry and blueberry 

breeding programs, recovering lost genetic diversity to mitigate climate change effects while improving 

quality characteristics such as aroma and flavor. We will gather genotypic and phenotypic data from a 

range of European cultivars and wild relatives, and will combine modern breeding technologies, 

metabolomics, image analysis, sensory panel tests and consumer surveys to identify trends and key 

characteristics in berries across Europe. 

  



Introduction 

Berries are highly appreciated for their flavor, appearance and nutrient content, including high levels of 

antioxidants that are beneficial for human health (Jimenez-Garcia et al., 2013). Commercial production 

in 2020 exceeded 12.9 million tonnes globally and 3.4 million tonnes in Europe (FAO, 2021). The 

berries with the largest global production volumes were strawberries, raspberries, blueberries, currants, 

cranberries and gooseberries. In Europe, around 50% of the total production volume was strawberries, 

followed by raspberries and currants, each at approximately 20%, and blueberries at 5%. As well as 

being a berry producer, Europe is also a major importer of berries and the import volume grew by nearly 

40% between 2015 and 2020. The global production, import and export markets over the last 50 years 

are shown for strawberries as an example in Figure 1. The projected continuous increase in the market 

demand for berries is driving investments in global research and production, which will require 

increased breeding efforts. This has been recognized at the EU level by continuous support for EU-

coordinated projects, the same as in the USA and China. 

 

Figure 1: Strawberry production and trade volumes per market region from 1961 to 2020, showing 

stacked production and import volumes, and export volumes as part of the production volumes (FAO, 

2021). MENA = Middle East and Northern Africa. 

 

Breeding objectives include higher yields and yield stability, lower production costs, and better product 

quality (Capocasa et al., 2008; Cellon et al., 2018). In the past, breeders focused mainly on yield and 

production costs, but product quality is now a high priority (Mezzetti et al., 2016; Verma et al., 2017). 

This increases the complexity of breeding programs because additional traits must be combined in new 

cultivars (Akdemir et al., 2018). For berries in particular, traits related to consumer health and sensorial 

quality are becoming essential to compete on the global market (Mazzoni et al., 2016). The substances 

that confer aroma, flavor and taste need to be identified, along with the environmental stimuli and 

signaling mechanisms that lead to the accumulation of such bioactive compounds (Paredes-López et 
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al., 2010). At the same time, new varieties must also incorporate traits that mitigate the impact of climate 

change, including resilience to abiotic stress factors such as water deficiency and high temperatures 

(Bisbis et al., 2019), as well as resistance to pests and diseases that are spreading to new areas (Bebber 

et al., 2013). Many climate change projections predict lower food availability, quality and nutritional 

value in the future (Challinor et al., 2014; Davies and Ribaut, 2017). Increasing the resilience of 

cultivars to biotic and abiotic stress not only ensures yield stability but may also allow crops to grow in 

different environments and cultivation systems. Strawberry cultivation has shifted in part from the open 

field to controlled/protected environments since the Montreal Protocol banned widely-used soil 

disinfectants. To meet the increasing market demand, all cultivation systems will be needed. Breeders 

must therefore provide a more diverse portfolio of cultivars, including those adapted to alternative 

cultivation systems, while meeting quality expectations.  

The steadily increasing production and import of berries in Europe may reflect consumer awareness of 

healthy diet and lifestyle choices (Santeramo et al., 2018). Breeders are therefore driven to consider the 

content of minerals, vitamins and favorable secondary metabolites in fresh fruits (Baselice et al., 2017). 

The high content of bioactive compounds in fresh berries, as opposed to processed fruits, can contribute 

to a healthy diet (Paredes-López et al., 2010; Skrovankova et al., 2015). The visual and sensory quality 

attributes of fresh fruits strongly influence the consumption rate (Barrett et al., 2010; Klee and Tieman, 

2018). Furthermore, traders demand products with homogeneous or narrowly-defined qualities that are 

difficult to achieve for traits that are influenced by environmental conditions.  

Fresh berries suffer from post-harvest losses at the retail level due to their short shelf life, which limits 

profitability and reduces the sustainability of production by increasing food waste. In 2020, the 

European Commission (EC) presented the Farm-to-Fork (F2F) Strategy as one of the basic concepts of 

the Green Deal for a more sustainable society. Accordingly, sustainable production is an important 

aspect of berry cultivation and must ensure that quality and nutritional standards are maintained or 

improved. Smart production systems and advances in agricultural biotechnology are required to meet 

these challenges, including adaptation to new cultivation systems and high-precision mechanized 

farming. Such ambitious goals can be achieved by combining traditional and biotechnology-assisted 

production methods, including research that focuses on berry breeding (Sabbadini et al., 2021). 

Previous berry research and breeding efforts 

Berry breeding is complex, not only due to the multi-dimensional targets discussed above, but also 

because many species are polyploid and/or interspecific hybrids. Genetic diversity is severely limited 

when only a few individuals are used for breeding without the development of further pre-breeding 

material (Diamanti et al., 2012). In many berry crops, related (sub)species are underutilized in breeding. 

Taking strawberry as an example, the genus Fragaria comprises 20 species and many subspecies 

ranging from diploid to decaploid (Liston et al., 2014). Today’s cultivated strawberry mostly consists 
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of the octoploid interspecific hybrid Fragaria ×ananassa that was created in France in the late 1700s 

and bred in England in the early 1800s (Darrow, 1966). Raspberry and blackberry/bramble belong to 

the genus Rubus, which also provides several (sub)species for intercrossing. Similarly, blueberry, 

cranberry, bilberry and huckleberry belong to the genus Vaccinium, with bilberry considered a rich 

source of genetic diversity for the development of blueberry pre-breeding material (Podwyszynska et 

al., 2021). 

To facilitate the development of pre-breeding material, previous research projects have characterized 

not only modern and ancient berry cultivars but also wild relatives to investigate their potential to 

increase the genetic diversity of cultivated berry species. Efforts to assess and maintain genetic 

resources for strawberry breeding in Europe started in 1994, revealing the loss of important material 

and narrowing genetic diversity. The EU-funded COST action 836 (1998–2004) characterized more 

than 1000 strawberry cultivars and ~400 wild accessions (Geibel et al., 2004). Follow-up projects were 

funded to maintain the identified core genetic resources, study additional genetic resources, include 

more traits, focus on the underlying genetics, and clarify technical issues in commercial production and 

laboratory protocols. In COST action 863 (2005–2010), 31 partners investigated environmental effects 

on the agronomic performance and metabolic profiles of fruit crops and harmonized analytical standards 

for the metabolic profiles of small fruits (Mezzetti et al., 2009). The EU-funded projects GenBerry 

(2008–2012), RIBESCO (2007–2011) and EUBerry (2011–2014) characterized strawberry, raspberry, 

currant and blueberry genetic resources in order to assess genetic diversity and conserve the most 

valuable material. The genetic and phenotypic data generated in these projects were linked (including 

disease resistance), and techniques were harmonized between partners (Scalzo et al., 2005; Stafne et 

al., 2005; Carrasco et al., 2007; Zorrilla-Fontanesi et al., 2012; Mezzetti et al., 2016; Karhu et al., 2012; 

Lerceteau-Köhler et al., 2012). As an example, the GenBerry project highlighted the originality of old 

European cultivars, and focused on consumer preferences for fresh fruits with high nutritional value 

(Horvath et al., 2011). A platform was generated for data compilation, allowing the key characteristics 

of fruit quality to be screened in currants and blackberries (Krüger et al., 2012; Tavares et al., 2013), 

and a core collection of currant genetic resources was established (Antonius et al., 2012).  

The GoodBerry project (2016–2020) brought together 17 European partners and one each from Chile 

and China. They conducted multiple field experiments on strawberry, raspberry and blackcurrant, and 

collected genotypic, phenotypic and sensory data to provide the knowledge and procedures necessary 

for the development of elite cultivars that maintain high yields and quality in a range of environments 

(Woznicki et al., 2016; Vallarino et al., 2018; Allwood et al., 2019; Labadie et al., 2019; Pott et al. 

2019; Vallarino et al., 2019; Pott et al., 2020a). Whereas earlier projects targeted key accessions and 

identified molecular markers to accelerate breeding as well as providing initial methods for sensory 

analysis and metabolomics, GoodBerry focused mainly on the secondary metabolites responsible for 

aroma, fruit quality and stress tolerance (Durán-Soria et al., 2021), while still covering environmental 
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adaptation and genetic resources. Importantly, GoodBerry studied physiological and fruit quality traits 

in individuals from a biparental population planted in five European countries for a period of 3 years, 

highlighting the plasticity of strawberry (European Union, 2020). Furthermore, modern high-

throughput screening tools were developed to combine omics datasets (Bolger et al., 2019; Labadie et 

al., 2019; Schwacke et al., 2019). 

In the framework of the European Cooperative Programme for Plant Genetic Resources (ECPGR), a 

working group on berries was established in March 2019 (https://www.ecpgr.cgiar.org/working-

groups/berries; Höfer, 2021). The main goal of the 51 members from 22 European countries is to 

coordinate activities between the national collections based on continuous long-term network 

cooperation in Europe to create synergies and establish contact points for berry research projects. 

Outside the EU, one of the largest berry-related projects was funded from 2009 to 2019 by the USDA 

Specialty Crop Research Initiative (SCRI), and focused on the US market. RosBREED (Iezzoni et al., 

2020) covered diverse species in the family Rosaceae, including strawberry and raspberry, and 

published genomic data and some phenotypic data in the Genome Database for Rosaceae (GDR; 

https://www.rosaceae.org), which is still regularly updated by researchers and breeders, and includes 

downloadable data and software for data visualization and analysis (Jung et al., 2019). The USDA-

funded Vaccinium Coordinated Agricultural Project (VacCAP) was launched in 2020 to investigate the 

genetic basis of blueberry and cranberry fruit quality attributes, develop standard genotyping and 

phenotyping protocols, and develop or optimize tools and methods applied by the project partners. Wild 

accessions and related species were included in the project to develop new pre-breeding material. The 

project established the Genomic Database for Vaccinium (GDV; https://www.vaccinium.org), which is 

similar in function to GDR, but focuses on blueberry, cranberry and related berry species. 

The knowledge from these projects allows the efficient use of genetic resources, and the creation of 

new breeding material that meets the current demands of growers and consumers. However, the 

genomic background of certain stress-response traits and the contribution of particular metabolites to 

the overall sensory qualities of berries remain unknown. Furthermore, a consumer survey across a wide 

geographic area has not yet been commissioned to inform future breeding objectives. 

Classification of berry genetic resources  

Breeding alternates between increasing genetic variation and narrowing it by selection to create new 

cultivars. Selection is the beginning of a funnel effect that leads to domestication. The loss of diversity 

can result in negative as well as positive effects depending on the initial genetic diversity of the breeding 

material and the intensity and direction of breeding. For example, the negative effects of breeding 

include the loss of aroma and stress resistance (Ulrich et al., 1997; Aharoni et al., 2004). In strawberry, 

the comparison of old and modern cultivars revealed the loss of up to 35% of allelic diversity (Gil-Ariza 

et al., 2009; Horvath et al., 2011), in part reflecting the limited number of ancestral accessions used for 
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initial hybridization in the 1700s (Hancock et al., 2010). High-performance cultivars are predominantly 

used in breeding programs worldwide to avoid linkage drag (inferior traits linked to target traits) from 

old cultivars or wild relatives. However, focusing on a small pool of accessions in breeding accelerates 

the loss of genetic diversity (Hardigan et al., 2018). 

The diversity in current breeding programs can be assessed by studying the diversity of germplasm used 

to develop pre-breeding materials. By comparing the genetic diversity in old cultivars, modern cultivars, 

new releases, and material currently undergoing breeding cycles, the genetic potential of future cultivars 

can be predicted. The most valuable genetic resources can then be defined and future selection gains 

can be estimated. The categories of strawberry germplasm recommended for inclusion in future studies 

are listed in Figure 2. 

 

 

Figure 2: Proposed strawberry germplasm categories in chronological order for inclusion in future 

diversity studies. 

 

In the EU, plant breeders’ rights are granted for new cultivars, giving the breeder exclusive control over 

propagation and the utilization and sale of harvested parts of the plant for a specified number of years. 

The breeder can choose to license the cultivar or become its exclusive marketer. The new cultivar must 

fulfill the criteria of registration and trialing. It must be new (not commercialized before), distinct from 

known cultivars, uniform and stable (characteristics must be genetically fixed, also with respect to 

reproduction). Plant materials that are not covered by plant breeders’ rights can be subject to material 

transfer agreements that protect the intellectual property and material and restrict its use. Such 

agreements can be applied to pre-breeding material, material that is not yet registered as a protected 

cultivar, or any other material that is not protected under other contracts or regulations. 
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New genomic tools for berry improvement  

Berry breeding efforts have been accelerated by the development of high-throughput genotyping tools 

and efficient breeding strategies such as marker-assisted selection and genomic selection. Marker-

assisted selection allows the rapid combination of traits in pre-breeding material, whereas genomic 

selection predicts genetic gains by applying knowledge about the effects of each marker. When genes 

or quantitative trait loci (QTLs) that follow Mendelian inheritance are identified, the use of molecular 

markers associated with the desirable traits can accelerate the introgression of the corresponding 

genomic regions because numerous markers can be analyzed simultaneously.  

Panels of markers are available for strawberry (Whitaker, 2011), raspberry (McCallum et al., 2018) and 

blueberry (Rowland et al., 2011), and can be arranged on arrays. Genomic selection must be applied 

effectively to polygenic traits (Crossa et al., 2017), such as resistance to powdery mildew (Podosphaera 

aphanis), leaf scorch (Diplocarpon earlianum), and common leaf spot (Mycosphaerella fragariae) in 

strawberry, leaf rust (Phragmidium rubi-idaei) in raspberry, and sensory quality traits attributed to 

numerous metabolites.  

Molecular markers are abundant, reliable and widely used for berry breeding. For example, Axiom 50K 

and 9K arrays have been developed to profile single nucleotide polymorphisms (SNPs) in strawberry 

and raspberry, respectively (Jibran et al., 2018; Hardigan et al., 2019). Genome sequencing provides 

even more data to facilitate selection by the detection of functional genes and their roles in trait 

expression. The first strawberry genome sequence (diploid woodland strawberry) was therefore seen as 

a major breakthrough (Shulaev et al., 2011). Recent improvements have made it possible to obtain a 

phased genome of tetraploid blueberry (Colle et al., 2019). By contrast, improvements in long-read 

sequencing technology (Dumschott et al., 2020; van Rengs et al., 2022) coupled with open-source 

technologies (Schrinner et al., 2020; Chen et al., 2021; Cheng et al., 2021) have unraveled the black 

raspberry (VanBuren et al., 2018) and octoploid strawberry (Edger et al., 2019) genomes, and 

pangenomic analysis has shed light on the evolutionary history of strawberry (Liston et al., 2020; Feng 

et al., 2021; Hardigan et al., 2021; Qiao et al., 2021). For practical breeding purposes, high-quality 

genome resources should reflect the allelic diversity of cultivated strawberry, which was found to be 

generally high in cosmopolitan collections (Hardigan et al., 2021) but lower in a subset from California 

(Hardigan et al., 2018).  

Studying diverse material representing all stages of the breeding program, including unexploited related 

species, pre-breeding accessions and advanced breeding material, facilitates population-based studies 

of breeding germplasm and the diversity within this genepool, allowing genome-wide association 

studies (GWAS), from which QTLs and genomic prediction models can be derived. GWAS and 

genomic selection often utilize the open-source software GAPIT (Tang et al., 2016) to detect genomic 

associations, and statistical tools such as ASReml-R (Butler et al., 2017) or BGLR (Pérez and de los 
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Campos, 2014) to develop prediction models (Davik et al., 2020; Gezan et al., 2017; Enciso-Rodriguez 

et al., 2018). Such approaches have already been applied successfully to strawberry, for example in the 

context of stress resistance (Pincot et al., 2018; Petrasch et al., 2022). 

Complete phenotyping – from metabolomics to image analysis 

High-throughput phenotyping is needed in addition to genotyping for successful genomic selection. In 

berries, high-throughput phenotyping has mainly targeted fruit quality traits, including metabolomic 

profiles and fruit external morphology. Fruit sensory attributes are influenced by numerous traits and 

therefore have a complex genetic basis. In strawberry, the large-scale analysis of metabolite-based 

QTLs has identified loci that determine the content of sugars, organic acids, amino acids, polyphenols, 

volatiles, and vitamin C (Lerceteau-Köhler et al., 2012; Zorrilla-Fontanesi et al., 2012; Urrutia et al., 

2016; Vallarino et al., 2019; Davik et al., 2020; Pott et al., 2020a). Similar work is underway to identify 

QTLs that influence fruit quality traits in raspberry (Graham and Simpson, 2018; McCallum et al., 

2018; Willman, 2019) and blueberry (Gilbert et al., 2015; Ferrão et al., 2020). 

Metabolomics is the comprehensive biochemical analysis of metabolites by fractionation and chemical 

identification (Emwas, 2015), allowing fruit sensory traits to be associated with the abundance of 

particular compounds (Allwood et al., 2021). Following the fractionation of samples by gas 

chromatography (GC) or liquid chromatography (LC), the most prominent analytical techniques in plant 

metabolomics are nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) 

(Roessner-Tunali et al., 2003; Sobolev et al., 2015). These methods are often combined as multi-

platform metabolomics techniques such as GC/LC-MS or GC/LC-MS/MS (Ghatak et al., 2018). For 

example, the metabolic response of five strawberry cultivars to three different postharvest treatments 

over 10 days revealed the metabolic reconfiguration of the fruit, including the depletion of major sugars 

and acids, a modified volatile emission profile, and the accumulation of protective metabolites (Pott et 

al., 2020b). Metabolomics has also been used to evaluate the effect of breeding on fruit metabolomes 

(Vallarino et al., 2018; Zhu et al., 2018; Zhao et al., 2019; Durán-Soria et al., 2021). Metabolomics can 

profile metabolic diversity to identify (i) accessions suitable as parents, (ii) metabolic markers for 

selection, and (iii) certification markers in different species to develop new strategies for crop 

improvement. 

Berries are cultivated under a range of different environments and agronomic practices. The resulting 

plasticity (the ability of a genotype to produce distinct phenotypes in different environments) is known 

as the genotype × environment (G×E) interaction (Via and Lande, 1985) and can change the selection 

ranking of genotypes across environments (El-Soda et al., 2014). Understanding G×E interaction in 

berries is therefore necessary to predict growth and fruit quality, and to adapt breeding strategies for 

each targeted environment. The effects of G×E interactions, environment and agronomic practices on 
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fruit quality have been investigated in strawberry (Di Vittori et al., 2018) and raspberry (Durán-Soria 

et al., 2021), and also in Vaccinium species (Karppinen et al., 2016). 

Image analysis (2D and 3D) is a cost-effective high-throughput phenotyping tool (He et al., 2017; 

Reynolds et al., 2019; Feldmann et al., 2020; Li et al., 2020) used to analyze berry phenotypic traits in 

research and breeding or to sort fruits into quality classes during processing (Liming and Yanchao, 

2010). The automated capture and analysis of images relating to plant architecture has accelerated the 

assessment of growth in model species, but this technology has not yet been widely applied to berry 

crops (Bernotas et al., 2019). However, an analytical pipeline based on the dissection of plants has been 

developed, combining multiscale 2D and 3D representations of plant architecture (Bolger et al., 2019; 

Cockerton et al., 2019; Labadie et al., 2019; Schwacke et al., 2019). Mechanistic models can integrate 

phenotyping information and thus simulate crop responses to environmental variations and their 

integrated impacts on productivity (Benes et al., 2020; Hopf et al., 2022). In particular, 3D functional-

structural plant models have been designed to integrate root and shoot data (Takahashi and Pradal, 2021; 

Guan et al., 2022) and simulate the effects of biotic and abiotic stress on 3D plant architecture 

(Braghiere et al., 2020). 

Quality from a consumer perspective 

The basic concept of quality, including intrinsic product properties and user satisfaction, has evolved to 

pursue aims such as “total customer satisfaction” or even “customer delight” (Füller and Matzler, 2008; 

Yang, 2017). The quality of berries is based on key sensory parameters such as taste, flavor and texture, 

and these should be optimized to achieve market and consumer demands.  

Various international standards exist to evaluate the sensory quality of fresh berries. A harmonized 

approach is needed for the evaluation and documentation of fresh fruit quality, including a standard 

lexicon consisting of agreed attributes and descriptive terms relevant to different berry species, and 

procedures for the analysis of different berries adapted for the use of trained panels. The documentation 

of small fruit genetic diversity for pre-breeding and commercial purposes will be improved by 

developing sensory profiles for selected sets of varieties and relating these to consumer preferences 

(Oliver et al., 2018a). Combinations of trained panel testing and laboratory analysis can be enhanced 

by collecting data from non-trained consumer surveys because these represent a greater number of 

participants covering a broader spectrum of geographic regions, social classes, ages, and other 

demographic categories. 

The motivation for food selection is generally based on nine factors: health, mood, convenience, sensory 

appeal, content of natural ingredients, price, weight control, familiarity, and ethical concerns (Steptoe 

et al., 1995). The relative importance of these factors varies according to the consumer’s country of 

origin, but sensory appeal and health are often the highest ranking factors (Januszewska et al., 2011; 

Battino et al., 2019; Kalt et al., 2019; Pap et al., 2021). The recent review of consumer requirements 
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and expectations for strawberry quality showed how modern consumer science methods can help to 

orient breeding strategies and commercial decision-making (Predieri et al., 2021). Consumer 

preferences for strawberry attributes have been solicited using methods such as check-all-that-apply 

(CATA) questionnaires to evaluate new cultivars compared to those already on the market (Lado et al., 

2010). CATA questionnaires simultaneously capture information about “overall liking” and the 

corresponding drivers, can segment consumers according to their preferences, and provide information 

useful for communication and marketing. They do not use a numeric scale. Instead, participants indicate 

whether a term is appropriate or not to describe a given product. This allows the investigation of sensory 

characteristics in the context of consumption, the willingness to purchase, and associated emotions. The 

effectiveness of this approach is evident from a strawberry questionnaire, which revealed no differences 

in “overall liking” while responses to more specific questions about “flavor liking” and “willingness to 

pay” indicated significant differences in appreciation (Lado et al., 2010). The introduction of new 

technologies and methods to assess consumer acceptance can accelerate breeding and ensure new berry 

varieties meet market demands. The Napping test (Pagès, 2005) is another rapid sensory profiling 

technique, in which consumers follow their own criteria to differentiate between products, then use their 

own language to describe sensory differences using a consumer-friendly approach known as the ultra-

flash profile (Perrin et al., 2008). The Napping test successfully segmented strawberry samples 

according to sensory traits by comparing the evaluations of untrained consumers with the judgements 

of a panel of trained experts (Oliver et al., 2018b). This revealed sensory and lexical similarities and 

differences between experts and consumers, helping to improve communication. The ultra-flash profile 

has been applied to 14 berry crops, including strawberry, bilberry and raspberry (Laaksonen et al., 

2016). 

As well as highlighting specific appealing traits, the fresh berry industry should point out innovative 

features related to sensory traits, environmental sustainability and health. In globalized food markets, 

innovation has become the key competitive force (Md. Sohel-Uz-Zaman and Anjalin, 2011). 

Accordingly, data concerning the nutraceutical qualities of berries or their environmental impact during 

production are increasingly important for consumers and are considered in addition to sensory traits 

when making purchase decisions. 

Big data made FAIR  

Information describing the attributes of germplasm collections should be readily available in data 

repositories so that users can access germplasm of interest alongside the associated data, otherwise the 

value and potential applications of that germplasm are hidden (Marx, 2013; Nandyala and Kim, 2016). 

Users from different application domains have different levels of expertise. It is therefore crucial that 

repositories offer entry points for casual, public and educational purposes, as well as the ability to 

support complex and powerful query and visualization tools required by expert users. The recording of 
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experimental data from large, collaborative projects presents unique challenges that need to be 

addressed.  

A common requirement of journals and funding agencies is that data are made publicly available in 

standard digital formats for utilization by others. This also ensures that germplasm variation identified 

or generated in research projects can be exploited by research and breeding communities. Guidelines 

have been established through initiatives such as FAIR, which stipulates that data should findable, 

accessible, interoperable and reusable in order to facilitate (re)utilization (Wilkinson et al., 2016). 

Generalized repositories for genetic and genomic data are hosted by the National Center for 

Biotechnology Information (NCBI; https://www.ncbi.nlm.nih.gov), the European Molecular Biology 

Laboratory – European Bioinformatics Institute (EMBL-EBI; https://www.ebi.ac.uk) and the DNA 

Databank of Japan (DDBJ; https://www.ddbj.nig.ac.jp). Related initiatives such as the Proteomics 

Identifications Database (PRIDE) exist for proteins and peptides, and metabolite databases have been 

established for metabolomic data (Haug et al., 2020). However, it is challenging to set up a generalized 

repository for phenotypic data (Watt et al., 2020) or consumer perception and organoleptic qualities.  

Furthermore, common standards serving all communities might not capture all metadata necessary to 

reproduce experiments with plants, where pot size or fertilizer input are examples of unique factors 

(Poorter et al., 2012). Therefore, all experimental and trial data should be collected along with 

informative and standardized metadata adhering to standards such as the Minimal Information About a 

Plant Phenotyping Experiment (MIAPPE) (Ćwiek-Kupczyńska et al., 2016; Papoutsoglou et al., 2020). 

Solutions such as the Breeding Application Programing Interface (BrAPI) should also help to 

standardize data exchange (Selby et al., 2019).  

To facilitate data reanalysis, it is important to specify in an unambiguous manner the focus of the study, 

the experimental design, experimental and environmental factors, and the tools, materials and methods 

used. Accordingly, standard operating procedures are especially important in research, along with a 

standardized vocabulary and ontologies to describe environments and/or plants and their parts. Relevant 

ontologies are usually developed in global communities to ensure they are widely accepted and 

understood, for example in the Planteome project (Cooper et al., 2018). 

The efficient management and distribution of experimental data ensures the rapid incorporation of 

germplasm into research and breeding programs (Raubach et al., 2021). The dissemination of data 

within user communities is easier when standardized data formats and simple data structures exist, as 

exemplified by genomics data in the GDR (Jung et al., 2019). Phenotypic and organoleptic attributes 

require databases that allow users to query complex characterization and evaluation data, including 

effective visualization tools that provide a deeper understanding of the data, alongside tools for data 

export in formats suitable for downstream analysis. Open-source information systems such as 

Germinate (Shaw et al., 2017; Raubach et al., 2021) provide such functionality and are used in the soft 
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fruit, stone fruit and cereal communities. The interactive visual interfaces in Germinate provide access 

to information from plant genetic resources and pre-breeding experiments, and data can be exported as 

plain text if necessary. Germplasm and field trial sites can be represented using geographical maps. 

Complex phenotypic data can be displayed in a number of ways, including interactive matrix plots to 

show correlation, clustering and outliers in datasets comparing traits, or even the combined analysis of 

genetic and phenotypic data. These user-friendly options are particularly useful for queries spanning 

multiple genotypes.  

The BreedingValue project to boost European soft fruit breeding 

The challenges outlined above will be addressed by the new EU-funded project BreedingValue, in 

which we aim to connect European strawberry, raspberry and blueberry germplasm resources with 

breeding programs, and to transfer genetic resources, knowledge and tools to researchers, pre-breeders 

and other stakeholders. The holistic approach combines genomic and phenotypic data (including 

metabolomics and sensory quality attributes) and will meet future market and consumer requirements 

by applying consumer science (Figure 3). We will publish our results, raw data and metadata on the 

Germinate platform (Shaw et al., 2017). 

 

Figure 3: Organization and outputs of the BreedingValue project (©BreedingValue consortium, 2022). 

 

A wealth of diverse berry germplasm is maintained among BreedingValue project partners. From these 

genetic resources, a core collection of plant material is planned to be maintained and utilized across the 

project, encompassing all six defined Plant Categories (Figure 2). For the first project period, more than 

2200 genotypes and 33 breeding populations have been selected (Table 1). When choosing material for 
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the core germplasm collection, accessions that are of interest for molecular investigation, for application 

of new phenotyping tools, and for consumer sensory tests, will be prioritized. 

Table 1: Germplasm planned to be included in the first project period per germplasm category and genus 

 Number of genotypes included in BreedingValue 
Germplasm category Fragaria sp. Rubus sp. Vaccinium sp. 
1: Old cultivars (until 1959) 188 12 14 
2: Modern cultivars (1960 - 2004) 312 20 35 
3: Newest cultivars (2005 - now) 144 15 8 
4: Pre-breeding material 1019 354 20 
5: Related species 72 8 2 
Total (Cat. 1 - Cat. 5) 1735 409 79 
6: Number of Populations* 27 4 2 
* each population represented by varying numbers of genotypes  

 

The project will analyze strawberry genetic resources from all major European climate regions, 

integrating all historical and recent commercial knowledge from successful cultivars and thus revealing 

the direction of different strawberry breeding programs in Europe. The strawberry germplasm collection 

includes more than 1700 genotypes from Plant Category 1 to 5, as defined in Figure 2. Furthermore, 

several hundreds of plants coming from 27 breeding populations complement the strawberry material 

characterization. Diverse raspberry and blueberry germplasm will also be investigated, albeit in less 

detail. The chosen raspberry germplasm collection will include over 400 genotypes of Categories 1-5, 

complemented by four breeding populations. The available blueberry germplasm collection consists 

largely of genotypes from a V. corymbosum genetic background, and includes 79 cultivars across Plant 

Categories 1-5, as well as two populations (Table 1). The germplasm selection might undergo 

modifications in later project periods. 

The majority of genotypes in the chosen collection will be assessed in field trials, and will serve as the 

foundation for genotyping, phenotyping, and consumer science studies. Field trials will be performed 

by BreedingValue partners at the various cultivation sites across two growing seasons, with strawberry 

and raspberry germplasm assessed in replicated trials, and blueberry germplasm maintained in non-

replicated plots. Traits related to plant performance will be assessed among project partners according 

to standard phenotypic descriptors defined in other EU projects (such as EUBerry, COST 836, and 

GoodBerry). Traits will include total yield across the season, fruit quality traits (such as size, color, 

shape, firmness, and skin resistance) at the start and peak of the growing season, total sugar (°Brix) and 

titratable acids. These data, when compared to control cultivars, will allow the consortium to identify 

genotypes with higher yield and fruit quality across the different trial sites, and will increase the 

understanding of how the various genetic resources respond in different environments. Furthermore, a 

subset of genotypes will be assessed for resilience by evaluating water stress resistance (in strawberry 



and blueberry), and by assessing resistance to diseases (including powdery mildew and crown rot in 

strawberry, leaf rust in raspberry, and dieback and gall midge in blueberry) under artificial direct 

inoculation or natural high disease pressure. A Life Cycle Assessment (LCA) will also be undertaken 

on a subset of material in field trials to assess agronomic performance and sustainability. The LCA 

analysis will be performed using the standardized software Simapro v.9 with associated databases, and 

methodology based on ISO 14040 and ISO 14044. 

The development of genomic tools for improved berry breeding efficiency will be facilitated through 

three approaches that will be extensively validated. Transfer of promising pre-breeding accessions, 

genomic tools and technologies to berry breeders outlines the strong focus of BreedingValue towards 

innovative technologies and will have a strong impact on European berry breeding. Firstly, previously 

published markers for commercially important Mendelian traits in strawberry will be made publicly 

available for utilization by the breeding and pre-breeding communities. Markers linked to fruit quality 

traits (such as aroma, color, soluble acids and sugars, and anthocyanin content), flowering traits 

(everbearing), and disease resistances will be prioritized. A low-density SNP array for marker assisted 

selection and cultivar identification will be developed by utilizing Fluidigm ® SNP Type™ technology, 

which will allow for high-throughput, cost-effective and reproducible analysis of polyploid strawberry 

genotypes. Leaf samples of the BreedingValue strawberry germplasm collection extended by further 

accessions from commercial breeders (obtained through targeted calls) will be genotyped on the array, 

with data linked to phenotypes for those selections.  

The second approach will employ GWAS and genomic prediction models to target commercially 

important polygenic traits with complex inheritance. The wide range of plant material from sources 

within and outside the project (obtained through targeted calls) will facilitate the model development. 

GWAS and genomic prediction models will mainly be applied to material defined in the BreedingValue 

germplasm collection, and those available from related studies. Genotyping of strawberry will be 

performed on the Axiom 50K SNP array (Hardigan et al., 2019), with powdery mildew resistance 

chosen as the candidate trait. A 9K axiom is available for raspberry (Jibran et al., 2018), but the results 

of a preliminary study will show if the marker density will be sufficient for our purposes. Alternatively, 

a genotyping-by-sequencing (GBS) approach might be employed, with resistance to late leaf rust chosen 

as candidate trait. In addition, phenotypic data collected across the project for strawberry and raspberry 

will be utilized to identify genomic associations. For breeding programs involved with the project 

through targeted calls, both a marker-assisted approach and a genomic prediction approach will be 

utilized. For individual breeders, the best training set will be determined by selecting material that most 

closely correlates with the test sets (Akdemir and Isidro-Sánchez, 2019), as recently implemented using 

the R software environment (Ou and Liao, 2019). The predictive power of the models will be cross-

validated rapidly, whereas full validation by the field-testing of selected accessions is a longer-term 

goal for a follow-up project. Simultaneously, material and technology transfer will take place to 
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breeders and stakeholders by providing pre-breeding material and by training the participants of targeted 

calls in how to implement marker-assisted selection, GWAS, or genomic selection in their breeding 

programs or companies, and how to use and improve the predictive models. 

The third approach to develop genetic resources involves an allelic diversity study to assess genetic 

variation in strawberry material of the BreedingValue germplasm collection and further accessions 

provided by participants of targeted calls from Plant Categories 1, 2, and 3. Genotyping will be 

performed using the Axiom 50K SNP array. Genetic differentiation between the three categories can be 

assessed using the multiallelic extension of Wright’s fixation index (FST), while phenotypic data can 

provide insight into the strength of selection on quantitative traits and the prevalence and effects of 

inbreeding. Extending the project dataset with historic or open-source data will additionally enable 

elucidating the achieved breeding progress in the different cultivar categories and the underlying factors 

(Tollenaar and Lee, 2002).  

Accurate and efficient phenotyping is essential for cultivar improvement, and for developing marker-

assisted selection and genomic prediction tools. The phenotyping work will focus on image analysis 

related to yield traits and the analysis of sensory attributes and quality traits of ripe fruits using multi-

platform metabolomics techniques. This will provide valuable information on the phenotypic properties 

of the BreedingValue germplasm collection, and investigate best methods for screening architectural, 

ripe fruit quality, and post-harvest traits in large germplasm collections and pre-breeding material. Near-

infrared spectroscopy (NIR) will be used to image a subset of previously-phenotyped genotypes. This 

data will be used to establish protocols and predictive models for early screening of fruit ripening, fruit 

quality features, and biotic and abiotic stresses. Similarly, hyperspectral and 3D imaging of phenotyped 

strawberry, raspberry, and blueberry germplasm will be analyzed to link imaging data to fruit quality 

traits and stress. Image analysis will be optimized to study plant architectural traits that correlate with 

yield, allowing the high-throughput selection of cultivars with better yields. A novel 3D plant model, 

calibrated on phenotypic data, will be developed to define ideotypes under various environmental 

conditions, in the open-source OpenAlea platform (Pradal et al., 2008).  

Imaging and metabolite analysis will be performed on a subset of genotypes across two growing 

seasons. Data will be used to assess whether imaging techniques can be utilized as non-invasive and 

non-destructive alternatives to infer metabolite levels in fruit. Metabolic analysis will include 

quantification of folic acid and vitamin levels (particularly vitamin C). Primary metabolites of nutritive 

value (such as individual sugars, acids, and phenolics) will be assessed using Gas Chromatography-

Mass Spectrometry (GC-TOF-MS; Osorio et al., 2011). Volatile compounds associated with aroma and 

flavor will be assessed by headspace GC-MS (Rambla et al., 2015), while secondary metabolites 

grouped into phenylpropanols, flavonoids, anthocyanins, and proanthocyanins will be assessed by 

Liquid Chromatography-Mass Spectrometry (LC-MS/MS; Vallarino et al., 2018). In addition, mass 

spectral signatures will be used to identify unknown metabolites that contribute to fruit quality. The 



metabolomics approach will identify important genetic resources for conservation, thus enabling future 

selection gains and ensuring recovery from the loss of aroma in recent breeding programs. It will also 

enable the identification of key metabolites as selection markers and permit metabolomic data to be 

used for the certification of different berry species.  

The fruit quality traits and sensory attributes of the diverse germplasm under investigation will also be 

characterized by trained panels, and the metabolomic data will be linked to these sensory profiles as the 

basis for automated sensory analytics. User-friendly and multilingual harmonized sensory analysis tools 

will be developed to describe the sensory properties which are important to consumers. Sensory profiles 

of a subset of diverse accessions will subsequently be obtained by panel testing. A broad consumer 

survey will be prepared to gain a high-resolution picture of consumer preferences relating to 

strawberries, raspberries and blueberries across the continent. A targeted call will allow breeders and 

pre-breeders across Europe to evaluate and feedback on the developed consumer sensory test tools and 

surveys. This will help to determine future breeding goals and requirements for the logistics and 

processing chain. 

Finally, the development of new visualization components for Germinate, including consumer 

preference/organoleptic data types, will allow BreedingValue to benefit from the current features and 

functionality of this platform, while adding components specific to the soft fruit domain. This will also 

contribute to the Germinate open source codebase for the benefit of the worldwide plant breeding and 

research community.  
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