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A B S T R A C T

Over the last decade African swine fever virus, one of the most virulent pathogens known to affect pigs,
has devastated pork industries and wild pig populations throughout the world. Despite a growing literature
on specific aspects of African swine fever transmission dynamics, it remains unclear which methods and
approaches are most effective for controlling the disease during a crisis. As a consequence, an international
modelling challenge was organized in which teams analyzed and responded to a stream of data from an in
silico outbreak in the fictive country of Merry Island. In response to this outbreak, we developed a modelling
approach that aimed to predict the evolution of the epidemic and evaluate the impact of potential control
measures. Two independent models were developed: a stochastic mechanistic space–time compartmental model
for characterizing the dissemination of the virus among wild boar; and a deterministic probabilistic risk
model for quantifying infection probabilities in domestic pig herds. The combined results of these two models
provided valuable information for anticipating the main risks of dissemination and maintenance of the virus
(speed and direction of African swine fever spread among wild boar populations, pig herds at greatest risk of
infection, the size of the epidemic in the short and long terms), for evaluating the impact of different control
measures and for providing specific recommendations concerning control interventions.
1. Introduction

African swine fever virus (ASFV) is one of the most virulent patho-
gens known to affect pigs. It has been devastating pork industries
and wild pig populations throughout the world since re-emerging in
Europe in 2007 and spreading to Asia in 2018. In 2007 African swine
fever (ASF) emerged in the Caucasus and subsequently spread widely,
affecting at least eleven other European countries (Viltrop et al., 2021)
and establishing a sizeable reservoir among wild boar (WB) populations
(Sandra et al., 2020; Taylor et al., 2021). Then, in August 2018 ASF
emerged in China, from where it spread into at least twelve Asian coun-
tries (Mighell and Ward, 2021). More recently, ASF has emerged on
the Caribbean island of Hispaniola, affecting the Dominican Republic
(Paulino-Ramirez, 2021) and Haiti (OIE, 2021).

African swine fever has a tremendous capacity to spread across
borders and expand into new territories. When ASFV spills over into
domestic pig value chains, it can spread extensively through farming
networks, impose farm-level mortality of up to 100%, and transmission
can persist so long as susceptible individuals remain available (Costard
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et al., 2013; Sánchez-Vizcaíno et al., 2019). Its original sylvatic cycle
in eastern and southern Africa involves Ornithodoros soft ticks and
various wild Suidae including warthogs and bush-pigs (Jori and Bastos,
2009; Penrith, 2009). The virus is highly resistant in the environment
(Mazur-Panasiuk et al., 2019), thus fomites are thought to represent a
significant transmission route despite technical difficulties in confirm-
ing their role (Guinat et al., 2016). Moreover, there are currently no
available vaccines.

Considering the extraordinary capacity of the virus to invade new
territories, there is an urgent need for mathematical models that can
realistically simulate the spread of the disease among domestic and wild
pig populations, predict potential dissemination scenarios and evaluate
the impact of potential control measures (Hayes et al., 2021). In the
context of ASF spread in the EU, modelling has helped improve our
understanding of ASF dynamics in WB and domestic pig populations.
Numerous models have been produced to predict the spread of ASF
within and between domestic pig farms (Hayes et al., 2021). Although
less abundant, several models have also shown the importance of
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Fig. 1. Data inputs of two models used for inference and prediction during the African Swine Fever Challenge. The inputs for any one model were kept independent of the outputs
from the other. Bayesian and frequentist inference was used for the wild boar and pig farm models respectively.
habitat suitability and environmental factors – including infected WB
carcasses – to predict the risk of introduction and spread of ASF in
WB populations (Pepin et al., 2020; Halasa et al., 2019; Lange and
Thulke, 2017; O’Neill et al., 2020) or to compare different control
strategies, such as active and passive surveillance for WB carcasses
(Gervasi et al., 2019; Gervasi and Guberti, 2021). Despite this prolific
scientific production, many knowledge gaps remain. An important
shortcoming is that many of those models are limited in their context of
application. Most of them have been built on information from Eastern
European countries (Baltic countries, Poland), where WB carcasses can
function as persistent ASF reservoirs over long cold winters, thus their
application to more temperate or tropical regions may be limited.
Another major knowledge gap is that, to date, most models are adapted
either to the domestic pig cycle or to free-ranging WB populations.
However, models addressing the transmission of ASF virus at the inter-
face between domestic and wild pigs are still missing from the literature
(Hayes et al., 2021). Finally, another major limitation is the dearth
of models that can identify optimal combinations of various control
methods so that decision makers may select cost-effective intervention
strategies.

This work describes models developed in response to a hypothetical
ASF outbreak in a fictive territory (Merry Island) within the context of
a modelling challenge (Picault et al., 2021). During this ASF Challenge,
teams were provided in silico data at three points in the epidemic (day
50, day 80 and day 110 after detection of the index case), demarcating
three phases of the challenge. Teams used this information to make pre-
dictions of the epidemic’s evolution, and to evaluate the effectiveness
of a number of intervention strategies over the following weeks and
months. Here we describe two models designed and implemented in
response to this challenge, provide an overview of our main results and
predictions, and discuss the implications of this work in the context of
ASF control.

2. Methods

The following two models were developed to analyze data from the
ASF Challenge:

1. A stochastic mechanistic space–time compartmental model for
characterizing ASF transmission dynamics within WB popula-
tions (called WB model).

2. A deterministic probabilistic risk model for quantifying the prob-
ability of infection and detection of ASF within pig herds given
three potential transmission routes (called farm model).

The two models used different sources of information, different geo-
graphical representations of cases, and different paradigms of infer-
ence (Fig. 1). The parameter estimates and predictions of each model
remained independent during the three phases of the challenge.
2

2.1. Data

The simulated outbreak occurred in the fictive country of Merry
Island, an insular territory of 144,209 km2 located in the Atlantic
Ocean, several hundred kilometres from the Azores archipelago (Picault
et al., 2021).

Table 1 provides an overview of the data provided at each phase
of the challenge. A land cover map indicated that the landscape of
Merry Island was composed of agricultural (57%), urban (4%) and
forest (39%) areas. Local information indicated that WB (Sus scrofa)
had an 80% preference for forest habitat, and a expected population
size (within each administrative area) of twice the number of WB
hunted in 2019. Domestic pig production was represented by 4540
registered pig herds at the beginning of the challenge, distributed in
peri-urban (5%), forested (10%) and agricultural (85%) areas. Those
herds included commercial (78%) and non-commercial (22%) farms,
with outdoor (24%) or indoor (76%) facilities, and breeder (10%),
finisher (60%) or breeder/finisher (30%) herds. The data also reported
all known between-farm movements of pigs starting two months before
the detection of the first ASF case, the spatio-temporal coordinates of
detected farm outbreaks, a list of the detected WB cases, and written
descriptions of implemented or proposed control measures to contain
the epidemics.

2.2. Mechanistic modelling of transmission dynamics within WB popula-
tions

Since ASF has a incubation period of several days, we adapted a
classic 𝑆𝐸𝐼𝑅 (susceptible, exposed, infectious, recovered) epidemio-
logical model to simulate spread among WB. Each WB was assumed
to inhabit a single hexagonal pixel. Movements of WB were not simu-
lated explicitly, but transitory displacements into adjoining pixels were
assumed when calculating infection rates.

For living WB we considered four different health statuses: sus-
ceptible (𝑆); exposed (𝐸); infectious (𝐼); and recovered (𝑅) (Fig. 2).
Dead WB were assigned to one of two statuses: infectious carcasses
(𝐶); and carcasses that were sufficiently decomposed (rotten) to be
non-infectious (𝑅𝐶 ). Five compartments accounted for the various ob-
servation types: hunted WB that were either untested, or tested and
(correctly) identified as either ASF positive or negative; and additional
infectious carcasses detected via passive or active surveillance.

For simplicity and computation speed, the WB model: (i) neglected
background demographic (birth, death) processes; (ii) assumed WB
lived and died (either from hunting or ASF) in the same pixel; (iii)
neglected explicit simulation of WB movement between pixels; (iv)
assumed that infectious contacts were possible during transitory visits
to neighbouring pixels; (v) neglected all contacts between WB from
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Table 1
Data provided and questions asked by the challenge organizers at each phase of the African Swine Fever Challenge.

Data provided Predictions requested

Phase 1: day 50

∙ Description of the study area ∙ Number and location of outbreaks in farms and WB cases in the 4 weeks following
day 50.

∙ Data and description of index case (day 0). ∙ Effectiveness of fencing in the infected forest zone.
∙ Commercial movements of pigs between farms. ∙ Advise on the relevance of implementing increased hunting pressure in the fence

area.
∙ Number and distribution of infected and detected pig herds.
∙ Number and distribution of detected WB carcasses including: hunted, tested and
infected; hunted, tested and not infected; carcasses found by hikers and hunters;
infected found by active search.
∙ Coordinates of proposed fence.

Phase 2: day 80

∙ Updated epidemiological information on day 80. ∙ Prediction update on the number of cases in pig herds and WBs.
∙ Summary of intervention measures on day 80. ∙ Effectiveness of 5 potential control strategies compared to the baseline scenario:

– Culling all pig herds in the protection zone.
– Increase of active search from 1 to 2 km.
– Culling all pig herds 3 km around positive WB carcasses.
– Increase of surveillance zone from 5 to 10 km.
– Culling all herds that traded pigs with infected farms.

Phase 3: day 110
∙ Updated epidemiological information Summary of intervention measures ∙ Status of epidemic at day 230 (potential second wave, endemicity,

epidemic-extinction, etc.)
∙ Effectiveness of the fences implemented with or without hunting pressure.
Fig. 2. Compartmental model for ASF spread in WB. For each pixel, the force of infection (FOI) was calculated as a function of the number of infectious WB and infectious
carcasses in the pixel and all adjoining pixels (Eq. (2)).
non-adjacent pixels. We also ignored the possibility of hunting and
testing recovered (𝑅) WB.

During each phase of the challenge a two-step approach to numeri-
cal calculation with the WB model was adopted, whereby (i) available
data were used to obtain approximate Bayesian estimates for param-
eters, and (ii) those parameter estimates were subsequently used in
simulations designed to assess and compare different control measures
of epidemic control. We hereafter use 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 and 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 to refer
to these two steps respectively. Fixed and determined parameters are
reported in Table 2, and estimated parameters and their priors are
reported in Table 3.

2.2.1. Spatial representation, land cover and population density
A hexagonal grid was generated across the island with a distance of

5 km between the centroids of neighbouring pixels. The area of each
pixel was approximately 21.7 km2. This scale was esteemed to provide a
reasonable compromise between (i) being small enough to characterize
localized transmission arising from WB territoriality, and (ii) not being
so small that computation time would explode to impractical time
scales. For parameter estimation, we used sub-grids corresponding to
20 km rectangular buffers around all known WB cases — this resulted
in grids of 402, 613 and 715 pixels for the three phases of the challenge
respectively. For prediction, we used the full grid of 6652 pixels.

Proportional cover of each land cover class (forest, agriculture,
urban) was calculated within each pixel. These were used to estimate
the expected density of WB per pixel, assuming that: (i) in each admin-
istrative area, the total population equalled the 2019 hunting bag; (ii)
3

80% of those WB were in forest, 20% were in agricultural areas and
urban WB were neglected; and iii) the effects of these variables were
linear. Thus, in a given pixel 𝑘, the expected density of WB (𝐷𝑘) was
determined as

𝐸[𝐷𝑘] =

(

𝜔 × 𝑝Forest𝑘
∑

𝑘′∈𝐴𝑘
𝑝Forest𝑘′

+
(1 − 𝜔) × 𝑝Agro𝑘
∑

𝑘′∈𝐴𝑘
𝑝Agro𝑘′

)

𝐻𝐴𝑘
(1)

where 𝐴𝑘 indicates the set of pixels from the administrative area con-
taining the centroid of pixel 𝑘, 𝐻𝐴𝑘

indicates the number of WB hunted
in 2019 in that administrative area, 𝜔 quantifies habitat preference
(0.8), and 𝑝Forest𝑘 and 𝑝Agro𝑘 are the proportional cover of forest and
agricultural land within pixel 𝑘. We originally multiplied this expected
value by two, as suggested by local hunters. However, this resulted in
simulations generating approximately twice as many hunted negative
cases as were observed. Removing this scaling greatly improved the
ability of the model to reproduce the observed data. A map of the
expected population density is presented in Fig. 3.

2.2.2. Force of infection, connectivity and fencing
The force of infection in WB (i.e. the expected number of infectious

events within a pixel in one time unit) was modelled by combining
contributions of both living (𝐼) and dead (𝐶) infectious individuals,
both within a pixel and within all adjoining pixels, as follows:

FOI𝑘 = 𝑆𝑘

[

𝛽𝐼
(

𝑐𝐼𝑘𝐼𝑘+𝑐𝐼𝑘′
∑

𝑘′∈𝑁𝑘

𝑤𝑘𝑘′𝐼𝑘′
)

+𝛽𝐶
(

𝑐𝐶𝑘
𝐶𝑘+𝑐𝐶𝑘′

∑

𝑘′∈𝑁𝑘

𝑤𝑘𝑘′𝐶𝑘′
)

]

(2)
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Table 2
Fixed and determined parameters of the WB model. Rates (𝜏⋅ and 𝛽⋅) are expressed in units of days−1. The deterministic relation shown for 𝜏A and 𝜏P applies to challenge phase
one only, otherwise see Table 3.

Par. Description Value Source

𝜔 Preference for forest 0.8 ASFC documentation
𝑝Rec Probability to recover 1/20 Gallardo et al. (2017)
𝑝Test Prob. test hunted animal 1/5 ASFC documentation
𝛽I Transmission rate (infectious) 𝛽 𝑝Attract Assumed
𝛽C Transmission rate (carcass) 𝛽 (1 − 𝑝Attract) Assumed
𝜏I Incubation rate 1/7 ASFC documentation
𝜏C Induced mortality rate 1/7 ASFC documentation
𝜏Rec Recovery rate 𝜏C 𝑝Rec∕(1 − 𝑝Rec) Assumed
𝜏Rot Carcass decontamination rate 1/90 ASFC documentation
𝜏H Daily hunting rate −12

8⋅365
log(1 − 𝑝HuntY) Assumed

𝜏A Carcass detection rate (active search) 𝜏Det 𝑝Active Assumed
𝜏P Carcass detection rate (passive search) 𝜏Det (1 − 𝑝Active) Assumed
Fig. 3. Expected WB density, as individuals per pixel, across Merry Island. Spatial
variation within administrative areas was determined by land cover composition and
habitat preference. Discontinuities at administrative boundaries (grey lines) reflect how
hunting data where utilized at the district level without smoothing between districts.
The inner rectangle represents the fence constructed at the end of day 60. The red
rectangle indicates the zone of military intervention (days 61–120).

where 𝑆𝑘 is the number of susceptible individuals in pixel 𝑘, 𝑁𝑘 is the
set of adjoined neighbouring pixels, and 𝛽𝐼 and 𝛽𝐶 scale the rate of
transmission from living and dead infectious individuals respectively.
The connectivity coefficients 𝑐𝐼𝑘 , 𝑐𝐼𝑘′ , 𝑐𝐶𝑘

and 𝑐𝐶𝑘′
weight the relative fre-

quency of contacts between a single susceptible and a single infectious-
local, infectious-neighbouring, carcass-local or carcass-neighbouring in-
dividual. These connectivity coefficients are the probabilities that two
individual WB are simultaneously within the same pixel given the
probabilities that an individual is in its home or neighbouring pixels
at any moment in time (assumed 1 and 0 respectively for carcasses).
Thus,

𝑐𝐼𝑘 = 𝑝2Home + 𝑝2Away∕𝑛𝑘 (3)

𝑐𝐼𝑘′ = 𝑝Home 𝑝Away

(

1
𝑛𝑘

+ 1
𝑛𝑘′

)

+ 2
𝑝2Away

𝑛𝑘 𝑛𝑘′
(4)

𝑐𝐶𝑘
= 𝑝Home (5)

𝑐𝐶𝑘′
= 𝑝Away∕𝑛𝑘 (6)

where 𝑝Away = 1− 𝑝Home is the proportion of time a WB spends visiting
pixels adjacent to their home pixel (the pixel at the centre of their
home range), 𝑛𝑘 is the number of neighbouring pixels for pixel 𝑘. Thus,
𝑝Away∕𝑛𝑘 is the probability that a WB is visiting a given neighbouring
pixel.
4

The weights 𝑤𝑘𝑘′ (in Eq. (2)) implement the effects of fencing by
reducing contact between WB in specific pairs of adjoining pixels. For
most pairs of adjoining pixels 𝑤𝑘𝑘′ = 1. However, following fence
completion (on day 𝑡Fence), 𝑤𝑘𝑘′ = (1 − 𝜔Fence) for all adjoining pixel-
pairs with centroids falling on either side of the fence. Thus, an 𝜔Fence
of 1 corresponds to 100% fence efficacy (zero transmission).

2.2.3. Parameter estimation
In the estimation step we used Markov chain Monte Carlo (MCMC)

to obtain approximate Bayesian estimates for the posterior distribution
of the unknown parameters. It is well known that traditional MCMC
methods typically perform badly if used to estimate both the parame-
ters and the hidden states of stochastic dynamic models. Particle MCMC
methods have been proposed to overcome these limitations (Andrieu
et al., 2010), but are not popular for fitting spatial models due to exces-
sive computational overhead. We bypassed these technical limitations
by using Monte Carlo simulation to approximate the expected value of
a likelihood for a set of data summary statistics. Doing so enabled us
to perform MCMC via the adaptive Metropolis–Hastings block sampler
provided in NIMBLE (de Valpine and Turek, 2017; de Valpine and
Paciorek, 2020). We describe this Monte Carlo likelihood, and how we
implemented MCMC, in supplementary sections 2 and 3 respectively.

2.2.4. Simulation
The WB model was defined in continuous time. However, we per-

formed stochastic simulation using the tau-leap method — a compu-
tationally efficient discrete time approximation to Gillespie’s direct
method (Gillespie, 2001). We adopted a one-day time step through
out, with one exception – the very first time step of each simulation
was performed with a shorter time interval of length ⌈𝜏Intro⌉ − −𝜏Intro,
where ⌈⋅⌉ represents the ceiling function, which gives the smallest
integer greater than or equal to its argument. This was done to avoid
discretization of the parameter 𝜏Intro, which may have compromised the
performance of the adaptive MCMC algorithm.

At the start of each simulation, the density of susceptible WB in each
pixel was drawn from a Poisson distribution with expectancy given
by the force of infection (Eq. (1)). Each simulation was initialized at
time 𝜏Intro, with a single infectious carcass (𝐶) in the pixel containing
coordinates (𝑥Intro, 𝑦Intro). The carcass decontamination rate (𝜏Rot) was
set to 0, until day 0, to limit the frequency of premature stochastic
extinction in simulated epidemics.

Stochastic simulation was performed during both the estimation
and prediction steps of each analysis. During the estimation step we
performed 500, 500 and 1000 simulations per likelihood approxima-
tion for challenge phases one, two and three respectively. During the
prediction steps, we generated 10000 simulations for each prediction
scenario. Each simulation was performed using an independently se-
lected sample of parameters generated in the estimation step (of the
given phase).
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Table 3
Estimated parameters of the WB model and their priors in each phase. Priors that remained unchanged from the previous phase are omitted. N.A. is displayed in cases where a
prior is no longer applicable due to a change in the model. The WB models of phases one, two and three are referred to as WB model 1, 2 and 3 in the main text.

Par. Description Prior phase 1 Prior phase 2 Prior phase 3

𝜏Intro ASF introduction time Unif(−90, 0) −100× Beta(7, 7)
𝑥Intro Epi-centre easting Unif(𝑥min, 𝑥max)
𝑦Intro Epi-centre northing Unif(𝑦min, 𝑦max)
𝛽 Transmission rate Exp(𝜆 = 10−7) Exp(𝜆 = 10−1)
𝑝Attract Attractivity of 𝐼 relative to 𝐶 Beta(1, 1) Beta(2, 2)
𝜏Det Carcass detection rate Exp(𝜆 = 10−7) N.A. N.A.
𝜏A Active search detection rate baseline N.A. Exp(𝜆 = 10−7)
𝜏P Passive search detection rate N.A. LogNorm(0, 3)
𝜏Phz Augmentation of 𝜏P in hunting zone N.A. Exp(𝜆 = 10−7)
𝜏Hhz Augmentation of 𝜏H in hunting zone N.A. Exp(𝜆 = 10−7)
𝑝HuntY Prob. hunted in 1 year Beta(330, 330)
𝜔Fence Efficacy of fence N.A. Beta(2, 2) Beta(1, 1)
𝑝Home Connectivity (prob. in home pixel) Beta(1, 1) Beta(10, 10) logit−1(9.8)
𝑝Active Relative sensitivity of active search Beta(1, 1) N.A. N.A.
2.2.5. Evaluation of predictive performance
Performance of the different WB models was assessed by comparing

maps of the true cumulative incidence of observed cases with predic-
tions (of those values) generated as the mean (per pixel) from 10000
simulations. Observed cases corresponded to all the different ways of
detecting infected WB carcasses, given by the model compartments
hunted and positive, active search and passive search (Fig. 2). True and
predicted maps were generated for the periods D0-D60 and D0-D110 to
evaluate WB model 1 and 2, respectively. Residuals, calculated as the
difference between the true and predicted maps, were checked visually
for outliers and unexplained (i.e. non-random) spatial structure. The
evaluation of projections issued from WB model 1 was made at day
60, and not at day 80, because the first version of the model did not
account for the subsequent increase in hunting pressure.

2.2.6. Evaluation of control strategies
Various control options were evaluated via simulation during the

prediction step of each challenge phase. For WB, the principal con-
trol interventions were fencing, increased hunting pressure (military
intervention), and actively searching for WB carcasses in a given radius
around known WB cases.

For simplicity, we assumed that the fence was completely absent
up to and including day 60 (𝑡Fence), and became effective at the start
of the following day. In the prediction step of challenge phase one, we
simulated epidemics with fence efficacy (𝜔Fence) set to 1.0, 0.98 and
zero. For each scenario, the simulated epidemics were used to map the
expected cumulative incidence in infectious WB (𝐸 + 𝐼) at days 60 and
80. Here, we extend that initial analysis and assess a more expeditious
fence completion by using WB model 3 to simulate 10000 epidemics
with 𝑡Fence set to day 30, both with and without military intervention.

Challenge phase two provided the first data from which fence
efficacy (𝜔Fence) and the augmentation of the daily hunting rate (𝜏𝐻ℎ𝑧)
could be estimated — two interventions that were initialized at the
end of day 60. We were thereafter able to simulate epidemics using
estimates of those parameters, and compare these with simulations
where those parameters were set to zero. We also explored the potential
benefit of augmenting the radius of the active search from 1 km to 2 km
(supplementary materials, section 1).

In challenge phase three, we simulated 10000 epidemics up to day
230, both with and without military intervention, in order to provide
a long-term forecast. Military intervention was stopped after day 120.
The mean daily value of 𝐼 from the simulated epidemics was used to
approximate the expected long-term trajectory of the epidemic under
each control scenario. We also plotted stochastic trajectories of 𝐸 + 𝐼
from 1000 simulations, along with the proportion of simulations with
𝐸 + 𝐼 = 0 at each day, to provide an index of whether or not the
epidemic was expected to continue beyond day 230. For each model,
the conditional (on emergence) expected day of ASF emergence per
pixel was calculated as the mean day on which the first WB of a given
pixel became infected — unaffected pixels were omitted from these
calculations.
5

2.3. Probabilistic modelling of transmission among domestic pig sites

A farm contamination model was developed to estimate, for each
pig herd on the island, the probability to become infected within a
given time period following each data release date. These probabilities
accounted for three contamination pathways:

1. direct contact with infectious WB;
2. reception of infected live pigs from animal trade;
3. fomites from neighbouring pig herds.

This model used known locations of pig production facilities as
the epidemiological units. We call these pig production sites, or pig
sites for short. We also use the term pig herds - although this is only
appropriate on sites that have not undergone culling. We rarely refer
to pig farms, since a single farm may consist of multiple sites. Infection
and detection probabilities are considered at the site/herd level. The six
key probabilities estimated by the model are presented in Table 4. Fixed
parameters are provided in Table 5. All non-fixed parameters were re-
estimated during each challenge phase. We used frequentist methods,
expected values and point estimates throughout, thereby neglecting
uncertainties and errors in parameter estimates.

The model made implicit use of susceptible–infectious–detected–
recovered (𝑆𝐼𝐷𝑅) compartmental categories to model transmission
among pig herds. Each herd was assumed to be within one, and only
one, of these compartments on any given day. Non-infected pig herds
were all susceptible (𝑆). Any infection starts in category 𝐼 , where
transmission can occur before infection is detected and confirmed after
a fixed period of 15 days (thus, all infected pig herds are eventually
detected). The infected pig herd then enters category 𝐷, for one day,
before the herd is culled. The pig production site then remains empty
for 50 days, during which time it is considered as recovered (𝑅). Pig
sites are disinfected 10 days after culling, during which time trans-
mission via fomites is theoretically possible, although we considered
the probability negligible for simplicity. Finally, after re-population,
the pig herd becomes susceptible again. While we acknowledge that
ASF infection and contamination within domestic pig farms arises
from a dynamic process, we do not simulate or track state transitions
explicitly. Instead, for each challenge phase, we computed probabilities
of each pig-site becoming infected during the prediction period that
followed the corresponding data release date, 𝑑𝑗 , 𝑗 = 1, 2, 3.

Let 𝑗 = 1, 2, 3 be an index for the days on which data were released
to challenge participants, i.e. days 50, 80 and 110 respectively. Let 𝑁𝑗 be
the number of registered pig herds at the time of data release 𝑗. Each
pig herd 𝑖 = 1,… , 𝑁𝑗 has 6 associated infection probabilities in each
of the upcoming prediction periods (days 51–80, 81–110 and 111–230
for 𝑗 = 1, 2, 3 respectively) that were updated at each challenge phase.
These probabilities are described in Table 4

Concerning available data for characterizing pig-sites, two pieces of
information were used. First, we considered that only outdoor pig herds



Epidemics 40 (2022) 100596F. Muñoz et al.
Table 4
Key probabilities within the pig-herd model. Sub-indices 𝑖 and 𝑗 indicate pig herd and submission phase respectively. The three transmission routes are encoded in the super-indices
as: direct contact with WB (wb); contamination via fomites (fm); and infection through the trade of live pigs (tr).

Par. Description Value Source

𝜋𝑖𝑗 Total infection probability in
the upcoming prediction period

1 − (1 − 𝜋wb
𝑖𝑗 )(1 − 𝜋tr

𝑖𝑗 )(1 − 𝜋fm
𝑖𝑗 ) Probability of infection by any

one of the independently
considered pathways

𝜋wb
𝑖𝑗 Infection probability due to

exposure to infectious WB in
the prediction period

1 − (1 − 𝜋𝑑wb
𝑖𝑗 )𝑛

𝑑
𝑖𝑗 𝑛𝑑𝑖𝑗 : number of days at risk for pig

herd 𝑖 in the prediction period 𝑗.
See Section 2.3.1.

𝜋tr
𝑖𝑗 Infection probability due to trade

in the prediction period
𝐸tr

𝑖𝑗 Approximated by the expected
number of infected shipments.
See Section 2.3.2.

𝜋fm
𝑖𝑗 Infection probability due to

fomites in the prediction period
1 −

∏

𝑖′≠𝑖
(

1 − 𝜋fm
𝑖𝑖′𝑗

)

See Section 2.3.3.

𝜋𝑑wb
𝑖𝑗 Daily infection probability due

to exposure to infectious WB
during any day in the observed
or prediction periods

1 −
(

1 − 𝜋𝑂wb
𝑖𝑗

)𝑛−1𝑗 Values of 𝑛𝑗 fixed. See Table 5.

𝜋𝑂wb
𝑖𝑗 Infection probability due to

exposure to infectious WB in the
observed period. Zero for indoor
herds.

[

1 + exp
(

−𝛼 − 𝛽𝑒wb
𝑖𝑗

)

]−1
Expected probability from a
logistic regression on the
exposure to infectious WB for
outdoor herds only.
Table 5
Fixed parameter values for the pig herd model.

Notation Parameter Value Source

symptom_onset Days from infection to start of clinical signs 7 ASFC documentation. Average value. We
considered it constant.

detection_delay Time (days) needed to confirm ASF in a pig herd
since infection

15 ASFC documentation. Average value (it actually
was 14). We considered it constant.

day_expo_start Day from which the exposition to ASFV started.
Start of the observed period.

−15 A central value from our simulations of the
epidemic among WB.

𝑑𝑗 , 𝑗 = 1, 2, 3 Data release date, in challenge calendar time, at
each phase 𝑗.

50, 80, 110 Challenge rules.

𝑛𝑗 , 𝑗 = 1, 2, 3 Number of days in the observed period at each
phase 𝑗.

50, 80, 110 𝑑𝑗 − day_expo_start − detection_delay

𝜋hot Probability of transmission for a recent shipment
from a suspected pig herd.

0.8 Arbitrarily set as representing a high risk, but with
some uncertainty due to chance or mistakes. See
Section 2.3.2.
were at risk of ASF contamination via direct contact with infectious WB.
Secondly, herd size was used as a quantitative measure of the expected
impact of the alternative control strategies proposed by the challenge
organizers. We did not use any other farm site characteristics data in
the model, since exploratory analyses showed no particular effect of
these variables on the six infection probabilities (Table 4).

The pig herd model did not require setting any initial conditions,
apart from the fixed parameters listed in Table 5, among which there
was the day of disease introduction which represented the beginning
of the exposition period. It was set at day −15 in ASF Challenge time,
which was a central value from our simulations of the epidemic among
WB in phase one. The precise location of the introduction was irrelevant
for the pig-herd model as only the area affected by day 50 was used in
estimation.

The following subsections describe the methods used for estimating
the transmission probabilities of Table 4. These subsections are orga-
nized by transmission pathway, namely: contact with infectious WB;
trade movements; and transportation of fomites.

2.3.1. Probability of transmission through WB exposure
The exposure of pig herds to infectious WB, 𝑒wb

𝑖𝑗 , was quantified via
kernel density smoothing of observed WB case data. This smoothing
was performed once for each challenge phase, and was applied to
the entire set of available cases — thus temporal fluctuations in the
risk of exposure to infectious WB were neglected. We then fitted a
logistic regression for the infection status of pig sites given their level of
exposure to infectious WB. This allowed the estimation of a probability
of infection and detection, 𝜋𝑂wb , for each outdoor farm site, pertaining
6

𝑖𝑗
to the entire observation period ranging from the beginning of expo-
sure (day_expo_start) up to the data release date minus the
detection_delay. We derived an estimate of the daily probability
of infection, 𝜋𝑑wb

𝑖𝑗 , based on the number of days considered during the
observation period, assuming constant risk and independence across
time.

The number of days at risk for farm 𝑖 in the 𝑗th prediction pe-
riod, 𝑛𝑑𝑖𝑗 , was derived by subtracting the total duration of any known
culling/cleaning/
re-stocking periods at that farm site from the length of the prediction
period (Table 5). Unknown hypothetical culling/cleaning/re-stocking
periods were neglected. This was used, with 𝜋𝑑wb

𝑖𝑗 , to obtain an estimate
of the probability of infection from exposure to infectious WB during the
prediction period, 𝜋wb

𝑖𝑗 .
A strong assumption was that only outdoor pig herds, with non-

negligible exposure, were susceptible to this transmission pathway.
Indoor pig herds and farms far from WB cases (i.e. not directly exposed)
were excluded from the logistic regression and their value of 𝜋𝑂wb

𝑖𝑗 was
fixed at zero, which in turn makes the daily infection probabilities,
𝜋𝑑wb
𝑖𝑗 , and the predicted infection probability by WB, 𝜋wb

𝑖𝑗 , also zero.

2.3.2. Probability of transmission through infected shipments
For each pig herd, we calculated the risk of observing an infection

within the prediction period due to shipments from infected sources,
𝜋tr
𝑖𝑗 . Any such transmission event must either occur prior to the data

release date, in which case the shipment will have been observed,
or after the data release date, in which case its occurrence will be

unknown. We consider these two contributions separately.
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To quantify the probability of an infectious shipment within the
observation period, we consider known recent shipments occurring
within the 15 (detection_delay) days before the data release date
of each phase (𝑑𝑗). Earlier shipments were certainly not infectious,
otherwise the transmission would have been detected at the destination
site prior to the following data release. Among these shipment events,
we considered those shipments from farm sites that were suspected as
infected (but not yet confirmed) in the seven (symptom_onset) days
ollowing the shipment as particularly risky, and arbitrarily assigned
transmission probability of 0.8 (𝜋hot) to those events. However, we

never actually observed this situation in the challenge data. We quan-
tified the transmission risk for the rest of the recent observed shipments
as the probability of infection of the source site at the day of the
shipment. This was done by accumulating its daily infection probability,
𝜋𝑑wb
𝑖𝑗 , over the number of days at risk from 𝑑0 = 𝑑𝑗 − 𝚍𝚎𝚝𝚎𝚌𝚝𝚒𝚘𝚗_𝚍𝚎𝚕𝚊𝚢

up to the shipment date 𝑑𝑠:

1 −
(

1 − 𝜋𝑑wb
𝑖𝑗

)𝑛𝑠
(7)

where 𝑛𝑠 = 𝑑𝑠 − 𝑑0 + 1. Finally, we computed the expected number of
infected shipments received as the simple addition of the transmission
probabilities of each of the observed recent shipments.

For unobserved future shipments, we evaluated the expected num-
ber of infectious shipments as the product of the expected number of
shipments in that period multiplied by the probability that a particular
shipment is infected:

𝐸[inf. ship.𝑖′→𝑖] = 𝐸[ship.𝑖′→𝑖] ⋅ 𝑃 (inf. ∣ ship.𝑖′→𝑖). (8)

We used the empirical monthly shipment rates, �̂�𝑖′𝑖, scaled by the
umber of non-banned days in the prediction period, to obtain simple
stimates of 𝐸[ship.𝑖′→𝑖]. The probability of a shipment being infectious
equires that the infection occurs before the shipment date. Assuming
hat a shipment can take place any day in the prediction period with
qual probability, we marginalize the corresponding joint probability
ver the day of the shipment, assuming a uniform distribution, where
he joint probability of an infected shipment at day 𝑡 can be evaluated
rom the daily probability of infection of the herd at the origin and the
umber of non-banned days in the prediction period 𝑛𝑖′𝑗 .

(inf. ∣ ship.𝑖′→𝑖) =
𝑛𝑖′𝑗
∑

𝑡=1
𝑃 (inf. ∣ ship.𝑖′→𝑖, 𝑡) 𝑝(𝑡)

= 1
𝑛𝑖′𝑗

𝑛𝑖′𝑗
∑

𝑡=1

[

1 − (1 − 𝜋𝑑wb
𝑖′𝑗 )𝑡

]

= 1 − 1
𝑛𝑖′𝑗

1 − 𝜋𝑑wb
𝑖′𝑗

𝜋𝑑wb
𝑖′𝑗

[

1 − (1 − 𝜋𝑑wb
𝑖′𝑗 )𝑛𝑖′𝑗

]

(9)

The expected number of infected shipments in the prediction pe-
iod were computed for all target farm sites by adding together the
ndividual expectations from all the possible origins.

In summary, for every target pig herd, 𝑖, we obtained expected
umbers of infectious shipments from past or future movements. These
ere added to give a total expectation for the prediction period, 𝐸tr

𝑖𝑗 ,
hat can be considered as the expected value of a binomial variable
∼ Bin(𝑛𝑖𝑗 , 𝑝𝑖𝑗 ) for the number of infected shipments. The probability

f at least one infected shipment is approximately equal to 𝐸tr
𝑖𝑗 for

tr
𝑖𝑗 < 0.25,

tr
𝑖𝑗 = 𝑃 (𝑋 > 0) = 1 − (1 − 𝐸tr

𝑖𝑗∕𝑛𝑖𝑗 )
𝑛𝑖𝑗 ≈ 𝐸tr

𝑖𝑗 . (10)

This approximation avoids dependency on the total number of received
shipments, 𝑛𝑖𝑗 , which is uncertain for future shipments.

2.3.3. Probability of transmission through fomites
Contamination via fomites most likely occurs when the virus is

transferred on some inanimate matter, prior to detection, from a neigh-
bouring farms. Thus, the probability of infection via fomites must be
7

proportional to the aggregated probability of infection on neighbouring
farms, particularly the closest ones. We assumed that the risk for a
given pig herd 𝑖 to become infected with ASF during phase 𝑗 via
the transportation of fomites from some neighbouring farm site 𝑖′

was proportional to the probability of infection by infectious WB,
𝜋wb
𝑖′𝑗 , weighted by an exponentially decaying function of the distance

between the sites, 𝑑𝑖𝑖′ :

𝜋fm
𝑖𝑖′𝑗 = 𝜋wb

𝑖′𝑗 exp(−𝑑𝑖𝑖′∕𝜆) (11)

where the scaling parameter was chosen as 𝜆 = 700∕ log(2) so that the
probability of infection is halved every 700 m. This was calibrated after
the first recorded infection of an indoor herd (site ID 2634) during the
challenge, which was in close proximity (about 710 m) to an outdoor
finishing farm which was identified as being infected during challenge
phase two.

Every target site 𝑖 has multiple neighbours presenting different
levels of risk depending on their respective distances and probabilities
of infection from WB. Therefore, the risk of infection via fomites from
any of the neighbours was computed by aggregating their individual
risks, assuming that transmission events from neighbouring pig herds
are independent, as follows,

𝜋fm
𝑖𝑗 = 1 −

∏

𝑖′≠𝑖

(

1 − 𝜋fm
𝑖𝑖′𝑗

)

. (12)

This unavoidable approximation ignores some sources of dependency,
such a veterinarians or other vehicles visiting several neighbouring
farms, which may result in clustered transmission. Therefore, it is
possible that this simplification leads to some underestimation where
probabilities of infection are aggregated.

2.3.4. Evaluation of predictive performance
Prediction performance was assessed informally in three ways. First,

by comparing predicted infection probabilities for a period against
reported infections. Specifically, we verified that predicted probabil-
ities at infected pig herds were relatively high. This procedure led
us to introduce the fomites contamination pathway in phase two, in
order to explain the contamination of an indoor farm (site ID 2634)
which had been predicted as being at very low risk in our phase one
analysis. Secondly, the predicted risk and the observed infection status
at pig sites were mapped for visual comparison, in order to identify
spatial patterns and to gauge the relative proportion of infected sites
given their predicted risk. Thirdly, comparing the expected number of
infected 𝑝𝑖𝑔𝑠 against the observed number.

2.3.5. Evaluation of control strategies and critical trade hubs
Some of the proposed control strategies, such as increasing the

hunting pressure or the size of the active search area, only had indirect
impacts on farms, through their effects on the epidemic among WB. By
contrast, the direct impacts of control measures involving the culling of
pig herds meeting specific criteria (located in protection zones; located
near infectious WB carcasses; traded pigs with an infected farm in
a certain period before detection), were evaluated by modifying the
parameters 𝑛𝑑𝑖𝑗 , which represent the number of days at risk for a given
farm in the prediction period (see Section 2.3.1), and comparing the
resulting infections probabilities.

In order to assess long-term risks, we consider the potential of
farms to disseminate ASF through the trade network. A measure of
this potential is given by the relative contribution of each farm to the
basic reproduction number 𝑅0 of the network (Volkova et al., 2010).
This parameter allows the identification of farms that are particularly
susceptible to spread the virus widely across the trade network, should
they become infected. Specific surveillance measures can be suggested

to policy makers to prevent infection of these trade hubs.
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Fig. 4. True (left) and predicted (right) cumulative incidence of observed WB cases at day 110. The predictions are expected values from 10000 simulations of a model trained on
80 days of data (WB model 2). Rectangles represent the fence (inner) and buffer zone of military intervention (outer). Administrative boundaries are shown in blue.
2.4. Implementation

Our primary language was R (R. Core Team, 2020) and we used 44
CRAN packages — the most critical ones being drake for reproducibility
(Landau, 2018), NIMBLE for the WB model (de Valpine and Turek,
2017; de Valpine and Paciorek, 2020), sf for spatial data (Pebesma
and Bivand, 2005), knitr for rendering Rmarkdown (Xie, 2020), and
tmap for mapping (Tennekes, 2018). Whilst drake provides a pipeline
for reproducible research (by ensuring every user generates the same
target R objects), the heavy calculations performed with NIMBLE did
not fit within the drake framework, thus drake and Rmarkdown
were simply given access to the outputs of NIMBLE scripts. The code,
data and reports from each challenge phase are available at https:
//forgemia.inra.fr/umr-astre/asf-challenge.

3. Results

Here we present key results from the ASF Challenge, including
short-term predictions of dissemination among WB and farms, and
answers to operational questions about the relative efficacy of alter-
native control interventions. Additional results are provided in the
supplementary document.

3.1. Predictions of spread among WB

We hereafter refer to the models fitted to 50, 80 and 110 days of
WB data – in challenge phases one, two and three – as WB models 1, 2
and 3 respectively.

3.1.1. Evaluation of model fit
Fig. 4 compares the true cumulative incidence of observed WB cases

at day 110 with expected values predicted by WB model 2. In general,
the expected cumulative observed incidence (right) is smoother than
the true values (left). Whilst some differences in smoothness were
expected due to discrete (left) and continuous (right) representations,
this does not account for differences in spatial structure within those
areas first affected by the outbreak (near the western fence), where the
true data exhibits large between-neighbour differences that are absent
in the mean of the simulations in that area and in the data from areas
further from the epicentre. A map of residuals also exhibits greater
8

levels of local variation in model errors in the areas first affected by the
epidemic (Fig. S3). This pattern likely reflects (i) local aggregation in
the detection probability due to active searches prior to day 60, and (ii)
an augmentation and homogenization of detection probabilities once
culling started. That expected values, calculated from 10000 simula-
tions, smoothed over locally aggregated observations is not surprising.
Moreover, many features of the true data are well characterized by
the predictions: such as the extent of the area where the cumulative
incidence exceeds one; spatial trends within the main clusters; maxi-
mum values of the cumulative incidence; limited dissemination into the
administrative areas in the north-west and west of the military area;
and considerable leaking of ASF beyond the southern fence. Whilst
some simulations did predict more extensive spatial spread than was
actually observed (yellow pixels in Fig. 4), the low expected value of the
cumulative incidence (<1 observed case) in those areas suggest that the
majority of simulations did not support the possibility of spread beyond
the southern and western limits of the augmented hunting zone prior to
day 110. Maps of the predictions and residuals for WB model 1 provide
similar interpretations (Figs. S1 and S2).

The predictive performance of all models developed within the
ASF Challenge is assessed in Ezanno et al. (2022). Fig. 2 therein
shows that our WB model accurately predicted the dynamics of the
challenge organizers simulated epidemic — the trajectory of their M0
model remaining within our 80% credibility intervals throughout the
predictive periods.

3.1.2. Effects of control interventions
Simulation was used to explore the effects of fencing, military

intervention (augmented hunting pressure) and doubling the active
search radius from one to two kilometres. Predictions from WB model
2 indicated that increasing the active search radius to two kilometres
would have only negligible impacts on the course of the epidemic
(Fig. S4). Indeed, the 95% credibility interval for the proportion of
infections caused by carcasses was just (0.00006, 0.015). Expected
trajectories for the number of infectious WB (𝐼), with and without
fencing and increased hunting, shown that both fencing and military
intervention were estimated to reduce the number of infectious WB
(Fig. 5). However, the effect was much stronger for military interven-
tion than for fencing alone — the increased hunting pressure having a

large immediate effect in reducing infectious WB numbers. Moreover,

https://forgemia.inra.fr/umr-astre/asf-challenge/-/blob/master/src/packages.R
https://forgemia.inra.fr/umr-astre/asf-challenge/-/blob/master/src/packages.R
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https://forgemia.inra.fr/umr-astre/asf-challenge/-/blob/master/src/packages.R
https://forgemia.inra.fr/umr-astre/asf-challenge/-/blob/master/src/packages.R
https://docs.ropensci.org/drake
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https://mtennekes.github.io/tmap/
https://forgemia.inra.fr/umr-astre/asf-challenge
https://forgemia.inra.fr/umr-astre/asf-challenge
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Fig. 5. Trajectories of the expected number of infectious WB (𝐼) by control scenario with data observed up to day 110. These expected values are from WB model 3.
.

expected trajectories suggest that fencing was unlikely to provide much
benefit beyond those of hunting.

Under none of the four control scenarios considered (Fig. 5) was
it expected that the epidemic would be brought to a stop. Indeed, the
estimated probability of having zero infected (𝐸+𝐼) WB at day 230 was
approximately 0.4 (Fig. 6). The number of infected WB followed a sharp
decline after day 60 in all simulations, however, in only a minority of
simulations did it get close to zero and remain there. The majority of
simulations suggested that a second wave would start at some point
after day 100. Second waves in these simulations arose when ASF
escaped through the southern limit of the military intervention zone
(Fig. S10). According to WB models 2 and 3, this leaking was expected
to occur before days 100 and 120 respectively (Figs. S9 and S10).
Simulations from all three models indicated that ASF was expected to
have leaked beyond the southern fence prior to its completion on day
60 (Figs. 4, S1, S8, S9 and S10, although see Fig. S11).

Had the fence and military intervention been implemented much
earlier, on day 30 for example, the probability of bringing the epidemic
to a halt by day 230 would have been much greater (Fig. S5). In that
scenario, there is even a non-negligible probability that the fence alone
could have stopped the epidemic (Fig. S6). Whilst the most likely value
of fence efficacy was very close to one, large uncertainties remained
regarding this parameter (Fig. S7). Interestingly, the expected cumula-
tive incidence of infected WB outside the northern and eastern fence
remained less than one (salmon-red polygon, Fig. S10), suggesting that
in those areas the fence did help limit dissemination. Nevertheless,
the large uncertainty in fence efficacy led to the expectation that,
without military intervention, the epidemic would have spread beyond
the fence in the north and east, and the extent of spread in the south
and south-west would have been even greater (Fig. S11).

3.2. Predictions of outbreaks in pig herds

In the first phase of the challenge, three farms (site IDs 4017,
4020 and 737) had a predicted probability of infection and detection
remarkably higher than the rest (Table 6) and were indeed infected
in the subsequent days. The main risk for the first two farms was
their exposure to infectious WB, and it was most likely the actual
transmission pathway, whereas farm site 737 was most likely infected
via trade. In total, 506 pigs were expected to get infected in the first
prediction period, from day 51 to day 80. Analogous predictions from
challenge phases two and three can be found in Tables S1 and S2 of
the supplementary document.

Fig. 7 shows the spatial locations of pig herds with non-negligible
(𝑝 > 0.05) infection probability during each prediction period.

Out of the 4540 pig sites on Merry Island, 411 were associated with
trade activities that were sufficiently extensive to risk disseminating
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Table 6
Probability of infection in pig herds without known ASF cases but with non-negligible
probabilities (𝑃 > 0.05) in the period from day 51 to day 80 (phase one of the challenge)

id size wb_expo trade fomites p_pred

4017 12 0.383 0.383
4020 5 0.331 0.331
737 1428 0.261 0.006 0.265
2939 664 0.059 0.019 0.077
2960 421 0.059 0.017 0.075

4534 2 0.036 0.031 0.066
1983 131 0.059 0.002 0.060
2955 49 0.055 0.055
1759 536 0.051 0.051
154 8 0.039 0.012 0.051

the disease throughout the network of farms. Of these, 224 herds
accounted for 80% of the transmission potential - thus, just 5% of herds
accounted for most of the risk of spreading the disease widely through
the trade network. These well connected trade hubs can be considered
as potential super spreaders. Particular attention must be paid to prevent
infection at such sites. As the affected area grew larger by day 110
(challenge phase three) four such pig herds were at considerable risk
of infection (site IDs 499, 1815, 3796 & 4304, see supplementary Table
S2). These were all outdoor facilities, located in vicinity of the southern
fence. In the absence of suitable control measures, infection at these
sites could have led to dissemination across the entire island.

3.3. Impacts of control on farm outbreaks

With the policy of disease control on farms in place at day 80,
the disease was estimated as most likely to continue spreading locally
between neighbouring herds within the fenced area and buffer zone.
However, the risk of infectious animal shipments out of the area was
very low (probability of infection due to trade below 1% for all pig
herds) according to our model.

We expected 7180 (out of 4 M heads in total, 0.17%) new pig
infections during the second prediction period (days 81–110) under the
control strategy in place at that time — namely culling of infected herds
and trading ban in protection and surveillance zones. The impacts of
the three proposed supplementary control strategies was estimated as
marginal, with a maximum reduction of 11 individuals if culling all pig
herds located less than three kilometres from positive WB carcasses was
applied. This showed that the control strategy implemented on farms
during phase two was effective in containing the spread of the disease.



Epidemics 40 (2022) 100596F. Muñoz et al.
Fig. 6. Stochastic trajectories for the number of infected WB (𝐸 + 𝐼), from simulations with WB model 3. Trajectories from one thousand simulations are shown (black lines) with
the proportion of simulations for which 𝐸 + 𝐼 = 0 (red line).
Fig. 7. Probability of outbreak occurrence and detection at farm sites, by any possible pathway, during the prediction period of each phase of the challenge. The rectangles
represent the fence (inner) and buffer zone of augmented hunting pressure (outer).
4. Discussion

We have presented a modelling approach that has proved effective
for anticipating risks, and for evaluating the impacts of alternative
control measures, during the course of an in silico ASF outbreak within
a fictive country, within the context of a modelling challenge. Our
approach was to independently develop a stochastic space–time model
of dissemination among WB, and a deterministic probabilistic model
for quantifying risks in pig herds. A key advantage of this approach
was that it facilitated simultaneous and independent development of
the two models, thereby optimizing human resources within a small
modelling team working to tight deadlines.
10
4.1. Model performance and adequacy

Evaluations of model fit indicated a satisfactory level of model
performance. During challenge phase one, the three pig sites identified
as being at highest risk of infection during the first prediction period
(days 51–80) were indeed verified as infected in the subsequent data
release. We also accurately predicted that spread among WB would
likely be slow and broken to the west of the initial cases, would spread
rapidly towards the east and north-east, although probably not beyond
the fence, and would pass the fence in the south where a second
wave was likely. In challenge phase two, we predicted an expected
total number of infected pigs of 6719 — the actual figure at day 110
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was 4943. Again, all three pig herds identified as being at highest
risk experienced ASF outbreaks in the prediction period preceding the
following data release. Moreover, we were able to quantify the impact
of proposed control measures in terms of the number of new infections
in pigs and the dissemination of the virus among WB populations. This
enabled us to provide the decision makers of Merry Island specific
recommendations of resource allocation and surveillance activities to
limit the spread of the epidemic.

4.2. Limitations and potential improvements of the farm model

Despite integrating three different transmission pathways, the farm
model was quite simple and several limitations were apparent. A
clear limitation was that predictions were static and simply provided
expected values across each prediction period (D51-D80, D81-D110,
D110-D230). This lack of dynamics and uncertainty quantification in
the predictions could be improved, for instance, by accounting for
the progress of the epidemic in WB populations, by adopting a time-
to-event approach to model infection risk and by using a parametric
statistical model. However, attempts during phase three to link pig herd
exposure to predictions of the WB model indicated that identifying an
appropriate link was non-trivial — none of the assumed links between
the two models that we tested appeared to improve predictive power,
thus this line of work was dropped. Secondly, empirically observed
between-herd shipment rates were used as probability estimates of
future shipments between the same herds. More sophisticated anal-
yses, such as those provided by network analysis models (Ferdousi
et al., 2019), could have possibly increased the robustness of the
estimates and provided a quantification of their precision. A third
potential improvement could be achieved by relaxing the assumptions
of independence between the three contamination pathways affecting
pig herds. A further improvement could be the replacement of fixed
empirical point estimates by full probability distributions. Despite these
simplifications, the consistency between model predictions and the re-
ported progress of the disease suggests that the model was nevertheless
reasonably robust in predicting the spread of ASF virus through the
domestic pig value chain.

4.3. Limitations and potential improvements of the WB model

First, not all of the parameters were independently identifiable. In
particular, the very strong correlation between connectivity (𝑝Home)
and transmission intensity (𝛽) indicates that, given the available data,
we could only achieve low precision in estimating the rate of within-
pixel transmission. This prompted us to fix 𝑝Home to the median value
obtained from a MCMC pre-run in challenge phase three. However,
incorporating additional information from secondary sources, such as
a strongly informative prior for 𝑝Home (based on WB territoriality data,
for example), may have helped alleviate this identifiability issue. A
second issue was that we unintentionally neglected the hunting of WB
in the 𝑅 compartment. Whilst it was unclear if the diagnostic tests of the
challenge would have categorized WB in 𝑅 as positive or negative, the
omission of hunted 𝑅 from the likelihood was clearly a potential source
of bias. However, this bias was surely small if our assumption of 95%
diseased induced mortality was reasonable, and the model was most
likely flexible enough that it could compensate for this bias and thereby
still provide reasonable dissemination estimates. Thirdly, perhaps one
of the biggest limitations was to not link the WB model to infection risk
in pig farms. This transmission mechanism is expected to be important
in real situations, and it is suspected to have played a major role in
the maintenance of ASF in areas like Sardinia, the Russian Federation
and Romania (Boklund et al., 2020). Finally, our wild boar model
assumed density-dependent transmission. This assumption follows the
received wisdom that the majority of wildlife diseases are primarily
transmitted through density-dependent mechanisms. Indeed, this was
the assumption made by the challenge organizers (Picault et al., 2021),
11
and visual inspection of the provided data made it clear that spread
was rapid in high-density areas and slow in low density areas —
thus the density-dependent assumption was a reasonable choice in the
given context. However, some authors have suggested that frequency-
dependent mechanisms may also contribute to ASF dynamics (O’Neill
et al., 2020), although we do not know of field studies that con-
firm this proposal. Clearly an expanded statistical framework, that
could distinguish between density and frequency dependence, could
be advantageous when faced with real data. For example, such an
approach has been used to show that, despite the received wisdom,
frequency-dependent mechanisms are more important than density-
dependent mechanisms in the circulation of mange among wild foxes
(Devenish-Nelson et al., 2014).

4.4. Implications for real scenarios and lessons learnt

4.4.1. The role of the density of WB populations
Despite numerous simplifications, the WB model did appear to

provide a robust characterization of the speed and extent of spatial
spread. This success was largely due to the availability of very detailed
information regarding WB densities. Whilst our linear equation for the
expected density of WB per pixel (Eq. (1)) might clearly over simplify
many real situations, it does appear to have provided a useful approx-
imation to the spatial distribution of WB within the challenge’s data
generation model. By comparing spread in various directions (e.g. Figs.
S10 and S11) with maps of WB density (Fig. 3), we can clearly see that
WB densities affect the speed and extent of dissemination. This relation
is largely a result of density dependence in the force of infection
(Eq. (2)). This relationship explains why ASF was unable to invade
the administrative region north of the epicentre in our simulations. If
density dependence is indeed the most pertinent mode of transmission,
then clearly the quality and quantity of WB data can greatly affect
the reliability of estimates concerning the speed and extent of ASF
dispersal. The implication of this density∼speed relationship for real
world applications is that WB densities need to be known across entire
landscapes, at least up to a constant of proportionality, for predicting
spatial heterogeneity in the spread of ASF among sylvatic reservoirs.
Thus, one of the most important aspects when developing predictive
models in the context of real ASF epidemics is the quality and quantity
of available WB abundance data. However, this typically presents a
critical knowledge gap in real world scenarios because WB numbers
are extremely difficult to estimate with accuracy in the field.

Wild boar densities have been estimated across continental areas
via various combinations of remotely sensed data, spatial analyses and
collations of various sets of census and hunting data (Alexander et al.,
2016; Sales et al., 2017; Lewis et al., 2017; Bosch et al., 2017; Pittiglio
et al., 2018). However, data quality is problematic for such studies,
particularly in areas where census data are not available and hunting
data must be used as a proxy. It is rare for hunting organizations
to report hunting effort, an important parameter for interpreting hunt
statistics: for example, in France, just two out of the 96 metropolitan
departments are routinely reporting hunting effort (Vajas, pers comm),
thus large uncertainties surround the calibration of hunting data from
multiple administrative areas. Furthermore, numerous methods exist
for estimating WB densities in the field, and these vary in their accu-
racy and reliability (ENETWILD consortium, 2020), therefore available
density figures from various countries may not be directly comparable.
As such, teams attempting to map WB densities across large areas must
typically make various simplifying hypotheses concerning data quality,
thus levels of precision remain unknown. These real world errors and
uncertainties have important implications for the robustness of predic-
tions from ASF dissemination models built using current WB density
maps. This aspect was greatly simplified during the ASF challenge,
where hunting and landscape data alone were sufficient for obtaining
reliable estimates of WB densities across Merry Island.
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4.4.2. The geographical resolution of the analysis
In our simulations, dissemination among WB reached speeds of up

to ∼ 27 km/month (Fig. S10). This value is much higher than estimates
eported in real situations, calculated using data from seven different
ountries in Western and Central Europe, which range from 2.9 to 11.7
m/month (Podgórski and Śmietanka, 2018; European Food Safety Au-
hority (EFSA) et al., 2018). It could be tempting to conclude that the 5
m pixels were too coarse to provide ecologically realistic simulations.
ndeed, it is possible that a combination of the 5 km pixels, plus the
ow resolution (just three classes) land cover map, overly homoge-
ized the landscape and therefore smoothed over potential landscape
arriers (such as rivers) to ASF dissemination. Whilst a more realistic
epresentation of WB ecology might be expected by adopting smaller
ixels and a more detailed land cover map, our chosen approach struck
balance between ecological realism and computation time: smaller

ixels risked making the numerical calculations too slow for meeting
hallenge deadlines. Moreover, our simulations did provide robust and
ccurate predictions of the epidemic’s trajectory (see Fig. 2 in Ezanno
t al. (2022)). Thus, the approach was appropriate for replicating ASF
issemination as simulated by the challenge organizers, and within the
ime frame of the challenge. However, a coarser resolution, or even a
implified (fewer transmission mechanisms) model, may be desirable if
fast response decision-making tool is required.

.4.3. The role of WB carcasses
Climatic factors, and their effects on carcass longevity in the envi-

onment, are often cited as being important regarding the persistence
f ASF transmission among WB. These factors have been shown to
enerate different patterns of ASF transmission and persistence among
B populations in (i) a North-Eastern European country (Estonia), com-

ared to (ii) a Mediterranean country (Spain) (O’Neill et al., 2020). The
ffect of carcasses on ASF persistence is primarily driven by climatic
actors, because the carcass decomposition rate is positively related to
emperature. In our analyses, carcasses only played a very minor role
n the rapid spread of ASF on Merry Island. This result is consistent
ith the hypothesized geographical location of Merry Island, where

elatively stable daily maximum temperatures within a range of 16
nd 25◦C are expected all year long. Whilst our model does contain
oth live and carcass infection sources, it would need to be modified to
nclude the effects of large seasonal temperature variations on carcass
ongevity for it to be useful in regions with long cold winters. Moreover,
or the purposes of predicting persistence, it would also be useful to
ave more data on the movement patterns of WB (particularly young
ales) across areas depopulated by ASF.

.4.4. Efficacy of fencing and hunting interventions
Within the challenge, both fencing and increased hunting were

ffective in limiting the impact of the first wave. However, the impact
f fencing was compromised by a poor choice of location (considering
he speed of disease spread) for the southern fence, which permitted the
isease to leak south of the fence and buffer zone. This leaking reduced
he contrast between data collected on either side of the fence, which
ikely resulted in a loss of statistical power that surely contributed to
he large uncertainty in fence efficacy, and a potential underestimation
f the benefits of fencing. As a result, it was hard to be conclusive
bout how effective fencing could have been had the western and
outhern fences been built earlier or placed further from the epicentre.
ndeed, simulations with fence completion on day 30 (instead of day
0) provided a much more optimistic prospective for ASF elimination
t day 230 (Fig. S5), Although the increased probability of elimination
s largely due to extending the hunting period by 30 days, this does
ot explain the difference between trajectories at day 90 in Fig. S5
nd day 120 in Fig. 6 - thus an earlier intervention would have
reatly reduced the probability of a second wave. Finally, the large
osterior uncertainty in fence efficacy also reflects our choice of a non-
nformative prior. An alternative prior in which a fully functional fence
as more likely may have been more useful. However, ideally such a
rior would be based on real data and not just subjective beliefs, and
12

n the current context no such supplementary data were available. e
4.4.5. Monte-Carlo synthetic likelihoods
A unique feature of our WB model was the use of Monte-Carlo

simulation to approximate a likelihood, thereby permitting inference by
MCMC. Our approach represents a variation of the classic approach to
synthetic likelihood (Wood, 2010), which is also similar to approximate
Bayesian computation (ABC) (Beaumont et al., 2002), in as much that
inference is based on a set of summary statistics (of real and simulated
data) - in our case, local 10-day aggregates of each observation type
(active search, passive search, hunted). The key difference between
our synthetic likelihood and the classic approach lies in the choice
of distribution function — since we worked purely with aggregated
counts, the Poisson distribution provided a natural discrete alternative
to the multivariate-Gaussian classically used in synthetic likelihoods.
Since these aggregated counts were evaluates within every pixel, and
over various time intervals, they provided rich information for fit-
ting the model, and further summary statistics were not required.
The key advantage of using Monte Carlo to generate an approximate
likelihood, for our stochastic spatial model, was that we could use
NIMBLE’s adaptive Metropolis–Hastings block sampler for exploring the
posterior distribution (de Valpine and Paciorek, 2020). This algorithm
was capable of detecting and adapting to strong correlations between
model parameters — the strength of these correlations suggest that
standard ABC would have suffered from very high rejection rates,
unless an extremely generous acceptance threshold was adopted. Thus,
we suggest that our approach did provide a more complete integration
over the parameter space than could have been obtained via ABC.
Another alternative to this Monte-Carlo likelihood would have been
to use probability arguments from survival analysis, and expected
values of 𝐼 in the force of infection, in order to integrate analyti-
ally over uncertainty caused by event time censoring (Pleydell et al.,
018). However, whilst stochasticity within the Monte Carlo approach
oes add a degree of noise, it is easier, and arguably preferable, to
ase inference on the stochastic simulation of discrete events rather
han to develop a continuous approximation via relatively complex
robabilistic arguments.

.4.6. The role of culling wild boar
A consistent assumption throughout the ASF Challenge has been

hat culling WB will not lead to changes in WB movement patterns.
his might not be a serious simplification if a 100% effective fence
ntirely surrounds the affected area. However, in the ASF Challenge,
he fence was presented as probably not being 100% effective and its
ocation was a poor choice for preventing ASF spread to the west and
more importantly, given WB densities) south. A badly located fence,
oupled with augmented dispersal of panicked WB is a combination
f factors that could seriously diminishing the efficacy of control mea-
ures. Behavioural changes in response to culling can have important
pidemiological consequences. Perhaps the best known example is that
f badgers, culled in the UK during efforts to control bovine tuberculo-
is (bTB). The badgers increased their dispersal behaviour in response
o culling, resulting in increases in bTB prevalence in and around cull
reas (Donnelly et al., 2003; Pope et al., 2007; Woodroffe et al., 2006).
he nature of behavioural changes in WB in response to culling is less
ell documented, although it seems likely that landscape effects could

nfluence such changes. A recent review has highlighted numerous
actors associated with culling wild animals which can negate the
ffects of disease control efforts (Miguel et al., 2020). Clearly more
ork is required in this area, so that ASF models can move beyond

he simplest hypothesis of zero negative effects from culling WB. For
hese reasons, we urge that results from simple models are interpreted
ith caution and that control efforts are implemented with a margin of

rror.
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4.5. Concluding remarks

The fictive scenarios emulated within the ASF Challenge present
several similarities with recent real ASF incursions in European coun-
tries such as Belgium and the Czech Republic (Sauter-Louis et al.,
2021), or Italy (IZSAM, 2022). In such scenarios, the majority of WB
cases have remained clustered in one single infected area, after a point
source introduction of unknown (but most likely human-mediated)
origin. In both countries, the disease was successfully eradicated due to
fast actions combining a diversity of measures, including containment
with fences, active depopulation, zoning and passive surveillance (Jori
et al., 2021). Our modelling has highlighted the importance of rapid
and appropriate action in response to an outbreak, and has suggested
that a combination of measures, possibly including active depopulation,
may provide a successful strategy.
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