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Genomic Prediction: Progress and Perspectives for Rice
Improvement

Jérôme Bartholomé, Parthiban Thathapalli Prakash, and Joshua N. Cobb

Abstract

Genomic prediction can be a powerful tool to achieve greater rates of genetic gain for quantitative traits if
thoroughly integrated into a breeding strategy. In rice as in other crops, the interest in genomic prediction is
very strong with a number of studies addressing multiple aspects of its use, ranging from the more
conceptual to the more practical. In this chapter, we review the literature on rice (Oryza sativa) and
summarize important considerations for the integration of genomic prediction in breeding programs.
The irrigated breeding program at the International Rice Research Institute is used as a concrete example
on which we provide data and R scripts to reproduce the analysis but also to highlight practical challenges
regarding the use of predictions. The adage “To someone with a hammer, everything looks like a nail”
describes a common psychological pitfall that sometimes plagues the integration and application of new
technologies to a discipline. We have designed this chapter to help rice breeders avoid that pitfall and
appreciate the benefits and limitations of applying genomic prediction, as it is not always the best approach
nor the first step to increasing the rate of genetic gain in every context.
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1 Introduction

The objective of every plant breeding program is to provide
improved varieties that meet the needs of key stakeholders (value
chain participants from farmers up to consumers). A clear under-
standing of the biology and the genetics of the species combined
with a targeted product concept is a key element to achieve this
objective [1]. However, the genetic landscape that a breeder needs
to explore to identify superior products is very large and materially
exceeds the capacity of breeding programs [2]. Indeed, plant
breeding can be considered as a numbers game where breeding
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schemes are designed to increase the probability of finding geno-
types with desirable combinations of characteristics using a limited
amount of resources [3]. The breeding scheme is the conceptual
framework that captures all the activities that a breeder does during
a breeding cycle. A single breeding cycle can be summarized in four
major parts: creation, evaluation, selection, and recombination [4]
and is designed to create new variation, accurately assess the perfor-
mance of the breeding germplasm, and to recombine selected
individuals to form an improved cohort. Evaluation is a central
part of a breeding scheme which involves multiple phenotyping
steps designed to estimate the heritable genetic value (or breeding
value) of the selection candidates [5]. In the case of yield, usually a
set of genotypes preselected for highly heritable traits are evaluated
in multi-environment trials (MET) intended to represent the target
population of environments (TPE) in which the product is
expected to perform [6, 7]. These final steps of the evaluation
process require significant resources and span over multiple years
in a majority of plant breeding programs [3]. To overcome this
limitation and increase the efficiency of breeding programs, several
methodologies and tools have emerged over the last three decades
due in large part to improvements in the characterization of DNA
polymorphisms and computing power [8]. Among them, methods
that use molecular information to infer phenotypic performance
(such as marker-assisted selection [9, 10] and genomic selection
[11]) are important tools that allow modern breeding programs to
maximize the use of their limited resources. Contrary to classical
marker-assisted selection, genomic prediction accounts for quanti-
tative trait loci of both large and small effect, thus capturing a
higher proportion of the genetic variance of a trait [12, 13].

The concept of genomic selection was first proposed by
Meuwissen et al. [11] for animal breeding. In this simulation
study, the authors predicted the genetic value based on molecular
markers of juveniles without phenotypic records using the animals
of the two previous generations to estimate the marker effects.
They obtained high accuracies for the predicted breeding values
(genomic estimated breeding values—GEBV) and concluded that
this approach to increase the rate of genetic gain has potential when
coupled with techniques to reduce generation intervals. Genomic
selection commonly refers to the process where selection candi-
dates, which are only genotyped, are selected based on their GEBV
(genomic predictions). To achieve this, marker-phenotype relation-
ship is first modeled using a training set (a smaller representative set
of individuals that reflects as closely as possible the genetics of the
individuals intended for prediction) on which phenotypic and
genome-wide marker data are both generated [12, 14]. To evaluate
the performance of the models, most of the time, the correlation
between the predicted and observed values is calculated using a
validation population whose composition depends on the
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validation strategy [15]. This metric is usually referred to as accu-
racy or predictive ability depending on which observed values pre-
dictions are compared to: breeding values or phenotypic
performances, respectively.

The accelerated development of mid- and high-density geno-
typing technology during the 2010s led to the first report of the
practical use of genomic prediction in dairy cattle [16] followed by
important contributions by breeders working in agriculturally
important plant species [17, 18]. Indeed, genomic prediction is
now an intense field of research seeking to optimize its use and
integration into both plant and animal breeding programs globally.
Important advancements have been made regarding our under-
standing of the major factors affecting the accuracy of the GEBVs
including the effective population size of the breeding program, the
heritability and genetic architecture of the target traits, the size and
the composition of the training population, as well as the number,
distribution, and informativeness of the markers [19]. Genomic
prediction models and their implementation in software tools
have also received special attention in order to efficiently leverage
all information contained not only in genomic and phenotypic
datasets, but also in other sources of “omics” data [20]. While the
drivers of prediction accuracy are increasingly well understood, the
question of how genomic prediction best integrates into an existing
plant breeding strategy remains a challenge since breeding pro-
grams operate in a wide variety of contexts (target traits, species,
resources, scale, etc.).

Rice (Oryza sativa) is a model species for molecular biology
[21] and a staple food for a large part of humanity. Important gains
in productivity were obtained thanks to the breeding efforts during
and immediately following the green revolution [22, 23]. These
improvements were realized mostly through phenotypic selection
in large segregating pedigree nurseries [22, 24, 25]. The use of
molecular markers was also key for the introgression of major alleles
conferring resistance to biotic [26] or abiotic stress [27, 28]. The
success of this strategy depended heavily on the high heritability
and simple genetic architectures of the traits under selection (plant
height, maturity, disease resistance, grain type) and the very large
and well-characterized genetic diversity of O. sativa [29, 30] and
closely related species such as O. glaberrima (African rice),
O. rufipogon, or O. nivara [31, 32]. This may explain why the
interest for implementing genomic prediction in the global rice
breeding community has been delayed relative to animal breeding
or breeding traditionally cross-pollinated crops like corn. During
this time, it bears mentioning that some key advancements were
made through population improvement via a recurrent selection
strategy in Latin America [25, 33]. However, more recently, the
acceleration in genetic gain for yield in other species, the decreasing
costs of genotyping, and the growing importance of sustainability
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in rice production have contributed to an increased interest in
deploying genomic prediction in rice breeding.

In this chapter, we first give an overview of the research on
genomic prediction in rice with a focus on studies that make use of
the strategy in a breeding program. Then we highlight important
considerations for the integration of genomic prediction into a rice
breeding scheme. In this second part, aspects such as identifying
the entry points for genomic selection in a breeding scheme, the
effective design of training populations, strategies to reduce the
generation interval, and the importance of data management sys-
tems are presented. In the third part, we take the International Rice
Research Institute (IRRI) breeding program for irrigated systems
as an example for the integration of genomic prediction into a
product development program and provide the associated data
and R scripts to run and interpret the analysis (available in Data 1,
2, and 3). In the last part, we present interesting progress in
genomic prediction that can further help rice breeding programs
to increase their efficiency. Our objective for this chapter is to
provide rice breeders with a solid foundation for understanding
the advantages and limitations of using genomic prediction in their
breeding strategy to maximize the rate of genetic gain for relevant
traits. Due to the heavy presence of inbred rice in Asia, we chose to
focus the scope of this chapter to inbred Asian rice (O. sativa)
though the specificities of applying genomic prediction to hybrid
rice are addressed to a lesser extent. For another viewpoint on the
importance of genomic prediction for rice breeding, we refer the
reader to the book chapters from Spindel and Iwata [34] and
Ahmadi et al. [35].

2 Genomic Prediction Works in Rice

The literature on genomic prediction for crop species is very rich.
With over 50 studies published since 2014 (Table 1 [36, 38, 40–
91]), genomic prediction in rice is not an exception. We report on
most of the studies published in rice (either exclusively or in concert
with other species) in order to highlight the volume and diversity of
the work conducted to date and their relevance for improving
breeding strategies. To achieve the latter, we intentionally empha-
size studies focused on integration with breeding programs, which
tend to report the more practical challenges of the implementation.

2.1 General Overview The first studies reporting the use of genomic prediction on rice
were published in 2014 (Table 1). Despite the wealth of genomic
and marker resources available in rice, these studies came, surpris-
ingly, 5 years after the first studies on genomic prediction (using
real data) that were published in maize [92], wheat [93], or barley
[94]. The breadth of genomic resources available to rice and the
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depth of genetic diversity that has been characterized so far have led
to the discovery of many major QTL with reasonable effect sizes.
While a unique and valuable resource for the rice breeding com-
munity, the heavy focus on discovery, characterization, and intro-
gression of large-effect QTL from exotic germplasm may have
served to delay the transition toward genomic prediction
[95]. The type of populations evaluated in these early genomic
prediction studies in rice tends to reinforce that impression
(Fig. 1a). Indeed, among the first three studies published in
2014, two were based on the same diversity panel [37] and one
on hybrids derived from amapping population (an immortalized F2
[39]). Overall, diversity panels which were, in many cases, designed
for association studies [37] represented a large proportion of the
studies published so far (Fig. 1a). For most of these studies, the
objective was methodological: understanding the impacts of popu-
lation structure, integration of prior knowledge on trait genetic
architecture, training set optimization, model comparison or inte-
gration of crop models without direct implication in a breeding
program. Given the extent of ancestral subpopulation structure in
rice, the use of diversity panels to assess genomic prediction models
is likely to induce bias in the estimation of the predictive ability.
Indeed if the population structure is not taken into account, most
of the predictive ability can arise from the ability to predict between
subpopulations and not within subpopulations [36]. Apart from
studies based on diversity panels, 16 studies used breeding lines,
nine studies focused on hybrids, six used a mapping population,
four studies were based on synthetic populations, and three used
cultivars (Fig. 1a).

In addition to the wide variety of populations encountered in
these studies, the size of the population, the number of markers,
the number of phenotypes, or the number of environments used to
characterize the populations was highly variable (Fig. 1b). The
largest population size (2265) was achieved using publicly available
data from the 3000 rice genome project [87]. Given the limitations
and difficulties surrounding the collection of high-quality pheno-
type data, understandably most studies employed population sizes
around 300 (Table 1). In cases where large populations of 1000 or
2000 individuals were used, the phenotyping was done in a very
limited number of environments (usually 1 or 2). In fact, less than
half of the studies used more than three environments for pheno-
typic evaluations (Fig. 1b). Among the three studies having pheno-
typic information in 10 or more environments (year, season, or
location), two are based on germplasm from breeding programs
[51, 66] but the datasets were unbalanced (not all individuals
phenotyped in all environments or genotyped). The third study
from Jarquin et al. [88] used the information from 51 environments
in combination with days length to predict days to heading for
untested genotypes. Among the wide variety of traits considered,
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flowering time (or maturity), plant height, and grain yield were the
most common. The number of markers ranged from 162 [50] to
four million [89], with the majority of the studies using a few
thousand markers (Table 1). Genotyping by sequencing and fixed
SNP (single nucleotide polymorphism) arrays were the most com-
monly used technologies. In some cases, very high marker densities
were obtained through whole-genome re-sequencing at generally
low coverage (1� or 2�) followed by imputation [75, 87].

Statistical methods for genomic prediction have been a central
focus of many studies across all species where it has been applied.
Across the 54 rice studies, 33 different methods were evaluated
with the genomic best linear unbiased prediction (GBLUP)
method being the most used (Fig. 1c). Since this method was
proposed [96], its flexibility and robustness have enabled it to
quickly become a reference method for both animal and plant
breeding. Similar to the traditional pedigree BLUP [97], GBLUP
uses an additive relationship matrix that is based on markers instead
of pedigree information. Several extensions or variations of this
additive model have been proposed to account for dominance
and/or epistasis [38, 55] or to use other “omics” data (transcrip-
tome or metabolome) to estimate relatedness among individuals
[82, 91]. In addition to GBLUP, RKHS (reproducing kernel Hil-
bert space), frequentist and Bayesian LASSO (least absolute shrink-
age and selection operator), RR-BLUP (ridge regression BLUP),
RF (random forest), SVM (support vector machine), PLSR (partial
least squares regression), BayesB, and BayesC were the most used
methods in these studies on rice (Fig. 1c). Other methods from the
large family of machine learning approaches, such as gradient
boosting machine (GBM) or artificial neural network (ANN),
were also evaluated in the context of genomic prediction with
mixed results [70, 87].

The composition of the validation set, which can play an impor-
tant role in determining the accuracy of predictions, was highly
dependent on the validation strategy used in each study (Table 1).
Sallam et al. [15] defined three main types of validation methods:
cross-validation (subset validation), interset validation, and prog-
eny validation depending on the composition of the training and
validation sets. The cross-validation or subset validation (k-fold,
leave-one-out, random, or stratified sampling) was by far the
most used strategy among all of the studies that we have compiled
(Fig. 1d). This validation method is very convenient because you
just need to partition your data into training and validation sets to
be able to estimate accuracies without an “independent” dataset
(as is needed for interset or progeny validation). Due to its nature,
cross-validation tends to overestimate the accuracy of prediction
compared to more realistic validation scenarios [59, 98]. The situ-
ation becomes even more complex when multivariate models are
used [99]. Another approach close to cross-validation, the HAT
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method [57, 100], was used in four studies. This method, based on
the hat matrix of the random effects, uses the predicted residual
sum of squares to estimate accuracy of prediction and works in the
context of GBLUP, RKHS, and Bayesian models. This method is
considerably faster than cross-validation as no additional model
retraining is necessary [100]. The interset and the progeny valida-
tion methods were only used in three studies each (Fig. 1d). Con-
sidering the context of breeding programs where the integration of
genomic prediction is primarily targeted to reduce cycle time,
progeny validation represents a more meaningful assessment of
the performance of prediction models. Indeed, in the initial con-
cept of genomic selection, Meuwissen et al. [11] used progeny
validation: models were built with data from generations 1001
and 1002 and the accuracies were calculated using the predicted
values and the true breeding values from the generation 1003.
Moreover, the decay of linkage disequilibrium occurring between
markers and QTL due to the recombination in progeny generations
tends to decrease the accuracy of predictions [101], but makes
them more realistically interpretable in terms of applications to
practical breeding scenarios. For example, Ben Hassen et al. [59]
used progeny validation of inbred lines with a limited number of
individuals and found lower predictive ability compared to cross-
validation for the same traits.

2.2 Important

Findings and Current

Limitations for

Genomic Prediction in

Rice

2.2.1 Important Findings

Table 1 provides a short summary of the main objective of each
study in this review. The reader can thus be directed toward the
publications that are most relevant to his or her questions. Hereaf-
ter, we summarize important results focusing mainly on those most
related to the implementation in breeding programs.

1. Genomic prediction works in different contexts. The most impor-
tant results that arise from all studies is that the prediction of
the performances based on molecular markers works. Indeed,
the accuracy of GEBVs are relatively high even for traits like
grain yield. Many rice breeders are concerned by the efficiency
of genomic prediction but it is clearly not justified looking at
the literature on rice and more specifically studies using breed-
ing germplasm [43, 47, 55, 56, 59, 64].

2. Prediction accuracy can be increased. The breeders can play on
different factors to increase the accuracy of predictions or to
reduce the cost of implementation. Indeed, by optimizing the
training set composition and evaluation, by targeting informa-
tive molecular markers (polymorphic with a medium to high
minor allele frequency and spread along the genome), or by
integrating additional data (historical, environmental covari-
ates, crop model, . . .) better accuracies can be obtained. The
size and the composition of the training set defines the strength
of genetic relationship with the selection candidates which is
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one of the most important factors driving the accuracy. There-
fore, algorithms have been developed to select the training set
[41, 44, 48, 75, 80]. Concerning molecular markers, different
studies show that marker density can, to some extent, be
reduced without affecting the prediction accuracy. For exam-
ple, Arbelaez et al. [69] designed a cost-effective SNP assay
with only 1000 markers selected to be informative in elite
breeding material and obtained good accuracies.

3. Models can predict offspring performance. The initial concept of
genomic selection was based on the prediction of breeding
values of offspring with the objective to decrease the duration
of breeding cycles [11]. The very few studies on rice that
performed progeny validation [58, 59, 91] show promising
results when parental information is used to predict progeny
performances. However, more remains to be done in that
direction since most of the increase in genetic gain related to
the integration of genomic prediction is related to the reduc-
tion of breeding cycle time.

4. Genomic prediction is efficient in the context of hybrids: Much of
the lessons learned regarding marker densities, training set
identification, and model selection apply equally to hybrid
and inbred breeding schemes. Hybrid programs do present
unique challenges where predictions could be applied that are
not applicable to other breeding schemes. Of note is the pre-
diction of how males and females might be combined to create
superior hybrid combinations. In hybrid rice there is some
evidence that hybrid performance is driven by a convergence
of additive genetics from the male and female lines. Incorpor-
ating nonadditive parameters into the prediction does not seem
to help [38]. While this seems reasonable, other crops have
shown a significant nonadditive component to hybrid perfor-
mance (e.g., in corn [102, 103]). This particular conclusion
was likely biased by a very narrow genetic base and very low
accuracy for interset prediction of grain yield. There is also
evidence that multi-trait models can improve prediction accu-
racy for low heritability traits in hybrid rice [56, 83]. This is of
particular importance in the hybrid context as many traits
(especially cost of goods traits like hybrid seed production
yield) are particularly difficult to measure early in a breeding
program. A particularly unique set of correlated phenotypes
associated with hybrid programs is the opportunity to measure
per se performance of the inbred parents as well as hybrid
performance of the same material. Using parental phenotype
data combined with data on hybrid performance can improve
the prediction accuracy of hybrid rice yield by about 13% [91].

5. Modeling GxE increases prediction accuracy. Whether it is
through multi-environment genomic prediction models
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[58, 64] or by combining crop growth models and genomic
prediction models [50, 88], several studies demonstrated the
better accuracy of these approaches to predict environment-
specific performances. A key advantage of genomic selection
over traditional phenotypic selection in the case of multi-
environment models is the ability of models to assess marker
effects and marker effects by environment interactions and
ultimately increase the prediction accuracy [18, 104]. With
the integration of crop growth models in the genomic predic-
tion framework, the response of the genotype to the environ-
mental variations is modeled which allows the prediction of the
performance of selection candidates for untested environments
[105]. This approach is very promising for rice improvement
because it takes better account of GxE. However, the routine
use of crop growth models in breeding programs requires a
substantial investment in terms of data acquisition and analysis
and thus will be interesting for specific rice systems prone to
environmental constraints.

6. Differences between genomic prediction models are marginal.
Most of the studies comparing statistical models for genomic
prediction found small or no differences between them in
terms of accuracy [20]. In general, none of the models is
consistently better for all the traits or validation methods.
GBLUP is usually used as a reference due to its simplicity,
versatility to include different types of information, and robust-
ness to different trait architecture. Bayesian models (such as
B-LASSO, BayesB or BayesC) or RKHS can perform better
when dealing with traits influenced by large-effect genes (such
as flowering time or blast resistance). The few studies that used
machine learning methods (such as ANN or SVM) reported
disappointing results with very variable performances even with
an optimization of the parameters [70, 87]. Further work in
this direction is probably needed to conclude on the interest of
these methods for routine genomic prediction.

2.2.2 Current Limitations In spite of the number and diversity of studies, there are still some
points that are not well covered in the literature on rice. Depending
on the context, they can be limiting for harnessing the full potential
of genomic selection.

1. Accuracy alone is not enough to assess the effectiveness of genomic
prediction. Almost all the studies based their evaluation of
genomic selection on the accuracy of the predictions. Although
accuracy is an important factor to assess prediction model
efficiency, it does not inform on which individuals are selected
in fine by the different methods. The realized selection differ-
ential would probably be a better metric to compare different
genomic prediction approaches as breeders jointly consider
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several traits to advance material, which makes the evaluation
on traits separately less relevant. Finally, as rightly pointed out
by Bassi et al. [106], the phenotype is also only a predictor of
the true breeding value and has an error variance just like
a GEBV.

2. Within-family prediction accuracy is not sufficiently taken into
account. No study on rice has looked in detail into within-
family prediction accuracy using multiple biparental families
or parental information as the training set. Indeed, except for
the specific case of studies using one biparental family, reports
on within-family accuracy are scarce. This is manifest as well in
the hybrid literature where most papers focus on predicting
specific hybrid combinations and do not attempt to estimate
general combining ability among a cohort of new males or
females. This is however a key point when it comes to the
implementation of genomic prediction since greater within-
family accuracy can help to increase the rate of genetic gain
while balancing the level of inbreeding in the population.
Differences between crosses are better predicted as both within
and between family variations are captured by the model
[107, 108].

3. Grain quality or disease resistance traits were neglected. No
study related to the nutritional value of the polished grain
(zinc content, glycemic index, . . .) was published to date.
Only one study assessed the potential of genomic prediction
to help decrease the level of arsenic in the grain using breeding
[74]. Regarding disease resistance, the only study from Huang
et al. [77] reported accuracies ranging from 0.15 to 0.72 for
the prediction of resistance to several isolates of Magnaporthe
oryzae (blast). For disease resistance, rice geneticists focus
mainly on major genes, but targeting quantitative variation is
also important to address concerns like bypassing resistances.
For grain nutritional value, negative correlations between traits
can be better addressed using multi-trait genomic prediction.

4. Implementation in breeding programs is secondary. While it is
clear that the underlying goal of all studies is to improve our
knowledge of genomic prediction to optimize breeding strate-
gies, few of them place their findings in a concrete case of a
breeding program. For example, Spindel et al. [47] proposed
to integrate genomic prediction into an irrigated rice breeding
pipeline and discussed the advantages and constraints of such a
scheme. However, for most of the studies working on breeding
germplasm (see Table 1) this is not the case. The results there-
fore remain more theoretical than practical, as such analyses are
important to justify investments in genomic selection and to
understand potential barriers to its implementation.
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3 Integration of Genomic Prediction into Rice Breeding Programs: Key Aspects

Entry points for genomic selection in a rice breeding program will
vary depending on the objectives of the program, the breeding
strategy in place, the genetic and/or environmental constraints
the breeder has to account for, and the cost of genotyping and of
phenotyping the traits under selection. However, there are key
prerequisites to assess before integrating a breeding program’s
readiness to implement genomic prediction. In the absence of
essential components such as (a) clear objectives, (b) meticulous
data management, (c) effective operations, (d) effective phenotyp-
ing and (e) selection based on BLUP, the application of genomic
predictions is extremely limited [4]. Executing genomic prediction
using breeding data or specially designed training sets is useful for
establishing baseline capacity to do prediction, but integrating the
technology into an existing breeding program can be a challenge.
Breeding programs represent multi-year pipelines that manage
overlapping cohorts of germplasm, so changing the strategy often
is done stepwise so as not to disrupt the product development
process. The purpose of this section is to provide guidelines regard-
ing important elements to consider before implementing a geno-
mic selection strategy in a rice breeding program.

3.1 Map the

Breeding Strategy

The main value of genomic prediction lies in its use in decision
making to efficiently select breeding material at one or several
stages of the breeding scheme. Therefore, a clear understanding
of the breeding strategy and its different components is the basis for
an efficient integration of genomic prediction. Oftentimes, the
breeding scheme resides in the head of the breeder, and translating
this knowledge into a structured framework is a mandatory step to
carefully design alternative schemes [109]. Genomic prediction is a
long-term investment for the breeding program and the direct
transition to an optimal genomic selection strategy is not always
possible. Therefore, a transition plan needs to be elaborated by the
breeding team and experts in order to define clear steps to achieve
the objectives. This aspect is usually not reported in the literature
on genomic prediction as it comes down to more technical infor-
mation regarding the breeding scheme. In rice, only one study
placed the results in the framework of a breeding program and
detailed the use of genomic prediction and its potential impacts
[47]. However, as shown in wheat, this step of breeding scheme
characterization is essential for the integration or the optimization
of genomic selection based on the knowledge acquired during the
last years [106, 110].

Optimal genomic selection schemes are usually not simple
evolutions of the current breeding scheme. The majority of con-
ventional breeding schemes in rice, and self-pollinated crops in
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general, rely on pedigree breeding [25] but genomic selection is
best suited to recurrent selection schemes based on elite by elite
crosses to improve complex traits. Indeed, a well-structured breed-
ing program where the elite germplasm has been clearly identified
and with a small effective population size (Ne � 40) is more likely
to benefit from the use of genomic prediction due to higher linkage
disequilibrium between markers and QTL, low or absence of pop-
ulation structure, and higher relatedness among genotypes. In
addition, several major changes are needed to fully leverage geno-
mic predictions: reduce cycle time, build a training set, store/use
phenotypic and genotypic data, reallocate budget and staff
[106, 111]. Understanding the interconnections between these
changes and how they will impact the sequence of current opera-
tions allow to anticipate potential obstacles.

Key recommendations:

1. Define clearly the current breeding strategy and its objectives.

2. Plan the integration of genomic prediction as a long-term
investment with a clear roadmap.

3. Use recurrent selection in elite population to maximize the
potential of genomic prediction.

3.2 Reduce the Cycle

Time

An interesting aspect of genomic selection is that it has led to a
greater focus on the fundamentals of breeding in the plant breeding
community [112]. The concept of response to selection captured in
the Breeder’s equation is perhaps the best example
[4, 109]. Among the parameters of the equation, the generation
interval (or cycle time) is the easiest to understand and to play with.
As highlighted by Meuwissen et al. [11] in their seminal paper, the
use of genomic predictions can greatly increase the rate of genetic
gain by reducing cycle time: “It was concluded that selection on
genetic values predicted from markers could substantially increase
the rate of genetic gain in animals and plants, especially if combined
with reproductive techniques to shorten the generation interval.”
This conclusion was confirmed 15 years later by the first report of
the impact of genomic selection on the rate of genetic gain in dairy
cattle [113]. The authors found a dramatic reduction in the gener-
ation interval related to a sharp increase in the rate of genetic gain
from yield traits (50–100%). In plant breeding, methods to reduce
cycle time (independently from the use of genomic selection) have
been studied for several decades now [114, 115] . Rapid generation
advance (RGA) or double haploids are probably the most common
in crop species, even if more modern approaches have been pro-
posed lately [116, 117]. In rice, RGA has regained interest recently
as it is a cost-efficient way to quickly fix material (typically from F2
to F6 in 1 year) for its evaluation in replicated trials [118]. This can
be realized in greenhouses, screenhouses or in the field depending
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on the resources available. For breeders working on a classical
pedigree breeding scheme, the use of RGA could be a first step
toward the implementation of genomic selection [119]. For breed-
ing programs already implementing RGA or similar methods to
reduce cycle time, genomic selection can further help to shorten
the breeding cycle. However, this requires a genomic prediction
model that can efficiently predict the genetic value of the next
generation (progeny). Therefore, a training set based on material
from one or several previous cycles has to be constituted before
implementing this type of scheme. This is also the case for more
aggressive strategies based on recurrent selection that aim at recom-
bining non-fixed material (S0) selected based on predicted values
only. In that type of scheme, the population improvement part is
partially decoupled from the product development part, which
allows a 1-year or even shorter breeding cycle [120, 121]. For the
moment, only simulation studies have reported this type of scheme
since several technical challenges have to be solved before imple-
mentation. Indeed, a drastic reduction of breeding cycle time can
lead to overlapping activities between different cycles during the
transition period that may disrupt ongoing cycles or increase sub-
stantially the workload.

Key recommendations:

1. Use genomic prediction in conjunction with robust methods
to produce inbred lines (e.g., rapid generation advance) to
effectively reduce cycle time.

2. Take into account technical constraint associated with cycle
time reduction into the genomic prediction roadmap.

3.3 Design the

Training Set

Once the entry point of genomic prediction in the breeding scheme
has been defined, the design of the training set is the first step
toward the implementation of genomic selection. Three major
choices have to be made regarding the training set: its composition
and size, its phenotyping, and its genotyping. The breeder must
find a balance between these three aspects in order to optimize the
training set according to available resources. A simple way for most
breeding programs to get started is to begin genotyping every line
that enters the yield trial. From there, those datasets can be empiri-
cally optimized to increase prediction accuracy.

It is well known that the accuracy increases with the size of the
training set. Theoretical [122–124] and empirical studies [67, 125,
126] suggest that the training set size should be maximized when
dealing with complex traits. However, large training sets are not
always feasible mainly due to genotyping and phenotyping costs.
Several methods were developed to optimize the training set com-
position in order to achieve high accuracies while maintaining the
size to a manageable number [41, 44, 48, 71, 75, 80, 127–
129]. All of these methods use the additive genetic relationships
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(usually based on marker data) to optimally sample a set of repre-
sentative genotypes. A key aspect of the optimization of the training
set is the definition of the predicted set (selection candidates).
Indeed, close genetic relationships between the training set and
the selection candidates are key to maximize prediction accuracy
[130, 131]. Therefore, most of the optimization methods are
jointly considering the genotypes that will compose the training
and the predicted sets to either directly compute criteria based on
relatedness (the average of the relationship coefficients between the
training set and the predicted set [128, 132]) or to estimate criteria
based on mixed model theory (the prediction error variance, the
coefficient of determination, or the expected accuracy [41, 80,
127]). In the cases where the training and the predicted sets
come from the same population (e.g., selection candidates from
the same cohort) or the information on the predicted individuals is
not yet available (e.g., offspring), optimization methods have been
developed to minimize the genetic relationships between indivi-
duals of the training set [48, 75]. Depending on the availability of
data and the prediction objectives, the breeder can choose among
these optimization methods to shape the training set and update it
when selection candidates from a new cycle need to be predicted.

The optimization of the composition of the training set has to
be done in conjunction with the phenotyping strategy. In most
cases, the selection candidates that will be used to update the
prediction model are evaluated for key traits in MET to estimate
G� E. Since the total number of plots available for the evaluation is
almost fixed, the breeder needs to balance the population size with
the level of replication (within and across environments). Classi-
cally, the level of replication increases during the breeding cycle to
dedicate more resources to a smaller number of more promising
lines in the final stages. In the context of genomic selection where
the evaluation unit being the alleles instead of the individuals,
increasing the size of the training set while decreasing the level of
replication tends to increase the accuracy of prediction
[133, 134]. The typical size of a training population (150–300)
to be phenotyped in a classical fully replicated experiment can
therefore be multiplied by 1.5–3 with sparse testing. However, it
is advisable to have a sufficient level of replication within and across
environments to: (1) maintain repeatability, especially for low heri-
tability traits, (2) assess the level of G � E, and (3) avoid model
convergence issues with too few replicates. The limitation of repli-
cation using sparse testing approaches can also be a good opportu-
nity when the seed availability is a constraint.

Finally, the technology used to genotype the training and pre-
dicted sets needs to be carefully considered in order to efficiently
capture distinct QTL alleles as well as general relatedness in the
population. Several factors come into play when choosing or devel-
oping the appropriate genotyping technology: cost, type of
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markers, density, informativeness in the target population, repro-
ducibility rate, etc. In the case of applying genomic prediction, a
good characterization of the genetic diversity managed by the
breeding program is essential to determine the marker density
needed to achieve an optimal prediction accuracy. It has been
shown using both deterministic [13, 135] and stochastic [136]
simulations that the marker density has to increase when the effec-
tive population size increases to maintain the accuracy [135–
137]. However most empirical studies in rice found that the accu-
racy reaches a plateau when the marker density goes beyond
2–5 markers per centiMorgan for breeding programs with an effec-
tive population size lower than 50.

Key recommendations:

1. Maximize the relatedness between the training and the pre-
dicted sets where possible.

2. Use sparse testing for phenotyping in order to balance the size
of the training set and the level of available resources.

3. Avoid using a training set from one breeding pipeline in order
to predict the candidates from another breeding pipeline.

3.4 Generate and

Integrate Good Quality

Data

As highlighted before, data acquisition and management are essen-
tial components of a breeding program. All advancement decisions
are made based on recorded data from multiple sources (field,
laboratory, service provider, etc.). Careful data management from
the seed to the phenotype and/or to the genotype has to be in place
to ensure accuracy. The use of digital data collection tools is a key
way to reduce as much as possible errors that can be perpetuated
during the data collection process. Concerningly, it has been
demonstrated with simulated data that even a small percentage of
severe errors (0.1% or 1%) in phenotypic records can severely reduce
the response to selection [138]. Similar conclusions were also
found when errors are present in the pedigree records
[139]. Besides accurate data, robust and appropriately designed
analysis pipelines are needed to curate the data and turn it into
interpretable intelligence. Genomic prediction adds an additional
layer of complexity compared to traditional marker-assisted selec-
tion in that it can require the integration of different types of data
(phenotypes, genotypes, pedigree, and/or weather data) collected
over several years to be useful. Consistency of data type and format
and the stability of data structures over time are key aspects to
leveraging the full power of historical breeding data to train and
continuously update genomic prediction models [140].

To help the breeders with data management, software solutions
such as the Breeding Management System (https://bmspro.io),
Breeding4Results (B4R) (https://riceinfo.atlassian.net/wiki/
spaces/ABOUT/pages/326172737/Breeding4Results+B4R),
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Breedbase (https://breedbase.org), or GOBii Genomic Data Man-
agement (https://gobiiproject.atlassian.net/wiki/spaces/GD/
overview) are available and used in different public organizations.
Despite the significant efforts to develop analysis pipelines (like the
RiceGalaxy, https://galaxy.irri.org, [141]) and the Breeding API
project (https://brapi.org) designed to enable interoperability
among plant breeding databases, no efficient end to end solution
is publicly available to perform genomic prediction in the context of
an applied breeding program. Indeed, several limitations are pres-
ent among available software for implementing genomic predic-
tion, including a lack of direct linkages between genotypic and
phenotypic data, limited multi-environment or multi-trait analyti-
cal capability, no possibility to integrate dominance or epistasis
effects into a prediction model, and no meaningful integration of
weather data into an analytical pipeline. The majority of public
breeding programs therefore extract the phenotypic and genotypic
data from their respective data management software and use ad
hoc analysis pipelines to run genomic prediction models. Hope-
fully, projects such as the Breeding API or the Enterprise Breeding
System (https://ebs.excellenceinbreeding.org) will offer these pos-
sibilities in the near future within a coherent framework designed to
enable applied breeding programs.

Key recommendations:

1. Use digital data collection systems where possible.

2. Work with data management systems and efficient analysis
routines for genomic prediction (GBLUP, RR-BLUP).

3. Use consistent genotypic and phenotypic data structures over
years to facilitate data integration.

3.5 Take into

Account the Costs

The integration of genomic selection in a breeding program is a
long-term investment that must translate into a better rate of
genetic gain to be worth implementing. Even if the advantages of
using genomic selection are clear, the optimal breeding scheme
relative to genetic, operational, and cost constraints is not easy to
identify. After setting a vision for what’s optimal, the need to
convert to this new strategy in a budget friendly way is probably
the most important limitation for the strengthening of modern
breeding programs. Nevertheless, there are several levers that can
be used to liberate resources in a program aiming to fully deploy
genomic selection.

The first levers are related to phenotyping. Thanks to genomic
prediction, some phenotyping steps can be reduced or even elimi-
nated saving the related costs de facto. Indeed, this is one of the
main advantages of genomic prediction which, with the right data
structures in place, allows for both a reduction of cycle time and
phenotyping costs [111]. The costs of phenotyping and the
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potential to replace a phenotyping activity with a prediction should
be carefully evaluated when planning the integration of genomic
prediction as it may sometimes require a modification of the breed-
ing scheme. One key example of this is the cost savings incurred
when transitioning from traditional pedigree breeding program
where the selection that occurs during the fixation steps (F2–F5)
can be delayed until after inbred lines have been extracted by
substituting a field-based pedigree nursery with a much cheaper
and faster SSD-based RGA method. The cost savings made at this
level can easily cover the cost of genotyping since advancing mate-
rial through RGA is much less expensive (around 1 US dollar per
F5/F6 lines) [119]. Organizations must however look to multi-
year budgeting strategies to accommodate the fixed costs that may
be incurred if existing greenhouse facilities cannot be leveraged for
this activity. Initial capital investments can often be paid for by
reduced operational costs over several years. Furthermore, organi-
zations must factor in the additional funding that could be gener-
ated due to the increase in genetic gain that will accompany a
shortening of the breeding cycle and an improvement in selection
accuracy.

Another direct way to recover costs is by using genomic predic-
tion to reduce the volume of an expensive phenotyping exercise
[75, 142]. This can be done either by selectively phenotyping a
carefully chosen subset of a trial for expensive traits like grain
biochemistry or other post-harvest traits and using the cost savings
to pay for DNA fingerprinting. Additionally, developing an index of
high-throughput correlated traits that may be less expensive to
measure or offer higher throughput compared to the target trait
can decrease the cost of phenotyping and offer similar accuracy. In
that context, multi-trait genomic prediction offers an ideal frame-
work to integrate correlated traits to maximize prediction
accuracy [143].

The second levers are related to genotyping. In a crop breeding
program, the choice of the genotyping technology to characterize
the breeding germplasm (training and prediction sets) is mostly
driven by the cost of genotyping per sample (and not really well
captured by the cost per data point) [144]. Indeed, the cost per
sample with available tools (genotyping-by-sequencing or fixed
SNP arrays) is often too high to be used routinely in a public
breeding program. In small to medium size breeding programs,
the cost per sample has to be around 10 US dollars or less in order
to assess a sufficient number of individuals. In that price bracket,
the number of loci that can be currently targeted is around
1000–5000 SNPs. One option to keep costs down in the long
term is to design a custom genotyping assay with SNPs selected
to be specifically informative in the target breeding population.
This would be a cheaper option than GBS or public fixed arrays
and allow for higher density of information content in the genotype
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dataset. A custom SNP panel has the additional benefit of poten-
tially surveying specific trait markers of relevance to a breeding
program in addition to the genome-wide markers included in the
set, thus allowing for more extensive QTL profiling of lines for
known alleles that are not necessarily prioritized for MAS. In fact,
depending on the capability of the genotyping service provider, it is
not unreasonable to save sampling and DNA extraction costs by
combiningMAS and fingerprinting such that the cohort is screened
with a few markers intended for MAS, then to have the DNA from
selected lines re-arrayed into a new plate for genome-wide
fingerprinting.

It is also possible to achieve low genotyping cost by using
low-coverage genotyping-by-sequencing [145]. Given the limita-
tion of genotyping-by-sequencing when the sequencing depth is
lowered (high rate of missing data, high error rate for heterozygous
loci), this approach won’t capture heterozygous loci efficiently and
must be used for genotyping fixed lines, coupled with an efficient
imputation framework based on high-quality sequence data of
ancestral lines in the pedigree. This therefore requires expertise in
bioinformatics and access to high-performance computing
resources.

Key recommendations:

1. Consider reducing the number of phenotyping steps, only
phenotyping a subset of a trial, or using cheaper or higher
throughput correlated traits.

2. Design a genotyping platform with a set of markers selected
specifically for the germplasm managed in the breeding pro-
gram and deploy it at a service provider.

4 An Example on IRRI Breeding Program for Irrigated Systems

Here, we give a practical example of the integration and use of
genomic predictions in an active rice breeding program. The
recently redesigned breeding program for irrigated systems at
IRRI offers an ideal context to understand the key elements of an
applied breeding program using genomic predictions
[146, 147]. Indeed, with its global mandate of Southeast Asia,
South Asia, and Eastern Africa as the main areas of intervention,
it represents the direct derivation of the early breeding efforts that
resulted in the Green Revolution in Asia. As such, it is the best
representation possible of an effort to produce materials that com-
bine high yield potential and adaptation to diverse environmental
conditions.
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4.1 The Transition

from Pedigree

Breeding to Recurrent

Genomic Selection

The applications of genomic selection to the IRRI breeding pro-
gram came in two broad categories: within cohort predictions (full
and half sibs predicting other full and half sibs) to optimize our
testing strategy and across cohort predictions (grandmothers and
mothers predicting daughters and granddaughters) to accelerate
our breeding cycles, both of which required changes to the breed-
ing strategy. First and foremost, both applications required the
cost-effective deployment of a genotyping technology that allowed
for the routine fingerprinting of the breeding material. This marker
set (known as the 1k-RiCA amplicon panel [69]) had recently been
developed and populated with markers that were specifically infor-
mative in our germplasm. Publicly available fixed array genotyping
technology would not have served this purpose well as many of the
markers on these arrays are chosen to differentiate germplasm
globally [148] and were often very expensive with relatively few
(or worse, biased) polymorphisms.

With the marker panel in place and deployed at a service pro-
vider, in the immediate term, the most useful application of geno-
mic selection was to allow for selections to be made based on
performance in the target environments rather than depending on
a correlated response to selection with Philippine environments
(where IRRI’s headquarters are located). The program as it is
currently resourced generates a stage 1 yield trial of approximately
2000 new lines each year. As all of IRRI’s yield trials are conducted
by national agricultural research partners, the ability to test 2000
lines in multilocation yield trials in Africa, South Asia, and South-
east Asia was extremely limited. Up to this point, the early genera-
tion breeding material was selected based on performance in the
Philippines and a small number of advanced lines were sent to the
regional locations for testing and evaluation (Fig. 2). Genomic
selection using full and half sibs was employed to enable direct
selection based on the target environment and avoid needing to
rely on indirect selection. By selecting an optimized subset of the
cohort and sending it to be tested in the region of interest, pheno-
type data from the specific region of interest could be used to
predict the performance of the remaining cohort in that region.
In this way, the entire cohort is tested somewhere, but no individual
is tested everywhere, and thus an advancement of superior lines can
be sent to partners that is tailored to their unique conditions. To do
this, however, required that funds be identified to fingerprint the
full cohort of about 2000 new lines every year. In order to make
this form of genomic selection cost neutral, it was noted that the
testing strategy in the Philippines was testing lines for 3 years
(Fig. 2, former scheme). By eliminating the middle testing phase
and selecting a region-specific set of lines for advance testing,
sufficient funds were recovered to cover the cost of fingerprinting.
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The genomic prediction application with more long-term value
to the program was to enable across cohort predictions so that
superior lines in each region could be recycled back into the breed-
ing pipeline prior to regional testing, and thus accelerating the
breeding cycle (Fig. 2, future scheme). This kind of prediction
however requires a more robust, multi-year dataset consisting of
regional phenotype data on ancestral lines, as phenotype data from
full and half sibs of the emergent candidates would be unavailable at
the time the prediction needs to be made. With the first application
of genomic prediction in place, the program is now well positioned
to begin generating multi-year datasets with region-specific
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phenotypic observations needed to predict new parents. However,
to make this kind of prediction possible, a more directed manipula-
tion of the crossing strategy needed to be implemented. The most
important decision a breeder makes is selecting and crossing par-
ents on the basis of breeding values for relevant traits. As this metric
was not routinely calculated at IRRI, our first step was to gather our
historical data together into a single model and generate the best
estimates possible for breeding values and reliabilities for yield,
maturity, and plant height. Breeding values for other important
traits such as grain quality, disease resistance, and other agronomic
traits were not collected routinely enough or at enough locations to
provide meaningful estimates of breeding value. This process was
substantially accelerated due to the efforts made to migrate data
into the B4R data management system. As DNA fingerprint data
was not available on the vast majority of our historical lines, pedi-
gree data stored in the genealogy management system was used to
estimate relatedness coefficients. This multi-year evaluation of our
historical data permitted the identification of a unique core set of
lines with high and reliable breeding values for yield, which would
form the basis of further breeding and germplasm characterization
efforts. Once identified, this set of high breeding value lines were
fingerprinted and that data was then used to estimate the effective
population size and used to estimate the frequencies of major genes
for other traits (such as amylose content or resistance to blast).
These metrics would be used to guide selection strategies among
the progeny and evaluate the risk/benefit of introducing new
genetics into the program.

This step, while not specifically motivated by genomic selec-
tion, was critically important because along with the development
and characterization of the core germplasm came a commitment
from the program to primarily cross within this new gene pool to
drive genetic gain. This relatedness across generations (and aversion
to frequent introduction of new germplasm into the program)
creates genetic continuity over multigenerational cohorts that
enables the ability to use phenotype data from ancestors to predict
the performance of newly created descendants. Corresponding
with that relatedness was the development of business rules for
crossing and population development. These rules ensure that
new crosses generated by the breeding program maximized genetic
variation in the next generation to the extent possible. They also
allowed for sufficient numbers of full and half-siblings in each
cohort to be generated, from which predictive power could be
obtained. Among these, business rules included a commitment to
cross with lines from the most recent cohorts whenever possible
(rather than older released lines), preventing the use of any one line
in more than 10% of the crosses to avoid bottleneck the variability,
the complete avoidance of sub-lining so that each F2 plant gener-
ates a unique F6 line, and ensuring that sufficient new fixed lines
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from each cross were entered into the stage 1 yield trial such that
there was a reasonable probability of identifying a new line that was
at least one standard deviation better than the average yield of the
cross.

With these two applications of genomic prediction underway,
the program went from a long-cycle pedigree nursery to a rapid-
cycle genomics enabled breeding strategy. This strategy involved
making crosses and setting population size targets according to
predefined business rules, generating new lines through RGA
approaches, employing MAS after line fixation, and using bulk
harvests of the selected head rows to create seed for shipping to
regional locations for testing. Predictions of the entire cohort
across all regions would ensure that every line had either an obser-
vation or a prediction in every region, from which a core set of
superior region-specific lines were identified and shipped to part-
ners for stage 2 yield trial evaluation and testing. As data accumu-
lated in the regions on cohorts of lines, and as the progeny and
grand progeny of the original core set of lines begin to fill the
pipeline, the capacity for predicting regional performance across
cohorts will grow until sufficient data becomes available to allow for
the identification of new parents prior to stage 1 yield testing.

4.2 Description of

the Breeding Schemes

and Integrating

Genomic Prediction

The mapping of the breeding scheme is a key component for the
optimal use of breeding program resources and to understand
where the entry points for genomic selection could be placed.
The current breeding strategy summarized in Fig. 2 was initiated
in 2017 at IRRI in order to reduce cycle time and optimize multi-
environment evaluations thanks to the introduction of genomic
prediction. In this strategy, most of the activities take place at
IRRI headquarters in the Philippines. In the first year, the crosses
(80–100) are made and the F1 plants are validated using dedicated
SNP markers. In the second year the segregating families go
through SSD from F2 to F6 via RGA. At that stage, 7500 to
10,000 lines are advanced: this corresponds to 200–400 lines per
cross. Population sizes for each cross are determined based on the
anticipated segregation of major genes. In the third year, the lines
are evaluated in the field in panicle rows for seed increase and for
the evaluation of uniformity, plant architecture, and maturity. At
the same time, the lines are genotyped for marker-assisted selection
for major loci prioritized for each breeding pipeline. These include
the waxy gene for amylose content and a number of disease resis-
tance genes for major pests and disease (blast, bacterial leaf blight,
...) [10]. The second season of the third year is dedicated to the
preparation of the seeds to be shipped in the regions. In the fourth
year, the lines advanced based on MAS and head row selection
(1500–2000) are genotyped using a low-density platform with
less than 1000 SNP markers [69]. The same lines are also evaluated
in the first stage yield trial at IRRI headquarters in the Philippines.
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In parallel, a subset of the cohort (250–300 lines) is sent to the
regional partners in South Asia and Eastern Africa for multi-
environment evaluation of key agronomic traits (plant height,
time to flowering, grain yield). This subset (training set) is used
to build the genomic prediction model that is later used to select an
advanced class of superior lines among the entire cohort. Since no
historical data were available for building reliable genomic predic-
tion models, the integration of genomic prediction in this scheme
relies on the use of half sibs or full sib-sibs to maximize the accuracy
with highly related training and predicted sets [142, 149]. The
genomic prediction models are used to select parental lines for
the following cycle and to select promising lines (30–40) for the
second stage yield trial that are conducted in the fifth year of the
breeding scheme. The best performing lines at the end of this stage
can then go through advance testing in the national variety release
system or can be used by partners in the regions in their breeding
program to enrich their gene pools.

In this strategy, the breeding cycle spans over 5 years with the
recycling of advanced lines as parents occurring during the fourth
year (Fig. 2). Compared to previous breeding schemes that were in
place at IRRI, the cycle time is shortened by 2 years [147]. Reduc-
tion of cycle time is a key factor to increase the rate of genetic gain
[109]. In this scheme, one of the major tools for cycle reduction is
RGA. This approach, known for a long time [150, 151], was
optimized in 2013 and implemented at large scale at IRRI in
2014 [118]. Currently, genomic prediction is not used to decrease
cycle time and is mainly used to increase the intensity and accuracy
of selection in regional environments, especially for yield. The main
reason for this is the lack of historical data in the breeding program
suitable for genomic prediction. Indeed, very few breeding lines
have been consistently genotyped and phenotyped to build a reli-
able database. Therefore, the current phase is a transition phase
where the data currently generated feeds a database that will be
used to predict the performance of future progeny (across cohort
predictions). This is highlighted in Fig. 2 as the future scheme. This
ability to directly predict the performance of selection candidates
before evaluating them in the field will enable us to decrease the
cycle time by 2 additional years resulting in a 2-year breeding cycle.
However, this comes with operational challenges such as ensuring
four generations per year in a stable manner during RGA, produc-
tion of enough seed at the end of the RGA to enable multi-
environment trials, and navigating the import/export process
quickly enough to ensure the seed arrives to the partners in time
for planting in the main season.
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4.3 A Practical

Example of the

Analytical Pipeline

In this section, we present the analysis pipeline that we currently use
at IRRI to perform genomic selection. This corresponds to the
activities mapped to the fourth year of the current breeding strategy
(first stage yield trial, Fig. 2). The analysis pipeline is divided into
three main steps (Fig. 3):

1. The selection of the training set. This step is based on SNP
markers specifically chosen to be informative in the elite germ-
plasm used in the breeding program [69] and the optimization
method of Akdemir et al. [41] that minimizes the prediction
error variance (PEV) in the predicted set.

2. The single trial analysis. In this step, phenotypic data (plant
height, days to flowering, and grain yield) are measured on the
training set in several regional locations, which are analyzed
separately to assess the quality of the data at each location and
estimate spatial adjustments to genotypic values with a mixed
model, taking the experimental design into consideration.

3. The genomic prediction analysis. In this last step, a GBLUP
model trained with the genotypic and phenotypic data from
the training set is used to predict genomic estimated breeding
values (GEBVs) for all the untested lines.

To illustrate the analysis pipeline, real data from the IRRI
breeding program for irrigated systems is used as an example. The
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Fig. 3 The data analysis flowchart represents the routine steps that are performed for every breeding cycle at
IRRI’s breeding program. The whole cohort (first stage yield trial) is first genotyped with a SNP panel and the
data is used to select a training population (subset of the whole cohort). The training population is then
evaluated in multi-environment trials (MET). The single trials are analyzed with a mixed model that takes into
account the experimental design. The single trial BLUPs combined with the marker information of the whole
cohort are then used to compute the genomic estimated breeding values (GEBV) of the lines
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analyses were conducted within the R environment and utilized the
R packages asreml (under license) or sommer (freely available) for
mixed model analyses and functions developed specifically for the
analysis pipeline and from the literature. We have opted to give the
user the possibility to choose between asreml and sommer according
to his preferences. All the R scripts and the data are provided in
the supplementary material (Data 1, 2, and 3).

4.3.1 Selection of the

Training Set

In the current breeding scheme the genomic prediction is used for
within-cohort predictions. In order to identify the best subset
(training set) to be phenotyped in regional MET, we use an opti-
mization method based on mixed model theory that minimizes the
prediction error variance [41]. This method available in the R
package STPGA (for Selection of Training Populations by Genetic
Algorithm) requires the genomic relationship matrix (G matrix) as
an input. In the example, the entire cohort of 1722 lines is geno-
typed with 1079 SNP markers. We use the rrBLUP package to
compute the G matrix based on the genotypic matrix (geno_data)
containing marker information coded as [�1, 0, 1]. The Gmatrix is
then used as a parameter for the OptiTS function along with the
desired size of the training set (sTS ¼ 300) and the number of
replicates (rep ¼ 5). The number of replicates allows the selection
of the individuals most represented in the different runs to be
included in the training set in order to avoid suboptimal solutions
from the genetic algorithm [41]. To evaluate the representativeness
of the training set compared to the entire cohort, the individuals are
plotted using the two first principal components from the G matrix
(Fig. 4).

4.3.2 Single Trial

Analysis

Once the training set is identified, it is sent to regional partners to
be evaluated in MET. For this case study, actual trial data from five
different locations in Bangladesh were used. These trials were con-
ducted in the 2020 dry season (Jan–May). Each trial comprises
362 breeding lines of which 299 are training set lines, and the
rest are advanced lines from the previous cohort and check varieties.
All the trials used a partially replicated design with 20% of lines
replicated. Three traits are used in this example: plant height (cm),
days to flowering, and grain yield (t/ha). The trial data is uploaded
into the B4R database, which has been adopted by IRRI for man-
aging all breeding trial data. The exported data from the B4R
database for each location is used to perform individual single
trial analyses (pheno_data object). The objective of this step is to
remove potential error in the dataset and to adjust from spatial
variation using the experimental design. The following mixed
model (asreml or sommer) is used to obtain the BLUP and dereg-
ressed BLUP for each line:
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model <- asreml( fixed = trait ~ 1 ,

random = ~ DESIGN_X + DESIGN_Y + GID,

na.action = na.method(x = "include"),

data = dataset)

model <- sommer::mmer(fixed = trait ~ 1,

random = ~ DESIGN_X + DESIGN_Y + GID,

rcov = ~ units,

data = dataset,

verbose = FALSE)

The variable DESIGN_X and DESIGN_Y represent the coor-
dinates of the plots within the field. The variable GID represents
the ID of the genotypes. The BLUP and deregressed BLUP values
are then calculated. The single trial analysis is embedded in a
function called single_trial_asreml or single_trial_sommer that
takes the formatted phenotypic raw data as an input and returns a
data frame with several variables including location, trait, genotype
ID, BLUP, deregressed BLUP, and repeatability (H2). The func-
tion is then used for all locations and traits to run the model and
retrieve the BLUPs (Fig. 5a).
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4.3.3 Genomic

Predictions

The deregressed BLUP value of the training set lines from the
single trial analysis and the genome-wide marker genotype data of
the entire cohort (training set and predicted set) consisting of 1722
lines are used in the genomic prediction model. The genome-wide
marker data is used to construct the additive relationship matrix
with the sommer package. The inverse of the additive relationmatrix
is then constructed in the case where asreml is used the GBLUP
analysis. The GEBV for each line is computed using the GBLUP
model where the regressed BLUP from each location is the
response variable, location as fixed effect, the breeding line (gid)
and inverse of the G matrix (invG) are used as the random effects.

model <- asreml(fixed = trait ~ 1 + location,

random = ~ vm(gid, invG),

data = dataset)

model <- sommer::mmer( fixed = trait ~ 1 + location,

random = ~ vs(gid, Gu = G),

rcov = ~ vs(units),

data = dataset,

verbose = FALSE)
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Similarly to the single location analysis, this model is embedded
in a function (gblup_asreml or gblup_sommer) with two parameters:
the first is the output from the single location analysis and the
second is the inverse of the G matrix. The output of the function
is a table containing the GEBVon the entire cohort (Fig. 5b). The
GEBV values are then combined with trait marker information and
used by the breeder for selecting lines for advanced testing and,
also, selecting parents for the next breeding cycle.

5 Other Applications of Genomic Prediction for Rice Improvement

In the previous parts of the chapter, we saw that genomic selection
requires both methodological research and a carefully designed
breeding program to be implemented efficiently. In this last part,
we present ongoing developments regarding the use of genomic
predictions for rice improvement. We think it is important for
breeders to be aware of upcoming approaches and tools to be
ready when they are mature enough to be integrated in breeding
programs when appropriate.

5.1 Characterization

of Genetic Diversity for

Pre-breeding

The characterization and the use of genetic diversity is important to
meet long-term breeding objectives and maintain the adaptive
potential of the breeding populations [152]. In the case of recur-
rent selection in elite germplasm, the addition of new material
threatens the genetic gain in the short term by diluting the impact
of high value alleles carefully accumulated through successive cycles
of selection. However, in the long term, the loss of genetic diversity
due to selection but also to negative or neutral linkage drag or
genetic drift can be compensated by careful introduction of genetic
variation into the elite pool [153]. The identification of the best
accessions for particular breeding objectives is laborious, as it
requires an accurate phenotyping of a large number of diverse
lines that often mask valuable haplotypes in low breeding value
backgrounds. In this context, genomic prediction can be used to
identify superior accessions in germplasm collections and be applied
to pre-breeding, which aims to identify high-potential genotypes
among a large number of accessions [154–156]. In rice, the avail-
ability of large genomic resources such as the 3000 rice genomes
[30] or the high-density rice array panel [157] offers a unique
opportunity to use genomic prediction to target valuable genotypes
relative to the breeding objectives.

5.2 Definition of

Heterotic Groups for

Hybrid Breeding

In hybrid breeding, heterotic groups are usually needed to opti-
mally use the heterosis within a species [158]. To this end, hybrid
selection causes the germplasm to become structured into geneti-
cally distinct groups that display superior hybrid performance when
individuals from complementary groups are crossed. Contrary to
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other major crops (e.g., corn [159]), heterotic groups in rice are
defined largely according to complementarity with a particular
sterility system and not according to gene pools defined by compli-
mentary heterotic potential. This is further complicated in rice due
to the strong population structure that characterizes rice diversity
being confused as heterotic differentiation of complementary gene
pools [29, 30]. Efforts to coerce ancestral subpopulations into
heterotic groups, as in the case of the two major types (indica and
japonica), have limitations due to sterility, contrasting adaptations,
and very different distributions of major grain quality parameters
[160]. Further research is required to identify natural patterns of
heterosis [161], and in some cases genomic prediction can assist
this exploration. Recently, the use of predictions to define heterotic
pools based on complementary yield performance has been pro-
posed in rice [162]. In this study based on real data, the authors
applied the approach developed by Zhao et al. [163] to detect
heterotic patterns for yield by combining the predicted perfor-
mances of all unique single-cross hybrids with a simulated anneal-
ing algorithm with different group sizes.

5.3 Integration of

High-Throughput

Phenotyping and

Environmental

Information

The significant progress made with genomics in breeding programs
has reinforced the idea that phenotyping is still a bottleneck for
genetic improvement [164]. This may seem paradoxical since one
of the advantages of genomic selection lies in the reduction of some
phenotyping steps. However, accurate field phenotyping for impor-
tant traits (e.g., grain yield) in METs is even more important to
efficiently train the prediction model and capture G � E. In addi-
tion, selection for more expensive or difficult traits (drought resis-
tance, lodging tolerance, grain quality, etc.) can be integrated
earlier in the breeding scheme thanks to genomic prediction and
therefore increase the selection intensity. These observations have
led to an ever-increasing interest in high-throughput phenotyping
methods [165, 166]. Several tools (RGB and multispectral cam-
eras, thermal sensor, etc.) and platforms (phenomobiles,
unmanned aerial vehicles, etc.) are available for field and laboratory
phenotyping with a wide range of applications. When integrated in
a genomic prediction model, high-throughput phenotypic data can
substantially increase the prediction accuracy [167, 168]. In the
case of phenomic selection, high-throughput near-infrared spec-
troscopy data can even replace genotypic data and offer similar
accuracy [169, 170]. However, to be useful in a breeding context,
the large quantity of data generated by the high-throughput phe-
notyping techniques needs to be stored in a data management
system, properly vetted relative to the costs and selection accuracies
available from manual phenotypes, and associated with correct
genotype data if it is to improve the decision-making process.
Although tools and analysis pipelines have evolved in recent years,
there are still important constraints to the routine use of these
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approaches: the acquisition of multi-environment field data and not
just data from a central research station, the availability of data
management systems that can handle large time-series datasets,
and the initial cost of related equipment. It is expected as the
technologies and regulations mature that dedicated companies
offering high-throughput phenotyping services will emerge,
much like has been the case with genotyping.

In addition to high-throughput phenotyping, a better charac-
terization of environmental factors affecting the performance crop
plants will enhance our ability to explain nongenetic sources of
variation. Such “envirotyping” is an area of active research that
shows great promise [171]. To become truly useful technologies
that permit the high-throughput collection of envirotype data in
real time need to continue to mature as well as data management
and analytical strategies for extracting intelligence from these
datasets.

6 Conclusion: A Point of View of a Rice Breeder

Based on the literature in rice and in other species, the ability to do
genomic prediction and the value of applying genomic selection to
rice breeding programs are beyond question. The capacity to esti-
mate the prediction values and the key datasets and models that
underlie the estimation of GEBVs is also very well understood. The
marker resources and phenotyping capacity in rice are present and
available at this point to even the most remote breeding organiza-
tions. Furthermore, the rules that describe how quantitative trait
variation is inherited in populations are well understood, and it
would seem the infinitesimal model applies to quantitative traits
in rice in most cases. What remains to capture the full value of this
technology is the reorientation of rice breeding programs around a
short-cycle recurrent selection strategy within a defined gene pool.
During that transition, genomic prediction can additionally be
helpful for improving selection within cohorts and save money on
field evaluation. As a result, generating genotype data or building
an analytical pipeline is often not the starting point for implemen-
tation of genomic selection in most programs. Clear business rules
for data collection and management, clearly defined best practices
for parental selection, and a commitment to work within elite gene
pools must come first. Second to these foundational activities,
breeding programs must standardize and systematize their opera-
tions in such a way that resources are optimized, workflows are
clear, and breeders are not spending inordinate amounts of time
managing logistics. Field work needs to focus more on data quality
and data collection, reserving selection decisions for after data has
been collected, analyzed, and interpreted. Marker systems for rou-
tine genotyping are also necessary but must be developed such that
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the genotype data is specifically informative to the breeding germ-
plasm of interest.

The public rice literature to date has largely focused on ques-
tions related to if predictions work in rice or how to optimize
prediction accuracy. Very few rice publications address how predic-
tions can be practically applied to enhanced rates of genetic gain. As
a result, in an attempt to modernize many breeders get stuck in
“proof of concept purgatory” by trying to replicate analyses done
by others. Breeders seeking to improve their strategy would instead
be benefited from considering whether the appropriate foundations
are laid in their programs and then considering carefully what the
entry points for prediction are in their stated breeding strategy.
Commercial breeding programs may have the advantage of having
the freedom to invest resources in additional capital or operational
expenditures up front in order to capture value in the long term.
However as budgets are often tight, fixed, or subject to congressio-
nal approval for publicly funded programs, cost saving adjustments
to the breeding strategy (such as applying a sparse testing design or
implementing rapid generation advance for line fixation) may liber-
ate resources in the short term which can be applied to laying the
proper foundations for a fully genomic prediction-enabled breed-
ing strategy.
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18. Crossa J, Pérez-Rodrı́guez P, Cuevas J et al
(2017) Genomic selection in plant breeding:
methods, models, and perspectives. Trends
Plant Sci 22:961–975. https://doi.org/10.
1016/j.tplants.2017.08.011

19. Hayes BJ, Bowman PJ, Chamberlain AJ, God-
dard ME (2009) Invited review: genomic
selection in dairy cattle: progress and chal-
lenges. J Dairy Sci 92:433–443. https://doi.
org/10.3168/jds.2008-1646

20. de los Campos G, Hickey JM, Pong-Wong R
et al (2013) Whole-genome regression and
prediction methods applied to plant and ani-
mal breeding. Genetics 193:327–345.
https://doi.org/10.1534/genetics.112.
143313

21. Izawa T, Shimamoto K (1996) Becoming a
model plant: the importance of rice to plant
science. Trends Plant Sci 1:95–99. https://
doi.org/10.1016/S1360-1385(96)80041-0

22. Peng S, Khushg G (2003) Four decades of
breeding for varietal improvement of irrigated
lowland rice in the International Rice
Research Institute. Plant Prod Sci 6:
157–164. https://doi.org/10.1626/pps.
6.157

23. Chandler RF (1982) An adventure in applied
science: a history of the International Rice
Research Institute. IRRI

24. Breth S (1985) International rice research:
25 years of partnership. IRRI

25. Guimaraes EP (2009) Rice breeding. In: Cer-
eals. Springer, pp 99–126

26. Jena KK, Mackill DJ (2008) Molecular mar-
kers and their use in marker-assisted selection
in rice. Crop Sci 48:1266–1276. https://doi.
org/10.2135/cropsci2008.02.0082

27. Ismail AM, Singh US, Singh S et al (2013)
The contribution of submergence-tolerant
(Sub1) rice varieties to food security in
flood-prone rainfed lowland areas in Asia.
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