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Abstract
Keymessage Increment cores can provide improved predictive capabilities of the modulus of elasticity (MOE) of sawn
boards. Multiple increment cores collected at different heights in a tree provide marginally increased accuracy over a
single breast-height core, with higher labour costs. Approximately 50% of the variability of the static bending MOE
of individual boards is explained by the predicted MOE obtained from a single increment core taken at breast height.

Context Prediction of individual board MOE can lead to accurate optimisation of the value extracted from forest resources,
and enhanced decision-making on the management and allocation of the resource to different processors, and improve the
processors ability to optimise grade allocation.

Aims The objective of this study is to predict the MOE of individual sawn boards from the MOE measured from cores
collected from standing trees.

Methods A five-parameter logistic (5PL) function and radial basis function interpolants are used to obtain a continuous
distribution of MOE throughout a log. By developing a “virtual sawing” methodology, we predict the individual board MOE
for sixty-eight trees consisting of locally developed F1 and F2 hybrid pines (Pinus caribaea var. hondurensis× Pinus elliottii
var. elliottii).

Results Moderate correlations for individual board predictions are observed, with R2 values ranging from 0.47 to 0.53.
Good correlations between average predicted board MOE and average measured MOE are also observed, with R2 ≈ 0.83.
A pseudo-three-dimensional approach, accounting for variation in height in the tree, affords marginally greater accuracy and
predictive capability at the cost of increased data collection and processing. By using a single breast-height core, we can
obtain a similar level of prediction of individual board MOE.

Conclusion We have presented a novel non-destructive evaluation approach to predict the MOE of individual boards sawn
from trees. This approach can be adapted to other wood properties, and other wood products obtained from trees.

Keywords Non-destructive evaluation (NDE) · Wood quality · Modulus of elasticity · Queensland southern pines ·
Sawn boards
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1 Introduction

Most commercial softwood shows a large variation of wood
properties radially (from the pith towards the bark) which
are generally more pronounced than variation within the
same growth ring along the stem (Zobel and Van Buijtenen
1989). In softwoods, growth rings near the pith usually
consist of a large proportion of earlywood tracheids (which
have larger diameter and thinner cell walls than latewood
tracheids), that gradually transitions to a larger proportion
of latewood tracheids with increasing ring number from the
pith (Liu et al. 2019).

The wood located near the pith, which generally shows
relatively large gradients in properties, is called corewood or
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juvenile wood, whereas the wood located outside this zone
is called outerwood or mature wood (Liu et al. 2019; Cown
1992; Zobel and Sprague 1998) . The corewood has shorter
cells with smaller diameter and thinner cell walls, higher
microfibril angle, lower specific gravity, lower modulus
of elasticity (MOE) and strength compared to outerwood.
Although corewood has some positive attributes for the
paper and pulping industry, it presents significant problems
for sawmills producing structural timber because of lower
MOE, larger shrinkage and stability. In this work we focus
on the commercial softwood species collectively known as
the Queensland southern pines, that are commonly used for
structural purposes.

The standard structural grade ranking of the Queensland
southern pine resource is dictated by its stiffness as
characterised by the measurement of the MOE (Australian
and New Zealand Standard AS/NZS 4063.1:2010 2010b),
since this resource is stiffness limited. Stiffness limited
indicates that if the board stiffness achieves the required
grade, the strength will exceed this grade, and hence, the
MOE defines the mechanical grade of the board (or other
structural products) extracted from the log. Non-destructive
measurement tools that accurately measure board MOE
allow enhanced genetic selection, site matching, harvest
planning schedules, improved allocation of the resource
to different processors and facilitate improved processor
settings, product performance and grade recovery.

There are various methods and tools to estimate log
MOE; however, there has been limited work to predict
individual board MOE using data that can be obtained via
non-destructive methods. Our main hypothesis is that it is
not possible to predict individual board MOE from log-
level information such as average log MOE. Therefore,
we require a method to predict board MOE from non-
destructive evaluation techniques.

Increment borers are used to extract cores from living,
dead and felled trees for analysis of growth trends of
tree ring patterns and to evaluate wood quality. The
coring method is relatively inexpensive, rapid and simple.
Increment coring is the most widely used sampling
technique for wood density analysis (Gao et al. 2017), and
has been used to develop models of wood density across a
range of species (Kimberley et al. 2015; Fries and Ericsson
2006; Pokharel et al. 2014; Jordan et al. 2008).

In addition to density modelling, increment cores have
also been used to analyse other properties and factors
affecting wood quality, such as MOE, fibre coarseness,
fibre wall thickness, annual ring growth and microfibril
angle (Hong et al. 2015), to help decision-making for the
improvement of juvenile wood (Lenz et al. 2011), and how
wind regime affects the incidence of compression wood
(Dinulica et al. 2016). Wood density and MOE variation in
boreal softwoods (black spruce, balsam fir, jack pine) and

hardwoods (paper birch, trembling aspen) were estimated
using near-infrared spectroscopy on 30,159 increment cores
from 10,573 inventory plots (Giroud et al. 2017).

Ivković et al. (2008) collected 12-mm bark-to-bark
increment cores at breast height (1.3 m) for basic density
analysis and bark-to-pith cores were assessed by SilviScan
to obtain individual ring value MOE, and ring-area weighted
averages. The objective of their study was to examine
the variability and relationship between stiffness, strength,
shrinkage and basic wood properties. They found that the
variability in wood stiffness and strength from pith-to-bark
was very high with greatest change near the pith.

Increment coring has been widely used for density
analysis and developing correlation between properties.
However, limited studies have been conducted to predict
wood value with a focus on MOE. For example, in southern
pine, Harding (2008) used 12mm diameter increment cores
to assess extracted and unextracted basic density, spiral
grain and microfibril angle from a range of southern
pine genetics and silvicultural trials. He reported moderate
correlations between core MFA measured on Silviscan
and stress-wave velocity of the Fakopp and Wood Spec
instruments. Kain (2003) also used a 12-mm-diameter
increment core to assess spiral grain and variation in
earlywood and lower latewood density and the ability to
select for density in southern pine trials.

The IML Resistograph PD400 (IML System GmbH,
Wiesloch, Germany) has been successfully used to measure
the basic density of timber (Downes et al. 2018). Recently,
Sharapov et al. (2019) have demonstrated the ability to
obtain moderate correlations with static bending MOE of
small test samples of clear timber using the Resistograph;
however, it is currently not sufficiently reliable for
measurement of MOE, hence our preference for increment
coring in this work.

We use cores extracted from transverse discs taken from
destructively sampled trees to construct models describing
the pith-to-bark variation of MOE in the Queensland
southern pines (Pinus elliottii and P. caribaea and their
hybrids). We note that these cores are not specifically
increment cores; however, the models developed are
independent of the method used to collect the data.
Furthermore, this approach can be classed as a non-
destructive evaluation (NDE) technique, as outlined by
Schimleck et al. (2019). We then use these models to
obtain predictions of the stiffness of the boards sawn from
these trees. This work is part of a large-scale collaborative
project aimed at characterising the variability in commercial
Queensland southern pine plantations, located in southeast
Queensland and northern New South Wales.

Our goal is to evaluate the capacity to predict, using
mathematical modelling, an individual board MOE with a
low quantity of data (e.g. 5 to 12 data points per radius),
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and to this end we seek to model both the pith-to-bark and
longitudinal variation of MOE within a tree. A description
of the data has been given in Kumar et al. (2021), and
is also discussed in Section 2.1. The radial variation of
wood properties is an ontogenetic characteristic and occurs
within each tree. It is a consistent pattern, and hence
can be modelled. Tangential variation generally occurs in
response to some external influence on the tree, such as
environmental and climatic events (Zobel and Van Buijtenen
1989). Therefore, it is not possible, given our goals, to
model the tangential variation. Furthermore, for MOE this
tangential variability will be substantially less than the
radial variability; hence, here, we only consider radial and
longitudinal variation.

This will allow us to obtain a prediction of the MOE
at any given radial position and height within the tree, and
hence obtain a prediction of MOE for a product (structural
board in this work) sawn from the tree. We note that instead
of radius from the pith we could consider cambial age as
governing the property variation, as done in our previous
work (see Baillères et al. (2019) for details). When we are
considering individual trees, there is little difference in the
results obtained between radial position and cambial age.
However, cambial age would be required when comparing
between trees.

We describe a pseudo-three-dimensional approach,
where we calculate the board MOE from four incre-
ment cores taken at different heights within the tree. This
approach requires data collected at different heights, allow-
ing us to determine whether longitudinal variation of MOE
is significant for predicting individual board performance.
We will then consider a pseudo-two-dimensional approach
that utilises a single core obtained near breast height and
neglects longitudinal variation in the tree, and compare this
with the full pseudo-three-dimensional approach.

The methods developed here can predict the individual
board MOE that can be obtained from a tree without actually
cutting a tree. This enables important interventions at a
grower level, such as pre-allocation of timber products to
better match primary processors needs. It allows growers to
identify plots that will never produce high value products so
that these can be diverted to an appropriate facility and the
site replanted to produce higher value products. Conversely,
plots producing high value products early can be harvested
at a younger age resulting in increased rotations from
the same piece of land. Overall, the methods may be
helpful to improve overall return, planning of investment,
silviculture, harvest, appropriate resource allocation and
marketing activities.

The remainder of this article is structured as follows.
In the next section we discuss the data collection process,
and the data obtained. We then outline our approach
for modelling the pith-to-bark and longitudinal variation

of MOE within the Queensland southern pines, before
discussing our “virtual sawing” approach used to extract
boards from a virtual log. We then compare our predicted
board MOE values with those obtained by the standard
four-point bending method (AS/NZS 4063.1:2010 2010b).

2Material andmethods

2.1 Data collection

The data (Psaltis et al. 2020) collected for this work come
from the destructive sampling of three plots: 30 trees from
within a typical commercial plantation (388 stems per
hectare), and 38 trees across two spacing trials (between
200 and 2660 stems per hectare), including a Nelder wheel
design (Nelder 1962), that covers a large range of growing
conditions (Baillères et al. 2019).

Within each plot, the range of size classes were stratified
to capture information about the full range of logs available
within the plots. For the commercial plot, the diameters vary
from 28.2 to 44.8 cm, and their heights from 23.2 to 27.8
m. The spacing trial plots have a diameter range from 21.2
to 51.5 cm and heights from 20 to 28.5 m. This ensures
robustness of the predictive capability of our model.

This work focuses on the three major Queensland
southern pine taxa; PCH (P. caribaea var. hondurensis),
PEE (P. elliottii var. elliottii) and hybrid pine (PEE × PCH,
both F1 and F2 hybrids) across age ranges: thinning age (15
to 20 years old) and harvest age (25 to 36 years old).

From the destructively sampled trees, four bark-to-
bark cores were collected from transverse discs taken
at 0.92 m, 2.34 m, 6.46 m and 7.88 m, as shown in
Fig 1. The longitudinal variation of wood properties is
much less than the radial variation, particularly above
5 m (Megraw 1985); therefore, we believe that collecting
more data longitudinally will not substantially improve
the predictive capability of the model. Additionally, each
tree was merchandised into two peeler billets (see Psaltis
et al. (2018) for details) and a 3.9-m sawlog. The
sawlogs were weighed and measured and green stiffness
properties determined using BING (Beam Identification by
Nondestructive Grading) (Paradis et al. 2017), a resonance
acoustic tool. The sawlog was then sawn and the boards
were dried in accordance with industry recommendations
for nominal structural framing dimensions (96 × 40 mm
and 72 × 40 mm), using industry-provided sawing patterns.
Full-length boards were tested using BING to obtain MOE
data and measured for distortion (twist, spring and bow),
then sub-sampled for static bending using the standard
four-point bending test (AS/NZS 4063.1:2010 2010b).

The ring age and locations for each of the increment cores
(all trees) were measured and recorded, and the cores were
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Fig. 1 Diagram showing the data collection for the destructively sampled trees

then segmented into 20-mm sections. Each segment was
measured for MOE, density and shrinkage. The MOE of the
segments was measured using an ultrasound time-of-flight
approach. A computer code was developed in MATLAB®

to take scanned images of the tree ring markings, detect
their locations, and then divide them into the appropriate
segments. Each of the measured wood properties were
then attached to their corresponding segment. It is this
segment data that forms the basis of our models for the
board stiffness. For more details on the data collection and
measurement approaches, the reader is referred to Kumar
et al. (2021).

2.2 Fitting radial sigmoid to increment core data

To model the pith-to-bark variation we assume that the
MOE value for any given radial position can be represented
in a functional form. It is well recognised that the MOE
within an individual tree shows significant pith-to-bark
variation, and exhibits a logistic growth profile (Baillères
et al. 2005; Filipescu et al. 2014; McGavin et al. 2015).
Therefore, the form of the function we assume to model
a property, p, in terms of radial position, r , is the five-
parameter logistic function (5PL), given by Gottschalk and
Dunn (2005) and Dunn and Wild (2013)

p(r) = α0 + (α1 − α0)(
1 +

(
r
α2

)α3
)α4

, (1)

where α0 is the maximum value of the property as r gets
large, α1 is the minimum asymptote, α2 is the inflection
point in the function, α3 controls the rate of variation of the
property with radius, and α4 is the asymmetry parameter.
We have chosen the 5PL as it allows for asymmetry in the
data, and can often more accurately represent biological
data than a four-parameter logistic function (Gottschalk and
Dunn 2005; Dunn and Wild 2013).

Our aim is to then calculate the parameters, α =
(α0, α1, α2, α3, α4), that give the best fit to the measured
data. To do this, we consider a least squares approach. If
we assume that the only error between our model, p(r), and
the data, y = (y1, . . . , yn), is due to measurement error, we
have the ordinary least squares problem.

However, if we assume that there is also error in the
measurement of the independent variable, ri , we have

yi = p(ri + δ̂i , α̂) − ε̂i , i = 1, . . . , n, (2)

where δ̂i is the true error in the independent variable. This
approach is known as orthogonal distance regression (ODR)
(Boggs and Rogers 1990). ODR is preferred over standard
regression techniques when there may be error in both the
measured property and error in the independent variable
(Boggs and Rogers 1990). In this work, the independent
variable is the radial position, and this is associated with
the measured MOE of a given increment core segment
which may have errors or inaccuracies associated with its
measurement. We show in Kumar et al. (2021) that ODR
always gives a lower root mean square error when fitting the
5PL to our segment data.

Given both errors in measurement, εi and δi , the
orthogonal distance between the curve and the point (xi, yi)

is given by

η2
i = ε2

i + δ2
i , i = 1, . . . , n. (3)

This leads to the unconstrained minimisation problem

min
α,εi ,δi

n∑
i=1

[
(p(ri + δi, α) − yi)

2 + δ2
i

]
. (4)

In this work, we introduce additional constraints on the
parameters, α, by enforcing bounds to ensure physically
meaningful results, such as restricting the maximum
and minimum asymptotes to be within the physically
possible MOE values of timber (1 to 25 GPa). To solve
Eq. (4) subject to these additional constraints, we have
employed MATLAB®’s constrained minimisation routine
fmincon (MATLAB Optimization Toolbox 2016a). Given
an identified set of parameters, the function p(x) represents
the variation of MOE with radius.

2.3 Radial basis function surface fitting

We seek a model for the MOE that is continuous in both
radial position and height, namely s(x), where x = (r, z)

is the position in the tree in terms of radius and height.
We use an approach based on radial basis functions (RBFs)
(Carr et al. 2001) to obtain a smoothly varying surface for
the desired property. RBFs have been used in a wide range
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of fields, from computer graphics to medical imaging (Carr
et al. 1997). They provide a functional description of the
data, and hence, the surface can be evaluated at any location.
They do not require that data points be located on a regular
grid, allowing for increased flexibility.

Our aim is to build a function that describes the property
variation, given by

s(x) =
3∑

j=1

djpj (x) +
N∑

i=1

ciφ(‖x − xi‖), (5)

where p1(x) = 1, p2(x) = r , p3(x) = z, φ is the
radial basis function, and c = (c1, c2, . . . , cN) and d =
(d1, d2, d3) are the unknown coefficients (to be determined).
For details, the interested reader is referred to Appendix.

To apply this RBF approach to our problem, we assume
our data, yi , are samples from our fitted logistic functions.
From the four cores we obtain information at four distinct
heights within the tree, giving a dataset that captures the
variation in both r and z for each individual tree in our study.

Following this process for each tree in the destructive
sampling trials we have a description of the MOE at any
location within each tree (bounded by the locations of
the cores). This allows us to perform “virtual sawing”
(discussed in the following section) to extract the timber
boards from the pseudo-three-dimensional virtual log,
calculate their MOE, and compare this value to the MOE
obtained from static bending.

2.4 Virtual sawing of standard boards

In this section we discuss our approach for extracting boards
sawn from individual trees, to allow us to compare the
predicted MOE with the corresponding measured MOE.
The approach is identical whether we are considering

a pseudo-three-dimensional or pseudo-two-dimensional
approach, with the exception of the final calculation
of board MOE. Here, we consider the pseudo-three-
dimensional approach, where for two dimensions the mesh
shown in Fig. 2 is reduced to a cross-section in the x − y

plane.
To virtually saw boards from the log, we first require

a digital representation of how the boards were sawn in
the destructive sampling. The boards were sawn according
to industry-supplied sawing patterns (output from a sawing
optimiser); however, these were sawn in a small-scale mill
in a government facility and may not accurately follow what
would be obtained in a commercial mill. To replicate the
pattern that eventuated when the boards were sawn, we have
used log-end templates that were glued to the log prior to
sawing. The location of the board centres could then be read
from the templates, and these were manually transferred
to clean copies of the template. An example template with
board locations marked is shown in Fig. 3a.

We have implemented an image processing algorithm to
identify the locations of the board centres from the scanned
template images, and obtain a representation for each board.
This process requires information on the board centres,
what boards are aligned with each other, their dimensions
and orientation. Each group of boards that is classified as
being aligned is allocated an index, with index 1 being the
reference alignment, and index 0 indicating no alignment.
A line of best fit is calculated through the centre of the
first alignment group, and the centres of the boards are then
adjusted orthogonally to this line so that they lie on the line,
as shown in Fig. 4.

We then compute an objective function that is composed
of a shift along the line, a change in the dimension of the
boards and the difference between the current board spacing
and the saw kerf width (assumed constant). This difference

Fig. 2 Representation of a mesh used to discretise the sawn board
in the pseudo-three-dimensional (left) and pseudo-two-dimensional
(right) approach. Volume of �Vi ( ) around internal node i, half vol-
ume ( ) around nodes lying on one boundary face, quarter volume

around nodes lying on two boundary faces ( ) and one-eighth vol-
ume around nodes lying on three boundary faces ( , only for the 3D
mesh). The value of the MOE at node i, Ei , is obtained using the fitted
sigmoid function
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Fig. 3 Comparison between
template and digital
representation of sawing pattern
used to saw boards for tree one
(representative commercial
plantation)

(a) Example log-end template. (b) Digitised sawing pattern.

is weighted more heavily, to ensure that the required
saw kerf width is maintained following minimisation of
the objective function. Transformation matrices are then
computed for the rotation and translation of the boards.
Once the first (reference) alignment group is completed,
each subsequent group is adjusted, with a line of best fit
taken as parallel to the reference line. The same procedure
is undertaken to adjust the board centres and dimensions,
and rotation and translation transformation matrices for
each board are calculated. The final group of boards are
those that are not aligned with other boards. Note however
that their orientation will still be such that their faces are
parallel/perpendicular to the reference line. We locate the

nearest board to the current board, and adjust the dimensions
and centre of the board to maintain the saw kerf width.

Figure 3b shows the digitised board layout for tree one,
where we have two different board sizes sawn from this
log (96 × 40 mm boards, denoted by A, and 72 × 40 mm
boards, denoted by B). In this case, we have two rows of
aligned boards (boards A1 to A5 and boards B1 to B5), with
board A6 being unaligned. Following completion of this
process, we then generate a canonical three-dimensional (or
two-dimensional) mesh (in the x, y, z (or x, y) directions
of Fig. 2) that discretises the dimensions of the board, with
faces aligned with coordinate axes and centred at the origin.
By applying the transformation matrix for each individual

Fig. 4 Schematic showing the
process of adjusting board
locations obtained from scanned
images of sawing patterns. Note
that the saw kerf width between
each board is constant
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board to this canonical mesh, we are able to obtain a discrete
representation for the volume (or cross-sectional area) of
each board that has been sawn from a given log. Using the
coordinates of each node in the mesh, we can calculate a
radial (r = √

x2 + y2) and height position that can be used
with our fitted surface, and hence calculate an MOE value
at each node in the mesh. Note that in 2D, the MOE at
each node can be computed directly from the fitted sigmoid
functions.

We assume that surrounding each node there is a control
volume of volume �Vi (or area in 2D), which takes the
MOE value of the node at its centre, Ei . This is shown in
Fig. 2. The volume averaged (Whitaker 1986) value of the
MOE for a given board, Ē , is given by

Ē = 1

VT

∫

V

EdV, (6)

where V is the board domain, E is the MOE throughout the
board, and VT is the total board volume. Equation (6) can
be approximated using the discrete mesh as

Ē ≈
∑N

i=1 Ei�Vi∑N
i=1 �Vi

, (7)

where N is the number of discrete nodes for a given
board mesh. Figure 5 shows an example of the digitised
three-dimensional boards, where the shading represents the
calculated MOE throughout the board. Note that these
boards represent the test sample used for static bending
taken from either the butt or top end of the 3.9 m sawlog. We
can clearly see that the boards near the outer edge (bark) of
the log exhibit higher values of MOE than those close to the
pith.

To be able to compare the measured MOE values with
those predicted from the virtual boards, we use the MOE
obtained from the Australian Standard static bending test
(AS/NZS 4063.1:2010 2010b) to give an MGP (machine
graded pine) grading (AS/NZS 4063.1:2010 2010a).

Fig. 5 Virtual boards sawn from the log model with colour showing
predicted MOE ( — low MOE to — high MOE). We have
accounted for whether the board was taken from the butt or top end of
the log for static bending testing

The apparent modulus of elasticity in bending, E, is
determined from the measurement of the change in vertical
displacement, �e, at mid-span using the equation

E = 23

108

(
L

d

)3
�F

�e

1

b
, (8)

where �F is the change in applied load. The static bending
is performed on a test sample that is shorter than the full
board, with the length of this test sample being determined
by the cross-sectional dimensions of the board. For 96 ×
40 mm boards, the test sample is 2 m long, whilst for the
72 × 40 mm boards it is 1.5 m. Each of these test samples
is taken from the butt or top end, with the end being
determined randomly.

3 Results

Figure 6 shows the 5PL fitted to the measured segment data
taken at four different heights within a given tree (core 1
to 4 in increasing order of height in the tree). Note that
we have assumed radial symmetry here, allowing us to use
data collected from both sides of the pith to fit a single
curve. The fitted logistic curve gives a good representation
of the observed trends in the data, whilst acting to reduce
the variability. During early stages of a tree’s growth, the
timber produced is highly flexible meaning low in stiffness.
As the tree grows, it becomes increasingly rigid and this is
reflected in the higher stiffness timber observed towards the
outer edge of the tree (near the bark).

Figure 7 shows an example RBF surface fitted to the
5PL curves for a given tree. In this case, λ ≈ 0 (obtained
by GCV), indicating our surface passes through the fitted
5PL curves. The measured segment data points have been
overlayed in the figure to show the fit quality. This fitted
surface allows us to smoothly connect the sigmoids obtained
at different heights in the tree, to get an estimate of the
property at any radius and height.

We now compare the results obtained using our two
approaches. The pseudo-three-dimensional model has the
advantage of capturing variation in height within the tree;
however, the utility of this approach is limited as collecting
this level of data is both time- and cost-prohibitive, and
is difficult to perform as a non-destructive technique. The
pseudo-two-dimensional approach utilises a single core
extracted from near breast height, so may represent a more
feasible non-destructive evaluation approach for the timber
industry.

Figure 8 compares our predicted MOE using both
the pseudo-two-dimensional and pseudo-three-dimensional
approaches with those measured via the static bending
standard test, for a range of representative trees. We see that
for these trees our predicted board MOE captures the overall
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Fig. 6 Fitted sigmoid curves for a representative tree, taken from the
destructively sampled set with four cores taken at different heights up
the tree, where core 1 is taken lowest in the tree, and core 4 the highest.
A radius of 0 mm corresponds to the pith of the tree, and each curve
uses data from both sides of the pith.

trends and ranges of board MOE measured from the static
bending test. The pseudo-three-dimensional approach tends
to predict higher MOE values for individual boards, and
exhibits a lower root-mean-square-error (RMSE) than the
pseudo-two-dimensional approach (mean of 1.911 versus
2.129) across all boards, when evaluated per tree.

Fig. 7 MOE surface showing variation with radius and height. The
four fitted 5PL functions are shown, together with the data points

Figure 9 shows a comparison between the measured
MOE and the predicted values obtained using the pseudo-
three-dimensional approach with radial basis functions
fitted to the 5PL functions. We see that in each case
(Commercial, Spacing/Nelder wheel, all trees) we obtain
moderately good correlations for individual board MOE
with R2 values between 0.48 and 0.53.

Figure 10 shows the correlation between the recon-
structed board MOE using the pseudo-two-dimensional
approach and static bending MOE across the commercial
plantation and spacing trials, and all trees combined. Sim-
ilar to the pseudo-three-dimensional approach, we obtain
moderate correlations between the predicted and measured
individual board MOE, with R2 values between 0.47 and
0.52.

Figure 11 compares the mean predicted board MOE with
the mean measured board MOE across each of the trials,
for both the pseudo-two-dimensional and pseudo-three-
dimensional approaches. This shows that the pseudo-three-
dimensional approach always exhibits a higher level of
correlation with the mean measured board MOE than the
pseudo-two-dimensional approach.

To evaluate model performance, we consider leave-one-
out cross-validation (LOOCV), where a linear model is
fitted to a training set consisting of all trees with one
removed, and tested on the removed tree. This is done a
total of 68 times, corresponding to each tree being in the test
set. We have used the modelr (Wickham 2019) package
in R 3.6.1 (R Core Team 2019). Using this approach
we obtain a RMSE of 2.009 (with intercept) and 2.024
(without intercept) for the pseudo-two-dimensional method,
and 1.915 (with intercept) and 1.919 (without intercept) for
the pseudo-three-dimensional method.

This demonstrates that the pseudo-three-dimensional
approach is generally more accurate in predicting individual
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Fig. 8 Example board MOE
predictions using both the
pseudo-two-dimensional and
pseudo-three-dimensional
approaches, compared with
values measured from the
four-point static bending test

(a) Trees 1 to 3 (Commercial spacing)

(a) Trees 31 to 33 (Spacing trial)

(a) Trees 67 to 69 (Nelder wheel trial)

board MOE when compared to the pseudo-two-dimensional
method; however, as noted previously, the pseudo-three-
dimensional method has a greater overhead in terms of data
collection to obtain information at different heights within
the tree.

Table 1 shows a comparison between the number of
boards of grade MGP10+ (with MOE > 10 GPa, suit-
able for structural purposes), measured using the static

bending method, and predicted from our pseudo-two- and
pseudo-three-dimensional methods. In terms of number
of MGP10+ boards, we can see that the best prediction
is given by the pseudo-three-dimensional approach. How-
ever, the pseudo-two-dimensional method is able to pre-
dict 84% of the number of structural boards compared
to approximately 90% for the pseudo-three-dimensional
approach.
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(a) Commercial spacing trial.

(b) Spacing and Nelder wheel trials.

(c) All trees.

Fig. 9 Correlation analysis comparing measured and predicted board
MOE, using the pseudo-three-dimensional approach with radial basis
functions fitted to five-parameter logistic functions

4 Discussion

Our approach differs to many in the literature in that
it is able to provide moderate predictive capabilities
of individual board MOE, and very good predictive
capabilities of the average board MOE obtained from a log.
In Fig. 8, our predicted board MOE agrees well with the
measured MOE. The range of values closely resembles the
range measured by static bending, and we recover the trend
of the stiffer timber (higher MOE) being found towards

(a) Commercial spacing trial

(b) Spacing and Nelder wheel trials.

(c) All trees.

Fig. 10 Correlation analysis comparing measured and predicted
board MOE, using the pseudo-two-dimensional approach with five-
parameter logistic function fitted to segment data with orthogonal
distance regression

the outer edge of the tree. This is a direct result of our
use of the 5PL function to model MOE with radius, and
this behaviour is well recognised in the literature (Filipescu
et al. 2014; McGavin et al. 2015). We expect there to be
higher variability in the measured board MOE compared to
the predicted MOE, and this is reflected in Fig. 8. This is
because the predictions are made based on measurements
of small, clear segments of wood that do not account for
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(a) Commercial trial using the pseudo-two-dimen-

sional approach

(b) Commercial trial using the pseudo-three-di-

mensional approach

(c) Spacing and Nelder wheel trials using the 

pseudo-two-dimensional approachs

(d) Spacing and Nelder wheel trials using the 

pseudo-three-dimensional approachs

(e) All trees using the pseudo-two-dimensional ap-

proach

(f) All trees using the pseudo-three-dimensional

approach

Fig. 11 Correlation analysis comparing the mean predicted and measured board MOE

Table 1 Comparison of number of boards having MOE greater than or equal to 10 GPa, from the static bending test and predicted using our two
approaches

Number of boards having MOE of 10 GPa (MGP10) or greater

Total number of boards Static bending test Predicted (2D model) Predicted (3D model)

All destructive samples 634 237 199 214

Commercial spacing 291 146 124 124

Spacing trial and Nelder wheel trial 343 91 75 90
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knots, and the 5PL will smooth any variation exhibited in
the segment data.

When we regress the measured board MOE against
the predicted MOE, shown in Fig. 9, the pseudo-three-
dimensional model exhibits very little bias as the slope of
the regression line is near unity in all cases. Furthermore,
the coefficients of determination (R2) show moderate
correlations, comparable to alternative approaches in the
literature (Launay et al. 2000; Wagner et al. 2003; Ishiguri
et al. 2008). Furthermore, when using our pseudo-two-
dimensional approach, we obtain similar R2 values, as seen
in Fig. 10. Remarkably, by using a single core obtained
from near breast height, the correlation again displays only
marginal bias for all but the commercial plot, i.e. the
predicted MOE is directly proportional to the static bending
MOE as the slope of the regression line is very close to
unity in each case, thanks to the analytical approach. We
note that the location of the core used for the pseudo-
two-dimensional approach is approximately 1.4 m below
the lowest point of the sawn boards, and this could be
the cause for increased bias compared to the pseudo-three-
dimensional approach.

There are limited examples in the literature of comparing
individual board MOE with measured values. Therefore,
we have also considered the predicted average board MOE
from each of our two approaches, compared to the average
measured board MOE. These are obtained by simply taking
the arithmetic mean of the measured and predicted board
MOE for each tree.

The average board MOE has been compared to various
non-destructive evaluation methods by a number of authors.
Launay et al. (2000) developed a technique to measure
the longitudinal MOE of a tree trunk and found moderate
correlations between the tree MOE and average board MOE
(r = 0.54). However, this corresponds to an R2 value
of approximately 0.29; hence, the methods developed here
represent a substantial improvement.

Wagner et al. (2003) compared stress-wave velocity
measurements from standing trees to the average board
dynamic MOE from Douglas-fir trees. Taking longitudinal
stress-wave velocity measurements at 1.2 m (approximately
breast-height), they found low coefficients of determination
(R2 between 0.2 and 0.393). They were able to increase the
correlation by taking additional measurements at multiple
heights within the tree, and by combining average transverse
and longitudinal stress-wave velocities they showed an R2

value of 0.591. They then considered the seven trees with
the least variation in dynamic MOE, and were able to
obtain a high R2 value of 0.839. We have been able to
achieve similar or better results by taking a single breast-
height core and analysing the MOE from individual 20 mm
segments. When we consider our pseudo-three-dimensional
approach utilising measurements at four heights within a

tree, we obtain a substantial improvement over the approach
of Wagner et al. (2003) (R2 between 0.69 and 0.85).

Ishiguri et al. (2008) investigated the use of stress-wave
velocity and Pilodyn to predict mechanical properties of
boards sawn from Japanese larch trees. They showed strong
correlations between the average board static bending MOE
and stress-wave velocity of six trees (R = 0.834, R2 =
0.696), and moderate negative correlation between Pilodyn
and the average board static bending MOE (R = −0.563,
R2 = 0.317). They then combined stress-wave velocity with
Pilodyn measurements in multiple linear regression, to get
a correlation coefficient of R = 0.864 (R2 = 0.746) for the
average static bending MOE. This is similar to the results
we were able to obtain from a single breast-height core.

One main drawback of the two approaches presented
in this work is the number of cores that can be collected
per day, and specifically for the pseudo-three-dimensional
approach, the limited ability to incorporate cores taken
higher from the tree into industrial processes. As outlined
in Kumar et al. (2021), approximately 30 to 40 breast-
height cores can be collected and processed per day. This
is substantially less than the approximately 160 to 200
ST300 readings and 300 to 400 Resistograph traces that
can be collected each day (Baillères et al. 2019; Schimleck
et al. 2019); however, these techniques are unable to predict
individual board MOE which is key to establishing the
structural grade and optimisation of the sawing patterns to
obtain enhanced value extraction. Furthermore, they are less
accurate, and thus, the gain in productivity may be offset by
the level of prediction when compared to our approach. Our
method is transferrable to a range of species, as it requires
no calibration to be performed (Rakotovololonalimanana
et al. 2015). It requires limited equipment, and can be
adapted to other measurement techniques that can obtain
the radial variation of MOE within a tree, or other
characteristics displaying continuous radial variation such
as density, fibre length, and microfibril angle.

Our methods are able to obtain moderate correlations
with individual board MOE. Nevertheless, there are a
number of sources of potential error in our approach that
can be improved on. A plausible explanation for the low R2

values observed in the study could be due to the low spatial
resolution of the data sampling and that we ignored ring
width, growth history and tangential variation in our models.
Better spatial sampling may allow us to capture more of
the variability observed in the measured data. Additionally,
there are errors due to inaccurate location mapping of the
sawing pattern of the boards, leading to incorrect values
of board MOE being calculated. This is due to having
to recover the locations after the boards had been sawn.
Furthermore, there can be approximately 11% relative error
in the measurement of the static bending MOE (Baillères
et al. 2019), and the effect of this should be investigated.
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We also note that these models have been developed using
data obtained from measurements of MOE on defect-free
samples. The static bending MOE can be significantly
affected by knots and defects present in the board, and
accounting for this is an ongoing area of investigation.

Our results show that the pseudo-two-dimensional
method provides a simple and accurate approach to predict
the range of board MOE values obtainable from each log,
and offers improved predictive capabilities over existing
NDE techniques. Additional accuracy can be gained by
collecting additional cores at varying heights within the tree;
however, this may not be a substantial advantage compared
to the additional data required.

5 Conclusions

In this work, we have developed mathematical models
describing wood property variation in the Queensland
southern pines based on cores extracted from transverse
discs. These methods are directly transferable to increment
cores obtained from standing trees. We have focused on
prediction of the modulus of elasticity (MOE) as the main
wood property governing value. This is the primary limiting
property for the structural use of this resource and the
most important mechanical property for structural end-
uses which has a direct impact on structural timber grade
outturn and the value of the resource. The processes we
have developed can be extended to other properties such as
density, permeability, Modulus of Rupture (MOR, although
this would be more challenging due to the localised nature
of this property), provided reliable data are available.

We have shown that by utilising a single breast-
height core we can obtain similar prediction capabilities
for individual boards as using four cores from different
heights within the tree. The pseudo-three-dimensional
approach gives greater accuracy and higher R2 values when
considering average board MOE, however has higher data
collection costs.
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Appendix

Our aim is to build a function that describes the property
variation, given by

s(x) =
3∑

j=1

djpj (x) +
N∑

i=1

ciφ(‖x − xi‖), (A.1)

where p1(x) = 1, p2(x) = r , p3(x) = z, φ

is the radial basis function, and c = (c1, c2, . . . , cN)

and d = (d1, d2, d3) are the unknown coefficients (to
be determined). There are numerous forms of radial
basis functions available, such as linear, Gaussian, and
multiquadric (Buhmann 2004). Here, we use a thin-plate
spline radial basis function, given by Wahba (1990)

φ(ρ) = 1

8π
ρ2 log(ρ), (A.2)

where ρ = ‖x−xi‖ is the distance between a data point, xi ,
(a centre of the RBF) and a point on the surface. Nonlocal
bases, i.e. those where φ(ρ) → ∞ as ρ → ∞, may perform
better than local bases. Furthermore, the thin-plate spline
is not dependent on a user-set shape parameter (Holmes
and Mallick 1998), and is invariant under translation and
rotation transformations (Franke 1982).

To obtain the unknown coefficients, c and d, we begin by
assuming the data, yi , can be modelled as

yi = s(xi ) + εi, i = 1, . . . , N, (A.3)

where εi ∼ N(0, σ 2) is the error. We must solve the
minimisation problem,

min
c,d

1

N

N∑
i=1

(yi − s(xi ))
2 + λJ (s), (A.4)
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where λ is the smoothing parameter and J (s) is the penalty
functional, given by

J (s) =
∫ ∞

−∞

∫ ∞

−∞

(
s2
x1x1

+ 2s2
x1x2

+ s2
x2x2

)
dA. (A.5)

For λ = 0, s(x) becomes a surface that interpolates the data,
and as λ → ∞ we obtain the linear least squares solution
(Wahba 1990).

Wahba (1990) shows that the solution to the minimisation
problem (Eq. (A.4)) can be found by solving the linear
system,

(K + NλI)c + P d = y, (A.6)

P T c = 0, (A.7)

where K is the N × N matrix with ij th entry φ(‖xi − xj‖),
P is the N × 3 matrix with (i, k) entry given by pk(xi ), I

is the N × N identity matrix, �T is the transpose operator,
c = (c1, . . . , cN)T , d = (d1, d2, d3)

T , y = (y1, . . . , yN)T ,
and 0 is the 3 × 1 zero vector.

We see from Eq. (A.6) that to account for the penalty term
we simply adjust the diagonal elements of K . To compute
the value of λ, we utilise generalised cross validation (GCV)
(Wahba 1990). This involves minimising the GCV function,
V (λ), where

V (λ) = N‖(I − A(λ))y‖2/ [T r(I − A(λ))]2 . (A.8)

T r() is the trace operator, and A(λ) is known as the
influence matrix which can be calculated from (Wahba
1990)

I − A(λ) = NλQ2(Q
T
2 (K + NλI)Q2)

−1QT
2 . (A.9)

Here, Q2 is computed from the QR decomposition of P ,
namely

P = [
Q1 Q2

] [
R

0

]
, (A.10)

where Q1 ∈ R
N×3, Q2 ∈ R

N×(N−3) and R is an upper
triangular matrix.
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R, Moore J, Pâques L, den Bulcke JV, Wang X (2019) Non-
destructive evaluation techniques and what they tell us about wood
property variation. Forests 10

Sharapov E, Brischke C, Militz H, Toropov A (2019) Impact of drill bit
feed rate and rotational frequency on the evaluation of wood prop-
erties by drilling resistance measurements. Int Wood Products J
10(4):128–138. https://doi.org/10.1080/20426445.2019.1688455

Wagner FG, Gorman TM, Shih-Yin W (2003) Assessment of intensive
stress-wave scanning of Douglas-fir trees for predicting lumber
MOE. For Prod J 53(3):36–39

Wahba G (1990) Spline Models for Observational Data. CBMS-NSF
Regional Conference series in applied mathematics. SIAM

Whitaker S (1986) Transport in porous media, D. Reidel Publishing
Company, chap Flow in Porous Media I,: A theoretical derivation
of Darcy’s law, pp 3–25

Wickham H (2019) modelr: Modelling Functions that Work with
the Pipe. https://CRAN.R-project.org/package=modelr, r package
version 0.1.5

Zobel BJ, Sprague JR (1998) Juvenile wood in forest trees. Springer,
chap Characteristics of Juvenile Wood, pp 21–55

Zobel BJ, Van Buijtenen JP (1989) Wood variation: its causes and
control. Springer Science & Business Media

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Page 15 of 16    78Annals of Forest Science (2021) 78: 78

https://doi.org/10.1007/s00107-008-0251-7
https://doi.org/10.1007/s00226-008-0232-3
https://doi.org/10.1139/X07-158
https://doi.org/10.1186/s40490-015-0053-8
https://doi.org/10.1007/s13595-021-01031-w
https://doi.org/10.1051/forest:2000126
https://doi.org/10.1007/s11295-011-0364-8
https://doi.org/10.3390/f10080682
https://www.mdpi.com/1999-4907/10/8/682
https://www.mdpi.com/1999-4907/10/8/682
http://www.jstor.org/stable/2527473
http://www.jstor.org/stable/2527473
https://doi.org/10.1139/cjfr-2013-0252
https://research.usc.edu.au/permalink/61USC_INST/1vg4fiv/alma99484008902621
https://research.usc.edu.au/permalink/61USC_INST/1vg4fiv/alma99484008902621
https://www.R-project.org/
https://doi.org/10.1007/s13595-015-0469-6
https://doi.org/10.1080/20426445.2019.1688455
https://CRAN.R-project.org/package=modelr


Affiliations

Steven Psaltis1,2 · Chandan Kumar3 · Ian Turner1,2 · Elliot J. Carr1 · Troy Farrell1,2 · Loı̈c Brancheriau4 ·
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