

BROCHURE INTERNATIONAL SYMPOSIUM ON SSDNA VIRUSES -IS³DV-

26th September - 1st October 2022

Domaine du Lazaret, Sète, France

Cica Urbino, Margaux Jammes, Julie Balland, Stéphane Blanc and Michel Peterschmitt

IS76?

PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France,

Is succeeding in superinfection a characteristic of the recombinant TYLCV-

TYLCV-IS76 is a natural recombinant of tomato yellow curl virus (TYLCV) in which 76 nts of the intergenic region were replaced by the homologous sequence of tomato yellow curl Sardinia virus (TYLCSV). TYLCV-IS76 emerged in Morocco and was shown to be highly competitive in resistant cultivar carrying the Ty-1 resistance gene, a gene that prevents symptoms and reduces viral load. In competition experiments, the accumulation level of TYLCV-IS76 was higher than that of parental viruses regardless of its time of infection, i.e., simultaneously with parental viruses or with 1 or 4 months delays. In addition to reveal the super fitness of this recombinant, this result suggests that cross protection, a mechanism that could have occurred between closely related genomes, does not protect resistant plants infected with TYLCV against TYLCV-IS76. As gene silencing-based antiviral defence is involved in the Ty-1 resistance mechanism and can also participate to cross protection, the question was: is the superinfection success a specific feature of TYLCV-IS76, or is it a more general feature of tomato-infecting begomoviruses? This question was addressed experimentally by testing if viruses, slightly different from TYLCV-IS76, can also superinfect tomato plants. A Ty-1 resistant tomato cultivar and an isogenic susceptible one were used to test if the Ty-1 gene is involved in the superinfection phenomenon. This study may unveil a new aspect of the unusual fitness of TYLCV-IS76, and shed new light on potential interactions prevailing in plants co-infected with begomoviruses.
