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Pixel segmentation of high-resolution RGB images into chlorophyll-active or nonactive vegetation classes is a first step often
required before estimating key traits of interest. We have developed the SegVeg approach for semantic segmentation of RGB
images into three classes (background, green, and senescent vegetation). This is achieved in two steps: A U-net model is first
trained on a very large dataset to separate whole vegetation from background. The green and senescent vegetation pixels are
then separated using SVM, a shallow machine learning technique, trained over a selection of pixels extracted from images. The
performances of the SegVeg approach is then compared to a 3-class U-net model trained using weak supervision over RGB
images segmented with SegVeg as groundtruth masks. Results show that the SegVeg approach allows to segment accurately the
three classes. However, some confusion is observed mainly between the background and senescent vegetation, particularly over
the dark and bright regions of the images. The U-net model achieves similar performances, with slight degradation over the
green vegetation: the SVM pixel-based approach provides more precise delineation of the green and senescent patches as
compared to the convolutional nature of U-net. The use of the components of several color spaces allows to better classify the
vegetation pixels into green and senescent. Finally, the models are used to predict the fraction of three classes over whole
images or regularly spaced grid-pixels. Results show that green fraction is very well estimated (R2 = 0:94) by the SegVeg model,
while the senescent and background fractions show slightly degraded performances (R2 = 0:70 and 0:73, respectively) with a
mean 95% confidence error interval of 2.7% and 2.1% for the senescent vegetation and background, versus 1% for green
vegetation. We have made SegVeg publicly available as a ready-to-use script and model, along with the entire annotated grid-
pixels dataset. We thus hope to render segmentation accessible to a broad audience by requiring neither manual annotation
nor knowledge or, at least, offering a pretrained model for more specific use.

1. Introduction

The vegetation fraction (VF) is a key trait that drives the par-
titioning of radiation between the background and the vege-
tation. It is used in several studies as a proxy of crop state [1]
and yield [2, 3]. The complement to unity of VF is the gap
fraction that is used to estimate the plant area index. How-
ever, several ecophysiological processes such as photosyn-
thesis and transpiration are driven by the amount of green
surfaces that exchange mass and energy with the atmo-

sphere. More specifically, the green fraction (GF) is used to
estimate the green area index (GAI) [4] defined as the area
of green vegetation elements per unit horizontal ground
area. GF is a more relevant trait that should be used when
describing crop functioning [5]. The difference between VF
and GF is the senescent fraction (SF = VF −GF), sometimes
called the nonphotosynthetic fraction [6, 7]. For crops, SF
depends on both the growth stage and state of the plants.
The SF trait is used to characterize a biotic or abiotic stress,
describe nutrient recycling, and monitor the ageing process
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[8–10]. Some studies have demonstrated the ability of geno-
types to stay green by delaying senescence and potentially
improve productivity [11, 12].

Several remote sensing methods have been developed to
estimate GF and SF using the spectral variation of the signal
observed at the canopy scale from metric to decametric res-
olution [13]. VF, GF, and SF can be also computed using
very high spatial resolution images with pixel sizes from a
fraction of mm to cm, i.e., significantly smaller than the typ-
ical dimension of the objects (plants, organs). RGB cameras
with few to tens of millions of pixels are currently widely
used as noninvasive high-throughput techniques applied to
plant breeding, farm management, and yield prediction
[14–16]. These cameras are borne on multiple platforms,
including drones [17], ground vehicles [18], and handheld
systems [19], or set on a fixed pod [16].

Several methods have been proposed to identify the
green pixels in RGB images including thresholding color
indices [20] and machine learning classification [21] based
on few color space representations. However, these tech-
niques are limited at least by one of the two main factors:

(i) Confounding effects: depending on the illumination
conditions and on the quality of the camera optics,
part of the soil may appear green due to chromatic
aberration. Further, parts of the image that are satu-
rated, with strong specular reflection or very dark,
will be difficult to classify using only the color of
the pixel. Finally, the soil may also appear greenish
when it contains algae [22]

(ii) Continuity of colors: at the cellular scale, senescence
results from the degradation of pigments that generally
precedes cell death [23]. During the degradation pro-
cess, changes in the pigment composition result into a
wide palette of leaf color in RGB imagery, with a conti-
nuity between “green” and “senescent” states. Further,
when pixels are located at the border of an organ, its
color will be intermediate between organ and back-
ground. This problem is obviously enhanced when
the spatial resolution of the RGB image is too coarse

It is therefore difficult to segment accurately and robustly
the green vegetation parts of a RGB image using only the color
information of pixels. Same limitations apply to the segmenta-
tion of the senescent vegetation parts. In addition, crop residues
located in background areas are difficult to distinguish from the
senescent vegetation observed on standing plants with very sim-
ilar range of brownish colors. Textural and contextual informa-
tion should therefore be exploited to better segment RGB
images into green and senescent vegetation parts.

Semantic segmentation [24] that assigns a class to each
pixel of the image appears to be an attractive approach. It
is based on deep learning techniques and has been applied
to several domains including urban scene description for
autonomous vehicles, medical imagery [25], and agriculture
[26, 27]. However, images need to be labelled exhaustively
into several target classes, which requires large annotation
resources [28].

The objective is then to develop and evaluate a two-step
semantic segmentation approach called SegVeg. It labels
each pixel of very high-resolution RGB images of vegetation
scenes into three classes: background, green, and senescent
vegetation. It has been designed to reduce the annotation
effort by combing a convolutional neural network (CNN)
that splits image into vegetation (including both green and
senescent pixels) and background, to a simple support vector
machine (SVM) technique that classifies the vegetation
pixels into green and senescent. SegVeg will be compared
to a CNN classifier that directly identifies background,
green, and senescent vegetation pixels following a weak
supervised training principle.

2. Materials and Methods

As shown in Figure 1, this study investigates two approaches
to segment images in three classes: green, senescent, and
background.

The first step consists of developing the SegVeg method
that combines a binary U-net model (U-net 2C) to first sep-
arate vegetation from background. Then a SVM model will
separate green from senescent vegetation, once the whole
vegetation is extracted.

This stage relies on two training datasets: fully annotated
patches (Dataset #1 with 2-class entire masks) for the U-net
2C training and pixel labelled datasets for the SVM approach
(Dataset #2). Once the SegVeg approach is set, it is used to
build a third dataset of fully nonsupervised annotated
patches (Dataset #3) and train a 3-class U-net model (U-
net 3C) on the same RGB images present in Dataset #1.
The SegVeg and 3-class U-net performances are then
compared.

2.1. The SegVeg Approach. The SegVeg approach is made of
two stages (Figures 1 and 2). In the first stage, the whole
image is classified into vegetation and background mask
using a U-net type deep learning network [29]. Then, vege-
tation pixels (predicted from the first stage) are classified
into green and senescent vegetation using a SVM. The two
binary outputs of each model are then merged to form a
3-class mask.

2.1.1. First Stage: Vegetation and Background Segmentation.
U-net is a deep learning model with encoder-decoder
network architecture that is widely used for image semantic
segmentation. The model was trained over the labelled
images from Dataset #1 (Section 2.3.1) to predict two classes:
vegetation (green and/or senescent) and background.
EfficientNet-B2 architecture [30] with weights initialized
on ImageNet was used as the backbone architecture. Patches
of 512 × 512 pixels were used for training after data augmen-
tation based on the Albumentations library [31]. The train-
ing process was based on a Dice loss function with an
Adam optimizer.

A predefined decaying learning rate schedule (step
based) was used to reach local minima, with an initial value
of 0.01 and reaching at the end 10e − 6, which is an usual
range in standard multilayer neural networks studies [32].
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The minibatch size was set to 32 for computational purpose.
Finally, early stopping was implemented to set number of
training iterations. The Python Segmentation Models library
under PyTorch was used [33] with GPU activation (GeForce
RTX 3090).

2.1.2. Second Stage: Classification of Green and Senescent
Vegetation Pixels. The support vector machine (SVM) is an
efficient machine learning classification method widely used
for image segmentation [34–36]. It maps the original fea-
tures to some higher-dimensional space where the training
dataset is separable. Several color spaces and transforma-
tions [37] were used to classify green and senescent pixels
including RGB, HSV, CIELab, grayscale, luminances,
CMYK, YCbCr, and YIQ derived from the original RGB
values. A total of 23 potential input features were thus com-
puted, namely R, G, and B; H, S, and V; L, a, and b; GE; LA,
LB, and LC; C, M, Y, and K; Yi, Cb, and Cr; and Yj, I, and Q.
However, the possible redundancy and irrelevancy of some

features may decrease the accuracy of the classification. We
then selected the most appropriate inputs using the step for-
ward wrapper method [38]. Finally, 14 input features were
retained: R, G, B, H, S, a, b, GE, M, YE, Cb, Cr, I, and Q.

This second-stage SVM was 4calibrated over labelled
pixels from Dataset #2 (see Section 2.3.2). The hyperpara-
meters were tuned using a grid search algorithm following
a leave-one-out cross-validation principle. This process led
to the optimal values C: 1 and γ: 10−3, and kernel rbf was
set according to prior knowledge that data are not linearly
separable. Scikit 0.23.2 with Python 3.7 was used for imple-
mentation [39].

2.2. The 3-Class U-net Model (U-net 3C). A three-class U-net
model was used as a reference to evaluate the proposed
SegVeg approach (Figure 1).

However, due to the unavailability of a dataset contain-
ing entire images annotated into three classes (background,
green, and senescent vegetation), we prepared 3-class masks

First stage:
Vegetation - background segmentation

Training
Binary U-net
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Figure 1: Flowchart describing the overall approach of the study.
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by applying SegVeg over the RGB images used to train U-net
2C (i.e., Dataset #1). Indeed, to reduce the annotation effort,
the second-stage SVM was trained over pixels extracted
from regularly spaced grids, explained in the following data-
set sections. Therefore, no manually annotated 3-class masks
were available as groundtruth references.

The same U-net architecture and hyperparameters used
for U-net 2C of the SegVeg approach were also employed
here during training.

2.3. Training and Testing Datasets

2.3.1. Dataset #1: Vegetation and Background Fully Annotated
Patches. Eight subdatasets from previous studies were com-
piled to get a wide range of acquisition conditions, species,
crop states, and stages (Table 1).

The images were acquired with several cameras
equipped with different focal length optics and variable dis-
tances from the ground. All blurred images or those with
poor quality were excluded from our study. The original
images were then split into several square patches of 512 ×
512 pixels, a size selected to keep sufficient context. A total
of 2015 patches were extracted, showing a large diversity as

illustrated in Table 2. The ground sampling distance (GSD)
ranges were between 0.3 and 2mm to capture enough details
(Figure 3).

Considering that image annotation is time consuming, it
was subcontracted to a private company, imageannotation.ai.
Each original image was carefully segmented by several oper-
ators into vegetation (green and senescent combined) and
background pixels. We then verified the resulting classified
images and reannotated the few wrongly annotated ones.

2.3.2. Dataset #2: Green, Senescent, and Background
Annotated Pixels. Dataset #2 is composed of annotated
pixels only, extracted from images on which we have affixed
regular square matrix (grids) of 8 to 11 pixels.

This dataset was used to train and test the SVM stage of
the SegVeg approach (on green and senescent pixels). After
adding the background pixels, it was also used to evaluate
the performances of both the SegVeg and the U-nets (2C
and 3C).

(1) Image Acquisition and Extraction. Three independent
datasets (LITERAL, PHENOMOBILE, and P2S2) were used
to train and evaluate the proposed methods.

SVM

Input
RGB image

Intermediate output
vegetation background mask

Final output
Image classified into 

background,
green veg.

and senescent veg.

U-net

Figure 2: Illustration of the SegVeg architecture inputs and outputs. The first stage is a U-net model that predicts vegetation and
background masks. The second stage is a SVM that classifies the vegetation mask into green and senescent pixels. The two stages were
trained over two independent datasets.

Table 1: Characteristics of the subdatasets composing the final dataset.

Subdatasets Country Year Crops Stage Reference

UTokyo Japan
2019

Rice, wheat Vegetative [40, 41]
2012

P2S2
France

2018

Wheat, rapeseed,
sugar beet, and potato

All [42]
Belgium

Maize, grassland,
sunflower, rice, and soya

Wuhan China
2012

Cotton, maize, and rice Vegetative [43]
2015

CVPPP 1 and 2 Italy
2012

Arabidopsis, tobacco All [44]
2013

GEVES France 2020 Maize Vegetative —

Phenofix France 2020 Maize All —

Phenomobile France 2020 Wheat Early —

Bonirob Germany 2016 Sugar beet Early [45]
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(i) The LITERAL dataset was acquired with a handheld
system called LITERAL (Figure 4). An operator
maintains a boom with a Sony RX0 camera fixed
at its extremity. The camera faced the ground from
nadir at an approximately fixed distance (Table 3).
The 68 available annotated images covered a wide

range of wheat genotypes grown at several locations
in France, representing different growth stages, soil
backgrounds, and illumination conditions

(ii) The PHENOMOBILE dataset was acquired with the
Phenomobile system (Figure 4), an unmanned

UTokyo

P2S2

Wuhan

CVPPP 1 and 2

GEVES

Phenofix

Phenomobile 1 and 2

Bonirob

Figure 3: Sample of 512 × 512 pixels patches extracted from the eight subdatasets (Dataset #1).

Table 2: Characteristics of the subdatasets used to compose the training dataset. UGV means unmanned ground vehicle.

Subdatasets Platform Camera Image size (px) Distance to ground (m) GSD (mm) No. of images

UTokyo Gantry
Canon EOS Kiss X5 5184 × 3456

1.5-1.8 0.2-0.6 534
Garden Watch Camera 1280 × 1024

P2S2 Handheld

SONY ILCE-5000 5456 × 3632

2 0.5 170

SONY ILCE-6000 6000 × 5000

Canon EOS 400D 3888 × 2592

Canon EOS 60D 5184 × 3456

Canon EOS 750D 6000 × 4000

Wuhan Gantry Olympus E-450 3648 × 2736 0.3-5 0.4-0.5 343

CVPPP 1 & 2 Gantry Canon PowerShotSD1000 3108 × 2324 1 0.1-0.3 752

GEVES Handheld SAMSUNG SM-A705FN 3264 × 1836 2 0.2 50

Phenofix Gantry SONY RX0 II 4800 × 3200 2 0.6 30

Phenomobile UGV SONY RX0 II 4800 × 3200 1.7 0.8-1.4 76

Bonirob UGV JAI AD-130GE 1296 × 966 0.85 0.3 60

Total 2015
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ground vehicle [46]. This system uses flashes for
image acquisition making the measurements inde-
pendent of the natural illumination conditions.
Images are acquired from nadir at a fixed distance
from the top of the canopy (Table 3). The 173 avail-
able annotated images covered six crops grown in
four phenotyping platforms in France (Table 3)

(iii) The P2S2 dataset is composed of 200 hemispherical
and nadir images. The acquisition was designed to
provide a large dataset over a wide range of crops,

observed under contrasted growth conditions,
throughout the crop growth cycle, covering crucial
phenological stages. More details on the dataset
can be found in [42]

Several cameras were used for the acquisition of the
three datasets, resulting in differences in image quality and
GSD (Table 4). Note that the GSD of this dataset (Table 4)
is consistent with that of the previous dataset (Table 2). A
total of 441 images of 512 × 512 pixels were finally selected
to represent a wide diversity (Figure 3).

Literal Phenomobile P2S2

Figure 4: The acquisition systems used for the three independent datasets in Dataset #2: LITERAL, PHENOMOBILE, and P2S2 and their
respective examples of 512 × 512 images patches extracted from the three systems.

Table 3: Second-stage dataset description.

Datasets LITERAL PHENOMOBILE P2S2

Latitude, longitude
43.7° N, 5.8° E
49.7° N, 3.0° E
43.5° N, 1.5° E

43.7° N, 6.7° E
47.4° N, 2.3° E
43.7° N, 5.8° E
43.4° N, 0.4° W

43.6° N, 4.5° E
43.4° N, 1.2° E
48.3° N, 2.4° E
50.6° N, 4.7° E

Year 2017-2020 2018-2020 2018

Crops Wheat
Wheat, sunflower, sugar beet,

maize, potato, and flax
Wheat, sunflower, sugar beet, maize,

potato, rapeseed, grassland, rice, and soya

Vector Handheld Phenomobile Handheld

Focal length (mm) 8 16–25 50

Camera Sony RX0 II Baumer VCXG-124C
ILCE-6000 SONY
Canon EOS 750D

Image size (pixels) 4800 × 3200 4096 × 3000 6000 × 4000
3888 × 2592

Pixel size (μm) 2.74 3.45 3.72

Distance to ground (m) 1.5–2.5 2–4.5 1.5–2

GSD (mm) 0.65 1.3 0.5
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(2) Pixel Labelling. The previously mentioned pixel grids
were classified into one of the following six classes, namely,
green vegetation, senescent vegetation, background, green/
senescent vegetation unsure, unknown, and others. This
allowed us to remove pixels with uncertain annotations
and potential bias in the training phase. The green/senescent
vegetation unsure, unknown, and others were for instance
not used in the training and evaluation of the proposed
models. However, because of the complexity, subjectivity,
and time required to assign pixels into the six classes listed
above, the annotation was limited to a small number of
pixels per patches (i.e., not building full 3-classes ground-
truth masks). This sampled annotation is possible because
the second stage of SegVeg (shallow machine learning
SVM method) does not require context or local information
and therefore not demanding entire patches to be exhaus-
tively annotated. We used a grid displayed on each 512 ×
512 images, where the pixels to be classified were located
at the intersection of the grid points. A video recording the
annotation process of a few pixels is available in Supplemen-
tary Material (figure S1). The regular square matrix can vary
from 8 to 11 pixels on a side, depending on images. The web
based platform, Datatorch [47], was used by 2 annotators. A
second round of pixel labelling was performed by 2 other
reviewers to find a better consensus on the uncertain pixels
and to avoid potential bias in building Dataset #2.

Among the 441 annotated images (Table 4), the unsure
classes represented about 16% of the total number of pixels.
It can be noticed that for the PHENOMOBILE dataset, the
use of integrated flashes during image acquisition provided
better pixel interpretation leading to fewer confusions. This
dataset is publicly available on Zenodo and can be accessed
by following the guidelines at this link https://github.com/
mserouar/SegVeg.

(3) Split between Training and Testing Datasets. A total of
19,738 pixels were finally available to perform the training

and testing of the SegVeg SVM stage, of which 6132 were
used for training and 13,606 for testing (Table 5). Note that
for the evaluation of U-net approaches (2C and 3C), the test
Dataset #2 evolves by adding the almost 6000 background
pixels annotated from the grid (Figure 1, Supplementary
Material figure S1), which are naturally absent in the
green/senescent SVM training and evaluation.

The LITERAL dataset that represented only a small frac-
tion of the available patches over wheat crops was kept
entirely for testing. The PHENOMOBILE dataset was split
randomly into training (30%) and testing (70%) dataset
(Table 5), resulting in 1803 pixels used to train the SVM
model. Similarly, P2S2 was randomly split into 4329 pixels
for training (about 40%) and the remaining for testing. This
allows to get a balanced distribution between the contribu-
tions of PHENOMOBILE and P2S2 datasets to the training
process as well as maintain a balanced Green/Senescent
pixels fraction. The splitting scheme was chosen according
to the concrete theoretical foundation of the SVM algorithm.
SVMs are usually not chosen for large-scale data studies
because their training complexity is highly dependent on
the dataset size (quadratic to the number of observations),
which also comes with calculation time issues [48–50].
Moreover, the concept of hyperplane and margins does not
require a lot of observations during training, and adding
observations could lead to poor generalisation properties.
A big amount of initial data was hence kept for the valida-
tion step, to ensure robustness in predictions and model
performances.

2.4. Evaluation Metrics. Since semantic segmentation clas-
sifies each individual pixel, three standard classification met-
rics derived from the confusion matrix were used to quantify
the performances of the methods at the class level: precision,
recall, and F1-score (Table 6). Further, the overall accuracy
and overall F1-score were also computed to get a more
global evaluation of the segmentation performances

Table 4: Distribution of labelled pixel for the three datasets.

Datasets
No. of

labelled images
No. of

labelled pixels
% classes

Green veg. Sen. Veg. Background Green/Sen. Veg. unsure Unknown Other

LITERAL 68 4260 46.5 15.8 15.0 13.1 9.5 0.1

PHENOMOBILE 173 8266 40.3 31.1 27.6 0.1 0.8 0.1

P2S2 200 18559 43.6 16 15.2 11.1 13 1.1

Total 441 31085 43.4 20.5 19.75 8.1 7.8 0.45

Table 5: Distribution of the labelled pixels into the training and testing datasets. Only the pixels labelled as Green Veg. and Sen. Veg. were
used for the SVM SegVeg training.

Datasets No. of labelled pixels
% classes

No. of pixels train No. of pixels test % train % test
Green Veg. Sen. Veg.

LITERAL 2655 75 25 0 2655 0 100

PHENOMOBILE 5883 60 40 1803 4080 30 70

P2S2 11200 75 25 4329 6871 39 61

Total 19738 70 30 6132 13606 32 68
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(Table 6). We also considered the fraction of pixels of a
certain class in an image in a given viewing direction. This
trait is widely used as a proxy of crop development [51] par-
ticularly for the green parts characteristic of the photosyn-
thetically active elements [52]. Finally, regression results
RMSE and R2 were also considered to evaluate the methods.
All these metrics were computed over the test dataset
(Table 5), either directly on the test pixels from the image
grids, for grid canopy fractions directly on image grids from
which the training pixels have been removed, or finally, on
the whole images for U-net 3C step.

3. Results

3.1. Performances of the SegVeg Approach

3.1.1. Separation of Vegetation | Background with First-Stage
U-net 2C Model. Results (Table 7) on background and

combined green/senescent vegetation pixel grids show that
U-net 2C first-stage model classifies well the vegetation from
the background pixels, with an overall mean F1-score
between 82% and 92%. The F1class values are higher for
the vegetation class. Misclassifications are observed when
either the background corresponding to algae/moss is clas-
sified as vegetation (Supplementary Material figure S2,
bottom) or senescent vegetation is confounded with crop
residues (Supplementary Material figure S2, top). The
P2S2 subdatasets, achieved the best F1all performances.

3.1.2. Green and Senescent Vegetation Classification
Performances of the SVM Only and Full SegVeg Approach.
The pixel classification performances were evaluated on the
following: (i) applying only the second-stage SegVeg SVM
and (ii) applying the full SegVeg approach. Results
(Table 8) show that the green vegetation pixels are generally
well identified for the three subdatasets.

Table 6: Metrics used to evaluate the performances of the models.

Metrics Name Definition

True positive Tpclass Number of pixels well predicted in the given class

True negative Tnclass Number of pixels well predicted as not in the given class

False positive Fpclass Number of pixels wrongly predicted in the given class (confusion)

False negative Fnclass Number of pixels wrongly predicted as not in the given class (missing pixels)

Precision Precclass Tp/Tp + Fp

Recall Re cclass Tp/ Tp + Fnð Þ
Accuracy Accclass Tp + Tnð Þ/ Tp + Tn + Fp + Fnð Þð Þ × 100

F1-score F1class 2 × Tpð Þ/ 2 × Tp + Fp + Fnð Þð Þ × 100

Overall F1-score F1All 1/Nð Þ〠N

i=0F1 − scorei × 100

% confidence interval error CI 1:96 ×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F1score × 1 − F1scoreð Þð Þ/n
p

RMSE RMSE
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1/nð Þ〠n

i=1 yit
heorical − yi

predicted
� �2

q

R2 R2 1 − 〠 ypredictedi − ytheoricali

� �2
� �

/ 〠 ytheoricali − ymean
i

� �2
� �� �

Canopy fraction CF_class
∑I

i=1∑
J
j=1 image i, jð Þ = classð Þ/∑I

i=1∑
J
j=1 image i, jð Þð Þ (where i and j are, respectively,

the width and height of the image in pixels)

Table 7: Performances of the U-net 2C model to classify vegetation (GreenVeg:+Sen:Veg:) and background (Back.) pixels over test Dataset
#2. The elements of the confusion matrix, F1class and F1all , are presented.

Labelled
Classes (in %)

Sub-datasets
Predicted
Classes

Veg.

Veg. 94
LITERAL

60 70
82

Veg. 88
PHENOMOBILE

Back.

Back.

Back.

87 81
85

Veg.

97 40

84 13

95 12 95
P2S2

88 88
92

Back.

16

5

3

F1allF1class
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When using only the SVM, the senescent vegetation
pixels show significant confusion with the green vegetation
for the LITERAL subdataset. The background pixels are
preferentially classified as senescent vegetation, except for
the LITERAL subdataset (in SVM rows Table 8). This high-
lights the importance of separating first the vegetation from
the background with the U-net 2C model since without
using contextual information, e.g., using only the RGB color
information, does not allow to separate well the vegetation
from the background pixels, particularly for the senescent
vegetation and the darkest pixels as illustrated in Supple-
mentary Material figure S3.

3.1.3. Performances of the Full SegVeg Approach. Results
obtained over the pixels of test Dataset #2 show that the
accuracy and F1all score of the SegVeg model are high for
the three subdatasets. The SegVeg approach classifies gener-
ally well the pixels into the three classes because of the good
performances of the two stages demonstrated earlier
(Table 8 and Figure 5).

However, a significant amount of misclassification is still
observed between the senescent vegetation and the back-
ground for the PHENOMOBILE subdataset and between
the background and the green vegetation for the LITERAL
one (Figure 6). A 95% confidence interval (CI) error of 2.7
and 2.1%, respectively, for senescent vegetation and back-
ground was quantified. This CI is two times higher than that
of the green vegetation class. The degraded performances
observed on LITERAL images could be explained by the
complexity of the images due to the presence of awns that
are smaller than the pixel size, inducing confusion between
classes (Figure 6).

The classification performances of SegVeg seem to
slightly degrade when the green fraction decreases and when

the senescent fraction increases (Supplementary Material
figure S4). These situations are underrepresented in the U-
net 2C training database, which may contribute to the
degraded performances observed.

3.2. Comparison of the SegVeg Approach with the U-net 3C.
Results show that U-net 3C (Table 9) performs similarly to
SegVeg (Table 8) on Dataset #2.

The Similitude between the two models has been further
studied by looking at differences in each pixel predictions
between SegVeg and U-net 3C models. SegVeg pixel predic-
tions were used as groundtruth, i.e., reference values, in con-
fusion matrix of Table 9Similitude case.

The average accuracy and F1all values for the Similitude
are quite high, 90 and 85, respectively, with high values in
the diagonal terms of the confusion matrix. However, on
average, SegVeg approach exhibits slightly higher perfor-
mances compared to U-net 3C. Tables 8 and 9 reveal that
the best performances for SegVeg come mostly from a better
identification of the background pixels, particularly for the
LITERAL dataset.

Both models achieve the best performances on the P2S2
subdataset, whereas the worst performances are observed on
the LITERAL subdataset. The poor performances are partic-
ularly due to larger confusion over the background class pre-
dicted by U-net 2C (Tables 8 and 9).

4. Discussion

4.1. Use of Different Color Spaces to Better Separate the Green
and Senescent Vegetation. Differences in eye sensitivity
among operators impact the perception of colors [53] and
may therefore induce disagreement among them. Further,
first stages of senescence may also create differences between

Table 8: Confusion matrix (in % of the labelled pixels), accuracy, and F1all values computed for the SVM classification only and using the
full SegVeg approach for the three subdatasets (e.g., pixels from Dataset #2). The diagonal terms of the confusion matrix are indicated in
gray color. The colors of the two last columns correspond to the accuracy and F1all values (dark green, highest; dark red, lowest).

Labelled Classes (%)Predicted

74 52

LITERAL

61
84 79

60 47

PHENOMOBILE

87
83 80

69 48

P2S2

Sen. Veg.
SVM alone

SegVeg

Sen. Veg.

SVM alone

SegVeg

SVM alone

SegVeg

Sub-dataset Model
Classes Back. Acc F1all

78 4 37
Green Veg.

Green Veg.

Sen. Veg.
Green Veg.

Sen. Veg.
Green Veg.
Sen. Veg.

Green Veg.

Sen. Veg.
Green Veg.

Sen. Veg.
Green Veg.

22 96 63
82 6 13
9 93 26

Backg.

Backg.

Backg.

9 1
90 4 61
10 96 39
61 3 5
5 89 7

34 8
89 2 54
11 98 46
77 2 6
5 96 6

18 2 88
91 86
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the labelling of operators, since the yellow and reddish colors
observed are in continuity with the green ones in the color
space. To take into account this effect, the labelling was done
using several operators to get more consensual labelling.

The colors identified as senescent vegetation during the
SVM classification of the vegetation pixels show that simple
thresholds in the RGB space are not sufficient to get a satis-
factory separation. Reciprocally, the same applies to the
green vegetation. The combined use of certain components
of other color representations seem to be useful to segment
the green vegetation as proposed by other authors such as
R, S, a, b, Cb, and Cr in [21], sRGB space used for CIELab
transformation, in [54], or H and S in [55]. Likewise, addi-
tional features may also be used to better separate the senes-
cent vegetation such as the CMYK color space or the

quadrature from YIQ that were selected as input features
to the SVM (Supplementary Material figure S5).

To better highlight, qualitatively, the model perfor-
mances using these features and the corresponding theoret-
ical boundaries, a 3D RGB cube of 353 voxels was created. It
contains a huge panel of color shades, which helps to discern
visually where the SegVeg approach locates the senescent
vegetation within the color spaces (Supplementary Material
figure S6).

4.2. Impact of Illumination Conditions on the Segmentation
Performances. The pixels misclassified by the SegVeg
approach correspond mostly to brownish colors representative
of the senescent vegetation or background (Figure 7(a)).
The few green pixels observed with high brightness and

Figure 5: Examples of SegVeg model predictions over entire images of wheat acquired with LITERAL during early (top) and late (bottom)
senescence stage. On the left, the original RGB images. On the right, the corresponding segmented images where the background, and the
green and senescent vegetation are represented, respectively, in black, green, and yellow.

Figure 6: Example of misclassification with the SegVeg approach on a complex image presenting lots of thin spikes acquired with LITERAL.
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saturation may correspond either to errors in the labelling or
to mixed pixels very close to the limit between the green and
senescent vegetation (Supplementary Material figure S6).

Illumination conditions may also strongly impact the quality
of the classification. Misclassified pixels are preferentially
observed for the small brightness values (Figure 7(b)) where

Table 9: Performances of U-net 3C model and Similitude to SegVeg model evaluation (in %). Similitude confusion matrix was built with
SegVeg outputs as groundtruth pixel values on Dataset #2. The diagonal terms of the confusion matrix are indicated in gray cells. The colors
of accuracy and F1all are related to their performances (dark red the lowest; dark green the highest).

Labelled Classes(%)
Sub-dataset Model

Predicted
Classes Back. Acc F1allSen. Veg.

86 4 28
Green Veg.

10 95 31U-net 3C

U-net 3C

U-net 3C

Backg.

Backg.

Backg.

Backg.

Backg.

Sen. Veg.

Sen. Veg.

Sen. Veg.

Sen. Veg.

Sen. Veg.

Sen. Veg.

Green Veg.

Green Veg.

Green Veg.

Green Veg.

Green Veg.

Green Veg.
Backg.

4 1 41
83 74

87 2 30
12 97 10

LITERAL

Similitude
1 1 60

89 83

67 3 9
12 89 7
21 8 84

83 81

76 3 12
13 94 5

PHENOMOBILE

Similitude
11 3 83

87 83

74 2 6
11 95 6
15 3 88

90 85

80 2 4
14 96 3

P2S2

Similitude
6 2 93

93 90
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Figure 7: (a) Distribution of the brightness (V from HSV) and saturation (S from HSV) for the misclassified pixels by the SegVeg model.
Each point corresponds to a misclassified pixel from the grids of the test dataset. They are represented by their actual RGB color. (b)
Cumulated distribution of the brightness of the misclassified (red) and well-classified (blue) pixel.
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the dynamics of the color values may be too limited to get
an accurate classification based both on the color spaces or
on the spatial features, inducing confusion among the
three classes. This applies both to the labelling process
and to the model predictions. Misclassified pixels are also
observed preferentially in the highest brightness values
(Figure 7(b)). In such conditions, some authors [56]
propose to assign the saturated pixels to the most
frequently saturated class. In our case, this would degrade
the segmentation performances since the saturated pixels
may belong to any of the three classes. However, a larger
representation of green vegetation particularly with glossy
leaves under either clear sky conditions or using flashes
is often saturated.

The confusions observed for the PHENOMOBILE sub-
dataset and leading to slightly degraded segmentation per-
formances (Figure 8(a)) are partly due to the use of flashes
instead of the natural illumination as in LITERAL and
P2S2 subdatasets. The noncollimated nature of the light
emitted by the flashes induces a decrease in the intensity of
the radiation that varies as the inverse of the square of the
distance to the source. When the source is too close to the
top of canopy, pixels tend to be saturated with limited classi-
fication potential. To limit this saturation effect, images taken
from the PHENOMOBILE were slightly underexposed. Fur-
ther, the pixels located at the bottom of the scene receive very
little illumination and are therefore very dark. The distri-
bution of the brightness for the PHENOMOBILE dataset

(Figure 8(b)) shows more darker pixels than the other sub-
datasets acquired under natural illumination conditions.
This is in agreement to the higher confusion between the
vegetation and the background presented earlier (Tables 7
and 8).

4.3. Weak Supervision Is Promising. Because of the unavail-
ability of images fully labelled into the three classes, U-net
3C was trained over masks predicted by the SegVeg model.
This weak supervision approach could lead to biased predic-
tions, since SegVeg predicted masks are not perfect as dem-
onstrated previously in Table 8, and obviously, training will
converge to similar SegVeg results. Moreover, U-net 3C was
trained over whole images compared to 6132 pixels for SVM
classification model. However, the performances of U-net
3C (Table 9) are quite close to those of SegVeg (Table 8)
for the PHENOMOBILE and P2S2 subdatasets, while Seg-
Veg performs slightly better over the LITERAL subdataset.
Comparison between SegVeg and U-net 3C (Table 9, “Simil-
itude” case) confirms the consistency between the two
models, as expected. Weak supervision appears to be a
promising way to pretrain deep learning algorithms by
reducing the labelling process by the operators. The larger
number of images therefore available to train the model is
expected to partly compensate for the lower quality of the
“automatic” labelling. However, the main differences lie in
the patterns of the green and senescent vegetation masks
(Figure 9) where SegVeg appears crisper than U-net 3C
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Figure 8: (a) Distribution of the performance (F1all) for both controlled (PHENOMOBILE) and natural (P2S2 and LITERAL datasets)
illumination conditions (with p value expressed above boxplots). (b) Distribution over brightness (V from HSV) for the three datasets.
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which shows fuzzier masks. Indeed, the kernel filters used in
U-net 3C to separate the green from the senescent vegetation
tend to omit the small elements in the images and render

more diffused patches. Conversely, the pixel-based separa-
tion between the green and senescent vegetation allows to
better describe the small details (Figure 9).

RGB IMAGE SegVeg U-NET 3C

(a) (b) (c)

Figure 9: Results of the segmentation using SegVeg (b) or U-net 3C (c). Background, green vegetation, and senescent vegetation are
represented, respectively, in black, green, and yellow. (a) The original RGB image.

Table 10: Performances of SegVeg and U-net 3C to estimate the background, green, and senescent vegetation fractions over grids.
“Similitude” for comparison of model performances was computed using either the labelled grids or whole images. R2 is the
determination coefficient. The colors of R2 and RMSE are related to their column values (dark green, the best; dark red, the worst).

Fraction Model Grid/Image R2 RMSE Slope Offset (abs.)
SegVeg Grid 0.73 0.14 0.97 0.01

U-net 3C

SegVeg
U-net 3C

SegVeg
U-net 3C

Grid 0.74 0.14 0.99 0.01
Grid 0.82 0.13 0.92 0.00

Background
Similitude

Image 0.80 0.13 0.94 0.01
Grid 0.94 0.08 0.99 0.00
Grid 0.90 0.10 1.03 0.01
Grid 0.95 0.07 1.04 0.01

Green Veg.
Similitude

Image 0.95 0.07 1.07 0.02
Grid 0.70 0.13 0.95 0.00
Grid 0.70 0.13 1.14 0.02
Grid 0.74 0.14 1.02 0.00

Sen. Veg.
Similitude

Image 0.73 0.13 1.07 0.00

13Plant Phenomics

D
ow

nloaded from
 https://spj.science.org on D

ecem
ber 12, 2022



4.4. Predicting the Fractions of Green and Senescent
Vegetation. The evaluation of the performances over pixels
that have been labelled by the operators has been presented.
However, the grid-pixels correspond to a subsample of the
image which questions their representativeness in regard to
the entire image. We therefore evaluated the agreement
between the segmentation predicted by SegVeg and by U-
net 3C over both the grid-pixels and the entire images, fol-
lowing the same exact principle as Table 9, SegVeg pixels
as reference. Results show (Table 10, “Similitude” case) that
R2, RMSE, slope, and offset for the grids and the images are
in good agreement of each of the three fractions considered.
This indicates the fraction of background, green, and senes-
cent vegetation computed over the pixel subsampling repre-
sents quite well the whole images.

SegVeg and U-net 3C show similar performances. The
best agreement is observed for the green vegetation fraction
(Table 10), with a slight advantage for SegVeg, confirming
the slightly better performances in the segmentation of this
class (Tables 8 and 9). The estimates are not biased, accord-
ing to slopes (Table 8 and Figure 10(a)). Conversely, the esti-
mation of the background and senescent vegetation fractions
show degraded performances for U-net 3C, which are
related to the degraded performances observed previously
in the segmentation of these two classes. The confusion
between the background and the senescent vegetation pixels
by U-net 3C may be quite large as highlighted by the num-
ber of outliers, with a quasiexact compensation between
these two fractions since the green vegetation fraction is well
predicted (Figure 10(b)). Small biases are observed in these
fractions predicted by SegVeg and U-net 3C models, except
for the senescent fraction of U-net 3C for which the bias

(Table 10) mostly comes from the distribution of the outliers
(Figure 10).

The SegVeg approach and U-net 3C segmentation
appear efficient to compute the fractions of the different ele-
ments of the image. However, the SegVeg model offers a
slight advantage with better performances for green fraction
and smaller biases in senescent vegetation fraction.

4.5. Limitation of the Study. This study is based on segmen-
tation models using shallow and deep learning techniques. It
is therefore constrained by the availability of training and
testing datasets. The first-stage SegVeg U-net 2C model
was trained over a relatively large and diverse database
(Table 1) containing 2015 images of 512 × 512 pixels. The
SegVeg SVM is trained over 6132 pixels extracted from grids
applied to the original images, thus showing a wide diversity
in species, phenological stages, canopy state, and acquisition
conditions. However, the pixels labelled as uncertain (green/
Sen. Veg. unsure, unknown, and other) were not used, forcing
the SVMmodel to extrapolate for these situations. Finally, the
training was completed over two subdatasets where the P2S2
is overrepresented as compared to PHENOMOBILE. This is
why the results were presented per subdataset. This also partly
explains the differences in performances observed over the
three test datasets, with a general trend: P2S2 > PHENOMO-
BILE > LITERAL.

The evaluation of the models was performed at the pixel
level. A large number of pixels was considered here (more than
20,000 pixels, including background class, Table 5), along with
those extracted from the LITERAL subdataset that were not
used in training. The “unsure” pixels were not used to com-
pute the performances, which may also induce small biases
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in the results since the “unsure” pixels may not be evenly dis-
tributed between the three classes of interest. However, we did
not have other alternatives, since “unsure” pixels correspond
mostly to extremely dark, bright (S3), or mixed pixels. Indeed,
great attention should be paid to the image spatial resolution
and exposure during image acquisition. Studies based on 3D
scenes rendered realistically should be conducted to better
understand the unsure classes and their possible distribution
among the three classes of interest.

Data Availability

SegVeg pixels dataset, images, and their corresponding segmen-
tation masks are be publicly available. All the SegVeg scripts for
computation and analysis are also public: https://github.com/
mserouar/SegVeg. For simplicity, dataset download links
(including Zenodo) will be specified in the above repository.
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Supplementary Materials

Supplementary 1. Video record of grid-pixel annotation pro-
cess. The annotator classifies every pixel at the intersection
of the grid to the one of the six classes.

Supplementary 2. Example of classification errors with the
vegetation and background first-stage U-net 2C model. Left:
original images. Middle: vegetation masked images. Right:
background masked images. Top: almost all the senescent
vegetation is classified as soil. Bottom: background algae
zones are classified as vegetation.

Supplementary 3. Distribution of the colors among the six
classes as observed over the labelled pixels of the test and

training datasets. For each class, pixels are sorted according
to their brightness from the HSV color space.

Supplementary 4. Performances (F1 all) of the SegVeg
approach as a function of the green (left) and senescent frac-
tion (right) per image.

Supplementary 5. Use of different meaningful color spaces to
describe the image content: RGB original image (left), Y
component from CMYK (middle), and Q component from
YIQ (right). Y and Q images are in gray scale.

Supplementary 6. Boundaries of SegVeg colors inferred on a
35 3-voxel RGB cube thanks to the SegVeg model second-
stage SVM. On the right, yellow predicted pixels. On the left,
the rest that includes the green predicted pixels.
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