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Introduction

African swine fever (ASF) is a contagious disease of pigs caused 

by the African swine fever virus (ASFV), a large double-stranded 

DNA arbovirus that replicates predominantly in the cytoplasm. 

Its mortality rates can be up to 100% in affected herds (Hess 

1971; Penrith et al. 2004). ASFV belongs to the genus Asfivirus, 

family Asfarviridae, only affecting members of the family Suidae 

(Alonso et al. 2018). Due to the economic impact in affected 

countries, ASF is one of the main threats to the development of 

pork production in Africa (Penrith et al. 2013). In addition, the 

lack of vaccine aggravates its impact (Chang et al. 2006).

In Africa, South Africa has one of the three largest pig populations, 

following Nigeria and Uganda. In May 2017, statistics indicated 

1.49 million pigs in South Africa. Most of the pig population is 

in Limpopo, North West and the Western Cape Province with 

359 138, 315 566 and 162 859 pigs, respectively (Department 

of Agriculture, Forestry and Fisheries 2017). However, most 

of households farming pigs (91.3%) have fewer than 10 pigs 

(Statistics South Africa 2016), often kept under conditions of poor 

management (free-range system) and low biosecurity (Mokoele 

et al. 2014). In 2011, there were approximately 400 commercial 

producers and 19 stud breeders in South Africa (Department of 

Agriculture, Forestry and Fisheries 2012).

In South Africa, ASF has for many years been confined to 
a controlled area in the northeast of the country that was 
determined and proclaimed in 1935, based on the assumed 
distribution of infected warthogs. Subsequently, this area was 
confirmed by the presence of both infected warthogs and ticks 
(Magadla et al. 2016; Thomson 1985). However, since 2012 more 
outbreaks have been reported outside the controlled area. 
Considering its demonstrated ability to spread over distances 
(Beltrán-Alcrudo et al. 2017; Sánchez-Cordón et al. 2018), there is 
an urgent need for an effective approach to prevent and control 
ASF in the absence of preventive and curative treatment. ASF 
outbreaks occurred sporadically in the historically ASF-free areas 
of South Africa since 2012 and clustered in the controlled area, 
but there are no previous quantitative studies on space-time 
patterns of this disease in South Africa to confirm this qualitative 
statement. Thus, new clustering of significant areas indicating 
high risk should be estimated for better management of the 
disease and the pork production sector.

To achieve identification of patterns of ASF outbreaks, and devise 
more robust prevention and control programmes, knowledge of 
history, epidemiology and the identification of risk factors for 
disease occurrence is essential (Mott et al. 1995; Vergne et al. 
2016). Once the disease is present in a region, control measures 
must be focused on early detection associated with rapid 
laboratory diagnosis reducing the potential transmission of the 
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virus to uninfected herds, strict movement control of pork and 
associated products and strict enforcement of sanitary measures 
(Aguero et al. 2003; Sanchez-Vizcaino 2006).

Thus, reviewing of ASF outbreak history and evaluating the 
distribution of space-time clustering are urgent priorities, 
because the effectiveness of prevention programmes varies over 
time and space (Ayebazibwe et al. 2010; Dukpa et al. 2011; Ochwo 
et al. 2018). To our knowledge, no study has been conducted in 
South Africa in order to assess statistically and quantitatively, 
the clustering of ASF outbreaks over space and time. This study 
aimed to examine the spatiotemporal structure of ASF in South 
African domestic pigs using historic data in order to support the 
development of an accurate control strategy.

Methodology

Study area

South Africa is located at the southern tip of the African 
continent, occupying around 1 219 090 km2, with 3 100 km 
length of coastline. Due to the oceanic effect and topographic 
variations, the climate varies from one region to another; it is 
mostly semiarid, but is subtropical along the East coast, where 
nights are cool and days are sunny. Observed high temperatures 
in some areas favour the development and maintenance of 
vectors and water-borne diseases (Wepener & Degger 2019).

Data collection

Retrospective data on ASF outbreaks were obtained from the OIE 
disease database, veterinary services annual reports available on 
the South African Department of Agriculture, Land Reform and 
Rural Development (DALRRD) website, formerly Department 
of Agriculture, Forestry and Fisheries (DAFF), published articles 
(Web of Science, PubMed, Scopus and Google Scholar). The OIE 
diseases database comprised the year and month of outbreaks, 
the province, the state veterinary area, the district, the species, 
and the number of outbreaks, cases, dead and killed animals. 
For each outbreak, an individual manual correction was applied 
to control for possible double or multiple entries of the same 
information from multiple sources.

Data analysis 

Descriptive analysis was performed on ASF outbreaks in order 
to describe their spatial and temporal (annual and monthly) 
distribution. At the month and year levels, temporal aggregation 
was performed. The month is the precision utilised by the 
source that is the least precise. Because certain epidemics can 
last for several months, the year level was taken into account. 
This distinction allowed also to distinguish between seasonal 
patterns, available with the monthly aggregation, versus annual 
patterns, available at annual aggregation. The chi-square 
goodness-of-fit test for one sample known as the chi-squared 
test for given probabilities was used to compare proportions of 
outbreaks in the different months. Fisher’s exact test was used to 
test the relationship between months and areas of occurrence 
(controlled or outside controlled areas). In addition, pairwise 
comparisons using exact binomial tests considering the p-value 
correction (Benjamin & Hochberg 1995) was used to identify 
months with more outbreaks. 

To assess the spatial distribution of reported outbreaks, a spatial 
K-function of Ripley was calculated (Basáñez et al. 2009; Ripley 
1976; Ripley 1977). D0(s,t) function (space-time K-function) 
was used to investigate global space-time interactions of 
ASF outbreaks in South Africa (Diggle et al. 1995). The D0(s,t) 
function analyses possible dependence between the spatial 
and temporal components of ASF outbreaks. This function 
detects if observed density of outbreaks in a region at a given 
time and scale is above or below the expected number; giving 
information on the scale and nature of the dependence between 
the spatial and temporal components (Ceyhan et al. 2013; Ruiz-
Moreno et al. 2010; Wang et al. 2020). For a given distance and 
time separations, D0(s,t) given the proportional increase in cases 
attributable to the interaction space-time (Basáñez et al. 2009; 
Diggle et al. 1995). D0(s,t) is:

D0(s,t) =      D(s,t)
                  KS(s)Kt(t)

Where: 	 - KS(s) defines the K-function in space 

 	 - Kt(t) defines the K-function in time and 

 	 - D(s,t) is the K-function difference defined as: 		
	   D(s,t)=K(s,t)-KS(s)Kt(t) 

The splancs package (Rowlingson & Diggle 1993) adapted for 
use in R software was used to estimate the global space-time 
interaction. The confidence envelope was obtained through 
Monte Carlo simulation (number of simulations = 999) to perform 
hypothesis testing. The outbreak that occurred in Modimolle in 
October 1993 was the landmark for the spatial distribution. It is 
the local municipality where the first outbreak recorded in the 
OIE database occurred.

The retrospective space-time analysis scanning for clusters with 
high rates using the discrete Poisson model in SaTScan 9.4.6 was 
used to detect local clusters. The detection of high rates clusters 
of ASF consist of comparing cases from previous space-time 
window with a user-defined baseline. The temporal window is 
limited to one month and one year selected based on the size 
and length of outbreaks. The spatial window was based on 
default input parameters. The statistical significance of clusters 
was determined using Monte Carlo testing set at 999 replications 
(Kulldorff et al. 2005; Mathes et al. 2017).

Results

Analysis of temporal distribution of ASF outbreaks in 
South Africa

The maximum number of outbreaks for a single year was 
observed in 2012 outside the controlled area, when 15 outbreaks 
were reported: nine in Mpumalanga and six in Gauteng (Figure 
1). 

Chi-squared test for given probabilities has shown that outbreaks 
are significantly not homogeneously distributed within months 
in South Africa (p < 0.001). January was the month that has 
reported significantly (p < 0.05) more outbreaks than any other 
month, followed by June, July, February, August and May. There 
was a significant relationship between month and occurrence 
area (p < 0.05). In the ASF-controlled area, outbreaks have been 
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reported in all months of the year (from January to December). 
In this area, they were more frequent in January, February and 
July with five outbreaks reported in each of them, followed by 
April, October and November with four outbreaks. During the 
period of this study (1993 to May 2018), outbreaks outside the 
ASF-controlled area had never been reported in March, April, 
November, and December. Most outbreaks in this area had been 
reported in January (15 outbreaks), followed by May and June 
with five outbreaks for each (Figure 2). 

Spatial distribution of ASF outbreaks in South Africa

In South Africa, from 1993 to 2018, ASF outbreaks had mainly 
been reported in Limpopo province with 35 outbreaks (48.6%) 
and other northern South African provinces such as Gauteng, 
Mpumalanga, North West and Free State provinces reporting 
respectively six, nine, six and 11 outbreaks (Figure 3).
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Figure 1: Temporal distribution of ASF in South Africa from 1993 to 2018; only the years in which outbreaks occurred are represented in Figure 1
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Figure 2: Monthly distribution of ASF outbreaks in South Africa from 
1993 to 2018

Figure 3: Number of ASF outbreaks per local municipality from 1993 to 2018
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The spatial K-function has shown that ASF outbreaks are not 
uniformly distributed across South Africa (Figure 4), meaning 
that outbreaks tend to cluster in space (short distances). Thus, 
between 0 and index 40, the distribution was more of clustered 
than random distribution as observed K values were larger 
than expected K values in that interval, while it became more 
dispersed than a random distribution from index 40 as observed 
K values were smaller than expected K values (Figure 1).

Spatiotemporal clustering of ASF outbreaks in South 
Africa

Global clustering

The D-function was used to analyse possible dependence 
between the spatial and temporal components of ASF outbreaks. 
For both month and year scales, D0(s,t) decreased in distance 
‘s’ and time ‘t’. The decrease was faster in the interval between 
the first confirmed reported outbreaks between 1993 (t = 0) and 
2002 (t = 9) and the distance less than four degrees around the 
centroid of Modimolle (first outbreak reported to OIE) considered 
as landmark (s = 0).

At the year scale, the residual plot in Figure 6b strongly suggests 
the absence of space-time interaction since the standardised 
residuals R(s,t), fluctuated around 0 that seems closer to the 
expected value 0 and variance 1. Nevertheless, the larger R(s,t) 
values at smaller K(s,t) values suggest that there is an interaction 

at the smaller spatial and/or temporal scales. Furthermore, the 
residual plot does not suggest any grouping. 

Considering the sum of residuals as statistic test, Monte-Carlo 
test of ASF outbreaks in South Africa at year scale found no 
significant space-time clustering (p = 0.577) which implies lack 
of significant space-time interaction at year level. It means that 
there is no spatiotemporal pattern of clustering when outbreaks 
data were compiled per year.

The trend in D̂(s,t) values at month level was similar to the 
trend in D̂(s,t) at year scale. Nevertheless, at month level, the 
standardised residuals R(s,t) were almost all positive suggesting 
a probable presence of space-time interaction in ASF outbreaks 
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Figure 4: Spatial K-function analysis for uniformity of distribution of ASF 
outbreaks in South Africa
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Figure 5: Diagnostic plots for space-time clustering at month scale (a: the perspective plot of the difference between spatiotemporal K-function and 
the product of the spatial and temporal K-functions; b: the standardised residuals against the product of the spatial and temporal K-functions (middle) 
and c: histogram of the test statistics, where the statistic for the data is indicated with a vertical line)
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Figure 6: Diagnostic plots for space-time clustering at year scale (a: the perspective plot of the difference between spatiotemporal K-function and the 
product of the spatial and temporal K-functions; b: the standardised residuals against the product of the spatial and temporal K-functions (middle) and 
c: histogram of the test statistics, where the statistic for the data is indicated with a vertical line)
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for smaller and greater K̂◼(s,t). The Monte-Carlo test for space-
time interaction was highly significant (p = 0.003), which implied 
significant space-time interaction at the month level. That is, 
space-time interaction relied on cluster at month scale. 

Local clustering using space-time scan statistic to detect 
ASF outbreak clusters

As ASF outbreaks were clustered, Figure 7 tried to identify 
significant local space-time clusters depending on the chosen 
aggregation time.

Details of the space-time analysis scanning for clusters illustrated 
in Figure 7 are summarised in Table I. For each cluster, the location 
(radius and centre’s coordinates), period, number of outbreaks 
and the relative risk (RR) are given.

At month and year levels, we identified three significant high-
rate spatiotemporal clusters of ASF outbreaks where hotspots 
could be associated with environmental, anthropogenic and 
other risk factors. Details on clusters’ centre, radius, start date 
and end date, risk ratio and p-value are in the Table I. 

Discussion

This study explored the spatiotemporal analysis of ASF using 
historic outbreak data in South Africa between 1993 and 2018. 
During the period of interest, South Africa reported 72 community 

outbreaks of ASF. The incidence of ASF outbreaks could not be 
accurately determined, and may have been underreported as 
data on ASF could not be collected systematically, especially in 
the subsistence sector represented by small-scale production 
mainly in rural areas. Pigs held in small-scale farms represent a 
significant part of the South African pig population (Mokoele 
et al. 2014). On such farms, outbreaks are most unlikely to have 
been detected, and if detected, may not be reported due to 
limited access to veterinary services, poor communication and 
lack of knowledge and sensitisation of the rural population on 
animal diseases. As a result, ASF outbreaks in this study include 
only those that were reported to the OIE and declared by 
DALRRD in their database, which may be an underestimation of 
the scale of the problem.

The detection of spatial and spatiotemporal clustering re-
presents a preliminary step for an in-depth analysis of ASF 
outbreaks. A series of ASF outbreaks has been observed in South 
Africa, especially in the controlled area (Magadla et al. 2016). 
As spatial and temporal dimension to outbreaks interrelate, as 
well as with other risk factors, this study adds precision to this 
qualitative description. This type of analysis is well suited for 
working with historical data on outbreak incidence and allows 
a visual assessment of their development in time (Kulldorff et 
al. 2005). However, the degree of detail and completeness of 
reports and histories could have affected the quality of outputs.

Figure 7: Local spatiotemporal clusters of ASF outbreaks in South Africa using SaTScan

Table I: Summary of spatiotemporal clusters analysis of ASF in South Africa 

Time 
aggregation

Clusters (Coordinates) / Radius Time frame Observed 
cases

Expected 
cases

RR 
(p-value)

Number of 
outbreaks

1 month 

1 (28.403510 S, 24.414840 E) / 
271.43 km

2016/5/1 to 
2017/6/30

1 404
143.30

17.70
(< 0.001)

7

2 (25.746111 S, 28.188056 E) / 
101.96 km

2012/1/1 to 
2012/1/31

250
25.75

10.51
(< 0.001)

13

3 (23.018208 S, 29.783106 E) / 
198.36 km

2017/6/1 to 
2017/8/31

309
48.09

7.06 
(< 0.001)

22

1 year

1 (28.403510S, 24.414840E) / 
271.43 km

2015/6/1 to 
2018/5/31

1 404
167.37

15.02
(< 0.001)

7

2 (23.875992S, 30.842721E) / 
196.65 km

2017/6/1 to 
2018/5/31

216
28.84

8.00
(< 0.001)

13

3 (24.956246 S, 28.273060 E) / 
60.84 km

1993/10/1 to 
1995/5/31

41
6.27

6.61
(< 0.001)

2
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Regarding ASF epidemiology, we found that ASF outbreaks are 
not uniformly distributed across South Africa. There was strong 
statistical evidence of space-time interaction between reported 
outbreaks at month scale. However, the space-time interaction 
appeared to be more spread out in time considering the year 
scale. Thus, when an outbreak occurs there is a clustering in 
the following months that can be interpreted as representing 
epidemiological links between outbreaks at a monthly scale. 
Vergne, Gogin and Pfeiffer (2017) found significant space-time 
clusters of ASF outbreaks in two regions (Krasnodar and Tver 
regions) of the Russian federation from 2007 to 2014. In these 
two regions, the spatial proximity to an infected farm was a 
strong risk factor for infection of a susceptible farm. In South 
Africa, outbreaks of ASF are mainly linked to the movements 
of pigs rather than to climatic and environmental factors. More 
pigs move and are slaughtered at Christmas, during the New 
Year festivities until January due to the need of money at the 
beginning of the school year (Penrith & Vosloo 2009).

For both month and year scales, D̂(s,t) decreased in distance and 
time implying an apparent clustering of outbreaks with a rapid 
spread observed at short distances over short periods of time 
(Basáñez et al. 2009; Diggle et al. 1995). 

Considering cases and susceptible domestic pigs, different high-
rate clusters were identified depending on aggregation time. 
However, aggregation per year was just overlapping the monthly 
aggregation, losing some precision in terms of time interval 
between outbreaks. For all aggregation times high rates areas 
were in both controlled and outside the controlled ASF areas. 
Small clusters (less than 100 km radius) were detected and could 
be related to local transmission and contacts due to local human 
transportation of animals. Regarding the area of occurrence, 
clusters in areas where the sylvatic cycle is constantly present 
should be related to local transmission through direct contact 
(free ranging pigs) or warthogs contact without being able to 
distinguish. Therefore local survey should be implemented in 
regions with high transmission rates. ASF clusters outside the 
ASF-controlled area have all been linked to smallholder, low 
biosecurity pig farming and pig movements. It would therefore be 
important to focus on addressing challenges in the smallholder 
pig farming sector to improve profitability and minimise the 
risk of disease introduction, thereby improving livelihoods and 
food security (Penrith & Vosloo 2009). Nevertheless genomic 
data would help to understand the cluster’s diversities and 
the relatedness of ASFV involved and their origin. Considering 
the recent increase of outbreaks outside the ASF-controlled 
area, the prescribed control measures and areas should be 
reconsidered. Magadla et al. (2016) earlier confirmed that ASF-
infected warthogs, warthog burrows and tampans that may 
be involved in ASF transmission in South Africa could be found 
beyond the ASF control line. Vergne et al. (2017) concluded that 
there was no statistically significant difference between two 
regions of the Russian federation for the risk of ASF infection in 
rural farms located close to wild boar and those located further 
away. This shows the minimal role that wild boar-to-domestic 
pig transmission played in the ASF outbreaks that occurred in 
those regions. However, European wild boars die as much as 

the domestic pigs but warthogs may be long-term carrier and 
disseminators, via Ornithodoros ticks, of infection.

According to Ceyhan et al. (2013), spatiotemporal analysis is 
essential in dealing with disease spread patterns because it helps 
decision makers to identify problematic regions in order to focus 
on these specific regions at specific times and develop policies 
and strategies for prevention and control of disease outbreaks, 
taking note of other spatial patterns. This study is, to our 
knowledge, one of the rare local scale studies characterising ASF 
outbreaks in South Africa through spatiotemporal perspectives, 
which encourages future geospatial research in animal disease 
epidemiology.

However, some limitations should be considered when 
interpreting the results of this study. The use of centroids 
of affected local municipalities by DALRDD instead of true 
geographic coordinates in order to keep the anonymity of 
affected farms. However, this should not affect the analysis too 
much taking into account the size of obtained clusters. The 
analysis is based mainly on OIE reports. OIE receives six-monthly 
updates from countries with an established endemic situation, 
such as within South Africa’s ASF-controlled area. Due to 
reporting not being done via immediate notifications, for those 
outbreaks that are reported, the reporting is usually delayed. 
Furthermore, the fact that outbreaks in the controlled area 
occur because the regulations for keeping pigs have not been 
observed, we would suggest that under-reporting is highly likely. 
This has led us to consider only outbreaks that occurred before 
May 2018 (investigations completed). Given that different and 
independent genotypes of the ASF virus have been involved in 
the outbreaks in domestic pigs reported in the period of interest, 
the data analysed include a very heterogeneous mix (Boshoff et 
al. 2007; Janse van Rensburg et al. 2020). However, the aim of 
this study was not to analyse the spatiotemporal structure of the 
different genotypes in South Africa.

Based on the methodology proposed, further analysis can be 
conducted. This includes considering the same models used in 
this study but considering the different and independent ASFV 
genotypes involved in the outbreaks in domestic pigs reported 
in the period of interest. In addition, outbreaks from areas 
where the sylvatic cycle is constantly present can be analysed 
independently with outbreaks outside the controlled area, given 
that the two cycles most likely are driven by different factors. It 
also includes considering alternative models testing space-time 
clustering and more precise data (for example, primary data).

Conclusion

This study aimed to examine the spatiotemporal structure of 
ASF outbreaks in South African pig production systems. The 
spatial analysis has shown that ASF outbreaks are not uniformly 
distributed across South Africa while the interaction time and 
space found significant clustering at month level. Different spatial 
and temporal clusters associated with high-rate ASF outbreaks 
were detected both inside and outside the ASF-controlled areas. 
Thereby, investigations of ASF clustering added considerable 
information and provided a foundation on which to build causal 
hypotheses and implement prevention and control strategies. 
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The findings from this study can be used as a baseline for further 
epidemiological studies to identify risk factors involving socio-
economic factors associated with high-rate regions, spread 
greater awareness and develop effective measures to prevent 
and control ASF in South Africa. For better prevention and 
control of ASF, strategies should at least consider the season 
and pig movements and involve all stakeholders, especially 
smallholder pig keepers. In South Africa prevention and control 
measures should be applied not only to the controlled area but 
in all areas identified as high-risk areas.
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