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Abstract

Land use change is one of the most important determinants of carbon storage and

dynamics in ecosystems. Areas in the proximity of metropoles undergo land use

changes but are poorly studied for their soil and biomass carbon budget, especially in

Africa. Close to Benin's economic capital, the Lama Territory located on the Allada

Plateau and is subject to high demographic and urbanization pressures. Carbon

(C) stocks in the region are likely to be rapidly changing. This research assessed the

land use changes and quantified the spatial distribution and variation of C stocks

between 2000 and 2018 on the Ferralsols of the study area. Random forest models

using spectral bands of LANDSAT images and some spectral indices as predictors

were calibrated to classify the land use. C stocks of four C pools (aboveground,

belowground biomass, litter, and soil) were mapped with InVEST (integrated valua-

tion of ecosystem services and tradeoffs) model. Land use change occurred in 61% of

the Ferralsol area between 2000 and 2018. The surface of forests and crop-

plantation associations decreased in benefit of tree plantations, adult palm groves,

and built-up areas. With the loss of forest surface and the increasing urbanization, C

stocks of the region decreased by �218 Gg C with 4% uncertainty (�175 Gg C in soil

pools, and � 125 Gg C in aboveground biomass with both 6% uncertainty) between

2000 and 2018. Results highlight: (i) the need for soil C stock accounting to avoid

underestimation of C stocks evolution in a rural region; and (ii) the relevance of tree

plantations and deforestation control to maintain the C stocks in tropical areas.
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1 | INTRODUCTION

Land use change is the second largest source of global warming, after fos-

sil fuel combustion. (FAO, 2019; IPCC, 2019a). Land use change increases

or decreases atmospheric carbon (C) emissions and contributes

significantly to climate regulation. (Scharlemann et al., 2014; Tieszen

et al., 2011). For example, urbanization and expansion of agricultural land

often lead to deforestation and biomass and soil carbon stock depletion

(Olorunfemi et al., 2018; Zhang et al., 2017). On the contrary, reforesta-

tion through tree plantations or forest natural regeneration enhance
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terrestrial C stocks (Dibaba et al., 2019; Yirdaw, 2018). In addition to C

stocks evolution, the evolution of ecosystem services due to land use

change has attracted international attention, as these services affect the

economies, environment, and thus the well-being of human societies

(Adhikari & Hartemink, 2016). For example, a large majority of the

nationally determined contributions (NDCs) presented by countries

under the Paris Agreement of the United Nations Framework Conven-

tion on Climate Change (UNFCCC) suggest actions in the agriculture

and forestry sector to both mitigate and adapt to climate change. Nev-

ertheless, a mere 10% of the Green Climate Fund's budget is used to

implement agriculture and forestry projects, often due to a lack of data

on greenhouse gas (GHG) emissions or on the evolution of carbon

stocks in ecosystems. (Buto et al., 2021). In Benin, the ambition is to

reduce GHG emissions by 16% by 2030. The government of Benin

strives to protect the vegetation cover, restore degraded land and forest

landscapes in the country along with the implementation of an ambi-

tious energy transition policy to reduce pressure on forests and agrofor-

estry parks. The intention is to reduce the deforestation rate by 42% by

2030 (DGEC/MCVDD, 2017). It is, therefore, necessary to characterize

and monitor the dynamics of land use changes and to measure their

effect on the functioning of various terrestrial ecosystems, particularly

regarding the C stocks (Leh et al., 2013; Newbold et al., 2015).

Carbon stock in terrestrial ecosystems includes several pools: soil,

dead wood and litter, living above- and belowground biomass

(UNFCCC, 2015). The global soil organic carbon (SOC) pool was esti-

mated at more than 2300 Gt C in 0–300 cm soil layers, compared to

650 Gt C stored in vegetation and 840 Gt C in the atmosphere.

(FAO, 2019; Lorenz & Lal, 2018). The amount of the SOC stock and

its dynamics has an important role in regulating CO2 emissions to the

atmosphere (Minasny et al., 2017). Plants fix CO2 from the atmo-

sphere through photosynthesis and a part of this carbon is further

incorporated into the soil as litter residues or root exudates. The car-

bon remains in the soil within the soil organic matter and SOC during

contrasted periods of time. As SOC represents a major but dynamic

reservoir of terrestrial C, C sequestration in soils contributes to cli-

mate regulation. The SOC stock is affected by soil type, soil-climatic

conditions, and land use and management (Fujisaki et al., 2018). Simi-

larly, the evolution of C stock in living or dead biomass is mainly con-

ditioned by climate and land use (Menezes et al., 2021). Thus, the C

stock of the different terrestrial C pools may either decrease or

increase as a result of a change in land use such as deforestation

(e.g., Grinand et al., 2017; Guo & Gifford, 2002) or afforestation, or

any change in agricultural practices (Corbeels et al., 2019; Fujisaki

et al., 2018). In subSaharan Africa, land use change and land use inten-

sification, including agricultural expansion and overexploitation of for-

est resources, led to degradation of forest landscape (FAO, 2016) and

depletion of C stocks in different pools (Ciais et al., 2011).

Despite global attention on climate change and the rise of initia-

tives such as Reducing Emissions from Deforestation and Forest Degra-

dation (REDD+), knowledge of the evolution of C stocks associated

with land use change in all regions is growing but still fragmentary

(Grinand et al., 2017; Tao et al., 2015) especially in developing coun-

tries. In Southern countries, studies on the dynamics of C stocks at a

regional scale are recent and mainly focused on deforestation areas

(Babbar et al., 2021; Grinand et al., 2017; Zhang et al., 2017), very few

concern agricultural areas (Zhao et al., 2018). However, besides defor-

estation, land use changes can be highly dynamic in agricultural areas,

notably around cities with a high demographic pressure on land. To our

knowledge, there is no study on land use and C stock changes in agri-

cultural areas affected by the proximity of an African city such as is the

case in the Lama Territory close to Cotonou in Benin.

The Lama Territory located in the Allada Plateau region

(214,000 ha) shows a heterogeneous and transforming agricultural

landscape (natural forest relics, tree plantations, food crops) mainly

developed on Ferralsols. Close to Cotonou with a high demographic

pressure, the area experienced urbanization and changes in agricultural

activities. The evolution of agricultural and economic activities since

several decades led to the development of private tree plantations, oil

palm plantations (Elaeis guineensis), pineapple cultivation (Aoudji

et al., 2014; Brun et al., 2018; Tchibozo, 2020). We hypothesized that

these changes in land use have affected large areas and have modified

C stocks of the Allada Plateau. We focused the study on the Ferralsols,

which are soils with quite homogeneous texture and are the dominant

soil type of the Allada Plateau (Houssoukpèvi et al., 2022), in order to

be able to attribute the eventual C stock variations to the land use

change and not to the soil type. Our study was built on existing esti-

mates of terrestrial C pools, that is, living biomasses (aboveground and

belowground), litter + woody necromass and soil (Ferralsols), measured

in representative natural and agricultural systems of the area

(Houssoukpèvi et al., 2022). This previous study took into account the

diversity of local vegetation cover, age, and farming practices of the

respective land uses to calculate carbon stocks and their variability. This

study focused on the characterization of the spatial evolution of land

use. The main objective of this study is to characterize the spatial evo-

lution of land use over almost two decades on the agricultural Allada

Plateau and to estimate the consequences of these evolutions on global

C stocks in all compartments, soil, biomass, and necromass. The specific

goals of the study were (i) to describe the evolution of land use on the

Allada Plateau between 2000 and 2018 and (ii) to analyse the conse-

quences of changes in land use on the terrestrial C stocks pools. A spe-

cial attention has been made on the calculation of the uncertainties

associated with the estimates of C stocks.

2 | MATERIALS AND METHODS

2.1 | Study area

The study area covers the three municipalities of the Lama Territory

(Allada, Zè, and Toffo) on the Allada Plateau (6�200–6�500 N and

2�000 E, 3–175 m altitude) in the Atlantic Department of southern

Benin (Figure 1). It is located near Cotonou, the capital of Benin, and

its agglomeration. This area is classified as a tropical savannah with a

dry winter (Aw) according to the Köppen-Geiger climate classification

scheme (Rubel & Kottek, 2010). Ferrallitic and ferruginous soils, Verti-

sols, and Hydromorphic soils are the principal soil types in the area.

(CPCS, 1967; Volkoff, 1976). Ferrallitic soils, or Ferralsols in the World

Soil Resources Database (IUSS-WRB, 2015) are dominant on the

2 HOUSSOUKPÈVI ET AL.
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Allada Plateau and cover an area of 106,221 ha, that is, 70% of the

area of the three municipalities (Volkoff, 1976). The present study

was conducted exclusively on this type of soil (106,221 ha; Figure 1).

These soils are generally sandy in texture with about 75% sand in in

the 0–30 cm depth (Houssoukpèvi et al., 2022).

2.2 | Determination and evolution of the land use
on Ferralsols

2.2.1 | Satellite image acquisition and processing

Two subscenes of LANDSAT imagery from the years 2000 (Enhanced

Thematic Mapper Plus sensor: ETM+) and 2018 (Operational Land

Imager sensor: OLI) were used to map and analyse land cover changes

in the study area (Figure 2). Low cloud cover LANDSAT images (Path

190, Rows 055 with a spatial resolution of 30 m) were obtained for

the study area from the United States Geological Survey (USGS)

archive (Table 1). The images are orthorectified and corrected for

atmospheric effects on reflectance (to obtain ‘surface reflectance’).
Both 2000 and 2018 images were collected in dry season to minimize

variations in vegetation phenology (Clerici et al., 2007). The spectral

bands used in this study were blue (441–514 nm for ETM+ and 452–

512 for OLI), green (519–601 nm for ETM+ and 533–590 nm for

OLI), red (631–692 nm for ETM+ and 636–673 nm for OLI), near

infrared (NIR; 772–898 nm for ETM+ and 851–879 nm for OLI),

shortwave infrared 1 (SWIR1; 1547–1749 nm for ETM+ and 1566–

1651 nm for OLI), and shortwave infrared 2 (SWIR2; 2064–2345 nm

F IGURE 1 Location of Benin, the Atlantic Department and the study area [Colour figure can be viewed at wileyonlinelibrary.com]

HOUSSOUKPÈVI ET AL. 3

 1099145x, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ldr.4545 by M

ontpellier SupA
gro, W

iley O
nline L

ibrary on [13/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



for ETM+ and 2107–2294 nm for OLI). We calculated the normalized

difference vegetation index (NDVI; Rouse et al., 1974) and the nor-

malized infrared indices (NIRI and NIRI.2; Hardisky et al., 1984)

(Table 1). These indices in addition to the spectral bands of the LAND-

SAT images were used to improve the quality of the image classifica-

tion (Grinand et al., 2013; Kamusoko, 2019).

2.2.2 | Classification of LANDSAT images

The images were classified according to six land use categories: built-

up areas (BA), forests (FO), tree plantations (PL), adult palm groves

(PA), crop-plantation associations (CP), and croplands (CL) (Table 2).

Waterbodies were not considered as the study focused on Ferralsols.

Satellite image classifications are most often performed by com-

bining the remote sensing data with reference data from the ground

or from aerial photographs at or near the time of the satellite pass

(Benz et al., 2004; Zhou et al., 2009). However, in Benin, such data

are not widely available for retrospective analysis of remote sensing

data (Kamusoko et al., 2009). For our area, the absence of aerial pho-

tographs led us to use very high-resolution images acquired from dif-

ferent satellites gathered on Google Earth as reference data. To

classify the 2000 LANDSAT image, 938 points of interest were

defined using the Google Earth images of 2005. We used the 2005

google image because the 2000 image was of poor quality. We

checked that the selected Google Earth image give the same land

cover class spectral signature as the LANDSAT image through visual

interpretation of the images. For the classification of the 2018 LAND-

SAT image, in addition to the 1621 points of interest identified on a

2017 Google Earth image, 100 points of interest were collected in the

F IGURE 2 LANDSAT-7 ETM + (432 false colour composite) and LANDSAT 8-OLI (543 false colour composite) sub-images [Colour figure can
be viewed at wileyonlinelibrary.com]

TABLE 1 Characteristics of the LANDSAT images used

Images Date of acquisition Cloud cover (%) Strips used Spectral indices used

LANDSAT-7 ETM+. Dec 13, 2000 5.00 Blue NDVI¼ NIR� Redð Þ= NIRþ Redð Þ
Green

Red NIRI¼ NIR�SWIR1ð Þ= NIRþSWIR1ð Þ
LANDSAT-8 OLI/TIRS Jan 5, 2018 0.86 NIR

SWIR NIRI:2¼ NIR�SWIR2ð Þ= NIRþSWIR2ð Þ
SWIR.2

TABLE 2 Description of mapped land use patterns

Land use patterns General description

Built-up areas (BA) Commercial and residential buildings,

industrial sites, institutional areas, roads,

and other man-made structures.

Forests (FO) Relics of natural forests, sacred forests:

consisting of evergreen and deciduous

trees.

Tree plantations

(PL)

Forestry plantations: monospecific plantations

of Teak, Gmelina.

Adult palm groves

(PA)

Mature oil palm plantations (>10 years)

Crop-plantation

associations (CP)

Annual crop association with trees or in young

palm groves (<4 years).

Croplands (CL) Annual or bi-annual crops (in the area mainly

maize, cassava, pineapple), fallow land,

sparsely vegetated land; this category also

includes bare soil at the time of image

acquisition

4 HOUSSOUKPÈVI ET AL.
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field for each land use in December 2019 (Appendix A). The six land

use types are clearly distinguishable visually on the Google Earth

images. In addition, each measured point is representative of an area

of approximately 50 m radius around the point on the Google Earth

image. In the end, a minimum of 100 points of interest for the year

2000 and 200 for the year 2018 were considered per land use mode.

The Random forest algorithm, that is, a Machine Learning method

(Breiman, 2001), has been used for image classification (Grinand

et al., 2013; Hounkpatin et al., 2018; Kamusoko, 2019). The Random

forest algorithm was used because: (i) it is robust in analysing complex

and numerous numerical or categorical data; (ii) it is free from normal

distribution assumptions; and (iii) it is robust to outliers and noise

(Mather & Koch, 2011; Rodriguez-Galiano et al., 2012). In addition, it

provides an internal measure of classification accuracy (out-bag error).

We calibrated Random Forest models using spectral bands (Table 1)

and some spectral indices (i.e., NDVI and NIRI) as input variables (pre-

dictors). For each of the two classifications (i.e., for 2000 and 2018),

70% of the data were randomly selected for each land use (stratified

random sampling) as training data, and the remaining 30% were used as

model validation data. The hyperparameters (mtry, number of tree) of

the random Forest model were obtained by a systematic search maxi-

mizing the accuracy on the 70% of training points, and by performing

five cross-validations repeatedly for five times (Kamusoko, 2019).

2.2.3 | Land use change parameters calculation

The images classified at both dates were used to calculate the area of

the different land uses. The overall rate of change (Equation 1) and

the annual rate of change (Equation 2) are the parameters used to

assess the evolution of land use patterns (Puyravaud, 2003).

OC¼ S2�S1
S1

�100, ð1Þ

Where: OC is the overall rate of change and S1 and S2 are the initial

and final areas of land use at the dates studied (2000 and 2018)

respectively. Positive values of OC indicate increases in a specific land

use while negative values reflect losses in land use (Toyi et al., 2013).

r¼ 1
t2� t1

� ln
S2
S1

� �
, ð2Þ

Where: r is the annual rate of change, t1 and t2 are the initial (2000)

and final (2018) dates of the images used to determine the occupancy

patterns.

2.3 | Mapping the carbon stocks

Mapping the carbon stocks used the classification of Landsat images (see

Section 2.2) and the C stocks measured in each land uses (Figure 3). The

C stocks in the four pools of each land use, except built-up, that is, urban-

ized areas, were measured on representative fields in a previous study in

2019 (details in Houssoukpèvi et al., 2022). Briefly, to ensure that the C

stocks were representative, the C stocks were measured in classified and

sacred forests, in state tree plantations and smallholder tree plantations of

different ages and different tree species, in palm tree plantations with dif-

ferent previous history, and in annual or bi annual croplands (Pineapple,

tomato, maize, and cassava). In total, 19 plots on Ferralsols were sampled.

Soil and litter replicates and tree replicates were performed when estimat-

ing biomass and soil C stocks. The C stocks were mapped with a spatial

resolution of 30 m using the module named carbon of the InVEST 3.9.0

software (integrated valuation of environmental services and tradeoffs)

developed by the Natural Capital Project team (Bagstad et al., 2013; Daily

et al., 2009). InVEST is a geospatial tool used to assess the impacts of land

use change on ecosystem services (Goldstein et al., 2012; Qiu &

Turner, 2013). Using the carbon module of InVEST implies a strong

assumption: the estimation of C stocks per land use and per pool does

not vary across time if the land use does not change (Sharp et al., 2020).

The input parameters of the carbon model in InVEST were the land use

maps of the years 2000 and 2018 and, for each land use, the C stock data

(Mg ha�1) of the four pools: living aboveground biomass, belowground

biomass, litter and deadwood, and SOC (depth 0–30 cm) (Table 3). The

details of the quantification of the C stocks for each pool are in Houssouk-

pèvi et al., (Houssoukpèvi et al., 2022). Briefly, these stocks were esti-

mated according to UNFCCC (2013) guidelines. Aboveground biomass,

belowground biomass, and litter (dead wood, grasses, and plant debris)

were estimated in 0.25 ha square plots distributed in four forests, four

tree plantations, and three adult and four young palm groves. The number

of 0.25 ha square plot replicate per forest and plantations (from 10 to 35)

depended of the size of the forest or the plantation. The carbon stocks in

aboveground and belowground biomass were quantified after estimating

the biomass stock based on allometric models developed for the species

in the study area. These models consider the height of tree and diameter

of the trees measured at 1.30 m from the floor (Goussanou et al., 2016;

Guendehou et al., 2012; Kora et al., 2018). Litter and soil samples were

collected in 1 m2 quadrat along the diagonal of each 0.25 ha square plot in

forests and tree plantations. In four different croplands, the C stocks were

estimated in litter and soil (0–30 cm) in five plots. The C stocks of above-

ground and belowground biomass were considered null because the bio-

mass in croplands is either burnt or used for livestock feed. The SOC

stocks were calculated based on IPCC procedures (Gelaw et al., 2014;

IPCC, 2019b). This calculation took into account SOC content (g C kg�1

soil); soil bulk density (g cm�3) and soil layer thickness (cm). We considered

that the C stock of built-up areas are null. The Carbon model of InVest

produced a map of C stocks for each of the four pools, in each pixel of the

whole study area. The regional C stock in the different pools by land use is

obtained by multiplying the C stock of land use by its surface area.

2.4 | Statistical analysis

2.4.1 | Evaluation of LANDSAT images
classification accuracy

A confusion matrix of the validation data (30% of the selected inde-

pendent points) was used to summarize the classification results for

HOUSSOUKPÈVI ET AL. 5
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each of the two classifications. From this confusion matrix, the user

accuracy, producer accuracy, and overall accuracy of the classification

were calculated. In addition, a non-parametric kappa test was also

performed to measure the accuracy of the classification. Kappa value

usually ranges between 0% and 100%. The classification is considered

satisfactory from 70% to 100% (Lillesand et al., 2015). The confusion

TABLE 3 Carbon stock (Mg C ha�1, mean ± standard deviation) of the four pools in the land use (excluding BA) (from Houssoukpèvi
et al., 2022)

Land cover Aboveground biomass Belowground biomass Litter+ Necromass Soil (0–30 cm) Total

Forests (FO) 225 ± 43.53 54 ± 11 28 ± 5.1 43 ± 1.9 350 ± 45

Tree plantations (PL) 113 ± 26.71 27 ± 6.41 16 ± 3.3 31 ± 1.2 187 ± 28

Adult palm groves (PA) 63 ± 4.43 15 ± 1.06 11 ± 0.8 23 ± 1.1 112 ± 5

Crop-plantation associations (CP) 39 ± 0.87 9 ± 0.21 2 ± 0.2 23 ± 1.3 73 ± 2

Croplands (CL) 0 0 1 ± 0.2 31 ± 2.8 32 ± 3

F IGURE 3 Flowchart of the steps
followed to obtain the maps

6 HOUSSOUKPÈVI ET AL.
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matrix was also used to calculate the errors related to the estimated

areas (Equation 3) of the different land use based on a 95% confi-

dence interval (Olofsson et al., 2014).

S¼1:96�Ai�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X

W2
i �

nik
ni:

1� nik
ni:

� �
ni:�1

vuut
, ð3Þ

Where: S is the error associated to the estimation of the area with

95% of confidence, Ai is the area of the land class i, W i the proportion

area of classification for the land class i, nik the number of samples at

cell (i, k) of the confusion matrix, and ni: the sum of the samples classi-

fied as land class i in the confusion matrix.

The classification and processing of the images were done using

the open-source software R (version 3.6.3; package caret and Ran-

domForest) and Quantum GIS (QGIS 3.18.2). The transition matrix was

obtained using the MOLUSCE (modules for land use change evalua-

tion) plugin of QGIS (Asia Air Survey & Next GIS, 2012). This matrix

was used to analyse the changes in land use between 2000 and 2018.

2.4.2 | Evaluation of the C stocks uncertainty

For each land use, the uncertainty in the C stocks was obtained by

combining the standard deviations around the mean of the measured

C stocks (Houssoukpèvi et al., 2022) and the errors related to the esti-

mation of the land use area (Olofsson et al., 2014). These combina-

tions were realized using the error propagation (IPCC Tier 1) as

advised in international guidelines (GOFC-GOLD, 2016; IPCC, 2006).

This method is based on two equations: one for addition and subtrac-

tion used to add the different C pools and compare C stocks between

two dates (Equation 4), and one for multiplication used to estimate

the C stock of a specific land use (Equation 5).

Utotal ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U1 � x1ð Þ2þ U2 �x2ð Þ2þ…þ Un �xnð Þ2

q
j x1þx2þ…þxn j , ð4Þ

Where: xi referred to the value of the variables (e.g., the C stocks of

one specific C pool), Ui referred to percentage uncertainty associated

with each of the variables xi (i.e., standard deviation/mean) and Utotal

referred to the percentage uncertainty associated with the sum of the

variables xi.

Utotal ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U1

2þU2
2þ…þUn

2
q

, ð5Þ

Where: Utotal is the percentage uncertainty associated with the prod-

uct of the variables and Ui is the percentage uncertainty associated

with each of the variable (i.e., C stocks per area of a specific land use

multiplied by its corresponding surface area).

Then the accuracy of the C stock maps and the calculated C stock

values per land use or per C pools for the whole studied area (Table 5)

depend on the accuracy of the land cover maps (assessed in

Section 2.2.3, Table 4), and the accuracy of the measured C stock data

(Table 3). No external validation or cross-validation to validate the C

stock maps were performed, because we assumed that the accuracy

of the C stock map mostly depend on the accuracy of the land cover

maps, which is already evaluated by cross-validation.

3 | RESULTS

3.1 | Ferralsols land use/land cover classification in
2000 and 2018

The land cover maps generated from the supervised classification of sat-

ellite images for the study years 2000 and 2018 are presented in

Figure 4. The error matrix shows an overall accuracy and Kappa statistics

of 82% and 78% (Appendix B) for 2000 and 87% and 84% for 2018

(Appendix C) respectively. All values were above the minimum require-

ment (70%) for a satisfactory classification. However, in the classification

of the 2000 image, the land use crop-plantation associations has low pro-

ducer and user accuracies (Appendix B). Some confusions in pixel alloca-

tion were possible between crop-plantation associations and other land

uses. In the classification of the 2018 image, these confusions are mainly

identified between forests and adult palm groves land uses (Appendix C).

The lowest producer accuracy was obtained for tree plantations and the

lowest user accuracy for the forests land uses.

The mapping of land use in 2000 showed that croplands, crop-

plantation associations, and adult palm groves were the dominant land

uses of the Ferralsols on the Allada Plateau (Table 4). These land uses

cover 48,774 ± 1394 ha (46% of the 106,221 ha apprehended),

36,234 ± 1078 ha (34%) and 8149 ± 254 ha (8%) respectively. In

2018, the dominant land use was still croplands, with a development

of the areas occupied by adult palm groves, tree plantations, and

built-up areas covering 50,703 ± 1018 ha (48%), 19,106 ± 389 ha

(18%), 12,511 ± 220 ha (12%), and 12,395 ± 131 ha (12%) respec-

tively (Table 4). It should be noted that the uncertainty in the esti-

mated areas of land use varied from 1% to 3% for the year 2000

image and from 1% to 2% for the year 2018 image (Table 4).

3.2 | Land use dynamics (2000–2018)

Examination of land use changes over the period 2000–2018 revealed

a significant increase in built-up areas, adult palm groves, and tree

plantations, with a consequent decrease in forests and crop-plantation

associations (Table 4). In general, all land uses except croplands have

experienced a significant overall rate of change. Some land uses have

experienced a significant increase in area. This is especially the case

for tree plantations with an increase of +115% (+6692 ha), adult palm

groves by +134% (+10,957 ha) and built-up areas by +207%

(+8356 ha). On the contrary, crop-plantation associations and forests

decreased in area, respectively, �70% (�25,340 ha) and � 81%

(�2595 ha). However, the annual rate of change was low (Table 4).
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TABLE 5 Distribution of the stock of C (gg C) in the various pools and all pools combined (total stock) according to the land use of Ferralsols
for the years 2000 and 2018 for the whole study area

Land use

Aboveground biomass
Belowground
biomass

Litter + woody
necromass Soil (0–30 cm) Total stock

2000 2018 2000 2018 2000 2018 2000 2018 2000 2018

Forests (FO) 721 (20)a 138 (19) 173 (21) 33 (20) 90 (18) 17 (18) 138 (5) 26 (5) 1122 (13) 214 (13)

Tree plantations (PL) 658 (24) 1414 (24) 157 (24) 338 (24) 93 (21) 200 (21) 180 (4) 388 (4) 1088 (15) 2340 (15)

Adult palm groves (PA) 513 (8) 1204 (7) 122 (8) 287 (7) 90 (8) 210 (8) 187 (6) 439 (5) 913 (5) 2140 (5)

Crop-plantation

associations (CP)

1413 (4) 425 (3) 326 (4) 98 (3) 72 (10) 22 (10) 833 (6) 251 (6) 2645 (4) 795 (2)

Croplands (CL) 0 (3) 0 (2) 0 (3) 0 (2) 49 (20) 51 (20) 1512 (9) 1572 (9) 1561 (9) 1622 (9)

Total stocks 3305 (7) 3180 (11) 779 (7) 755 (11) 394 (7) 500 (7) 2851 (5) 2676 (6) 7329 (4) 7111 (6)

Δ Stocks �125 (6) �24 (6) 106 (6) �175 (6) �218 (4)

aValues in brackets are the percentage uncertainty (%) of C stock values.

F IGURE 4 The classified maps of Ferralsol occupation in the study area in 2000 (left) and 2018 (right) [Colour figure can be viewed at
wileyonlinelibrary.com]

TABLE 4 Areas represented by land use (in ha, estimated area ± standard error, and as % of area occupied by Ferralsols) in 2000 and 2018

Land cover

2000 2018 Global rate of

change (%) Annual rate of change (%)

Area (ha)
Area
(%) Area (ha)

Area
(%)

Built-up areas (BA) 4039 ± 58 4 12,395 ± 131 11 207 6

Forests (FO) 3206 ± 96 3 612 ± 11 1 �81 �9

Tree plantations (PL) 5819 ± 83 5 12,511 ± 220 12 115 4

Adult palm groves (PA) 8149 ± 254 8 19,106 ± 389 18 134 5

Crop-plantation associations

(CP)

36,234 ± 1078 34 10,894 ± 123 10 �70 �7

Croplands (CL) 48,774 ± 1394 46 50,703 ± 1018 48 4 1

Total 106,221 100 106,221 100

8 HOUSSOUKPÈVI ET AL.
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Built-up areas, adult palm groves, and tree plantations increased annu-

ally by 6%, 5%, and 4% respectively. In contrast, forests and crop-

plantation associations lost 9% and 7% of their area annually.

The transition matrix analysis (Appendix D) indicates that 61% of

the total area has been affected by the land use change between

2000 and 2018 in the study area. The changes in land use are mainly

observable on a myriad of small areas represented by few pixels

(Figure 4). Land uses on large plots (e.g., state tree plantations and

palm groves under the management of rural development coopera-

tives) were less modified (Figure 4).

A chord diagram shows the transfers of area from one land use to

another between 2000 and 2018 (Figure 5). Croplands were the land use

which were most transformed into built-up areas. As a result, croplands

gained on forests and on crop-plantation associations' areas. At the same

time, some area of crop-plantation associations has been significantly

transformed into adult palm groves and croplands. Forests area has been

reduced in favour of adult palm groves, croplands, and crop-plantation

associations. The increase in the area of tree plantations was mainly due

to the conversion of croplands and crop-plantation associations between

2000 and 2018. The conversion of a small area of built-up area into tree

plantations, adult palm groves and croplands could more likely be

explained by classification errors (Appendices B and C).

3.3 | Evolution of the C stocks distribution among
the land uses

The total C stock map was presented in Figure 6. The total C stock of

the Allada Plateau slightly decreased, about 3%, between 2000 and

2018 (7329 cf 7111 Gg C) (Table 5). The distribution of total C stocks

of the Plateau showed that the smallest C reservoir of the area are

respectively adult palm groves and forests in 2000 and 2018

(Table 5). In 2000, the total C stock of the area is mainly distributed in

the crop-plantation associations and in croplands accounting for,

respectively, 36% and 21% of the total C stock considering the Ferral-

sols occupation of the Allada Plateau. In 2018, due to changes in land

use since 2000, the total C stock of the area is mainly distributed in

the tree plantations and adult palm groves (33% and 30% of the total

C stock respectively).

As a result of the decrease in the area of forests and crop-

plantation associations, the total C stocks of these land uses, respec-

tively, decreased of �908 and �1850 Gg C (Tables 4 and 5). In con-

trast, due to the increase in the area of tree plantations, adult palm

groves, and croplands, 1252, 1227, and 61 Gg of extra C were respec-

tively stored in these land uses in 2018 in the study area. However,

the uncertainties associated with the calculated C stocks for each land

use ranged between 2% and 15%. The uncertainties associated with

the total C stocks in 2000 (7329 Gg C) and 2018 (7111 Gg C) were

4% and 6% respectively (Table 5).

3.4 | Evolution of the C stocks distribution among
the different C pools

The distribution of C stocks in the different pools shows that the most

important C pools are the aboveground biomass and the soil (0–30 cm).

These two pools represent, respectively, 45% and 39% of the total C

stock in the considered area in 2000 and 45% and 37% in 2018 (Table 5).

F IGURE 5 Chord diagram showing
the conversion of land area in terms of
land use over the period 2000–2018.
[Colour figure can be viewed at
wileyonlinelibrary.com]
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From 2000 to 2018, only the C stocks contained in litter and

deadwood have increased (Table 5). This increase is estimated at

+106 Gg C with an uncertainty of 6% (Table 5). The other pools of C

have decreased overall over the 18-year period (Table 5). The greatest

losses were observed in the soil (�175 Gg C) and aboveground bio-

mass (�125 Gg C) with 6% uncertainty around these calculated

values. The C stock balance of areas on Ferralsols from 2000 to 2018

is slightly negative (Table 5). It is estimated at - 218 Gg C, that is,

about 2 Mg C ha�1 globally over the whole region, with an uncer-

tainty of 4%. However, if the surface of built-up areas is excluded

from the calculation, since the C stocks of built-up areas were consid-

ered to be null, the average C stocks per hectare of the total C stocks

are 71 and 76 Mg C ha�1, respectively, for the year 2000 and 2018.

There would therefore be a positive trend in C stock of +5 Mg C ha�1

in the non-built-up areas of areas on Ferralsols of the Allada plateau.

4 | DISCUSSION

4.1 | Land use classification and changes analysis

The Ferralsols occupy 106,221 ha on the Allada Plateau. Land use

change of this area was dynamic between 2000 and 2018, with 61%

of the surfaces modified (Appendix D). This change particularly

affected small private plots rather than large state or cooperatives

plantations (Figure 3). This dynamic was also characterized by a signif-

icant extension of built-up areas (207%), adult palm groves (134%),

and tree plantations (115%) to the detriment of forests (�81%) and

crop-plantation associations (�70%). These results are in line with

other observations made throughout the country (Brun et al., 2018;

Guidigan et al., 2018; MCVDD, 2017; Tchibozo, 2020). From 2000 to

2018, the annual loss of forest area is estimated at 90,000 ha at the

national scale, resulting in an overall change of 27% (FAO, 2020).

Most research on land use dynamics pointed to agriculture as the

main driver of land degradation and deforestation (Guidigan

et al., 2018; Olorunfemi et al., 2018). However, in our study, only a

slight increase in the area of the land use type ‘croplands’ was

recorded (+1929 ha). This can be explained by the reforestation

actions of the Beninese Government to compensate as soon as possi-

ble for the loss of forest formations. Forest plantations were carried

out, both by the national authorities and by farmers. In 2018, they

cover a total area of 20,000 ha nationwide (FAO, 2020) with teak

(Tectona grandis L.f.) and gmelina (Gmelina arborea Roxb) as the main

species (Akouehou et al., 2013; Aoudji et al., 2014; Atindogbé

et al., 2013). The state-owned teak plantations have difficulty ensur-

ing the high demand for service wood (furniture making, carpentry,

etc.) (Atindogbé et al., 2013). Therefore, many farmers invest in tree

plantation, for example, teak plantation, to diversify and improve their

incomes and/or secure their land (Aoudji et al., 2014). Increase in the

surface area of smallholder teak and gmelina plantations can be

observed on the Allada Plateau (+6692 ha) on small-sized plots

(Figure 4). In the study area, the agriculture or tree plantation plots of

smallholders are comprised between 0.25 and 1.5 ha, and the private

palm groves areas are less than 5 ha (Aholoukpè et al., 2013; Aoudji

et al., 2012). This increase in tree plantation surface areas is also asso-

ciated with a strong increase in surface under oil palm plantations,

that is, the land use of ‘adult palm groves’(+10,957 ha, Figure 5).

The decrease in 2018 of crops-plantation association is explained

by the fact that a large part of this land use is left under croplands

(Figure 5). The decrease is probably also linked to the increase of oil

palm plantations (Figure 5). The land use named ‘crop-plantation asso-

ciations’ is dominated by a temporary oil palm agroforestry system. In

the south of Benin, and particularly on the Allada Plateau, the land-

scape is dotted with oil palm trees, often family-owned. These oil

palm trees have a particular life cycle (Akouehou et al., 2013). Oil palm

plantation cycles last from 15 to 25 years (Aholoukpè, 2013). On

smallholder farms, the first three years are often grown in association

with annual or bi-annual crops (e.g., cassava, tomatoes, pineapple,

F IGURE 6 Map of total carbon stocks in the study area in 2000 and 2018 (spatial resolution: 30 m). [Colour figure can be viewed at
wileyonlinelibrary.com]
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maize) (Aholoukpè et al., 2013; Koussihouèdé et al., 2019; Nchanji

et al., 2016). This temporary agroforestry system is motivated by the

lack of arable land for family agriculture less than 5 ha and by the cost

of maintaining the palm trees, which yield nothing in their first few

years (Koussihouèdé et al., 2019). The large area of crop-plantation

associations land use in 2000 is composed by these temporary oil

palm agroforestry system. The large area is partly the result of the

successful distribution of selected planting material in rural areas in

the 1990s as part of a government programme supporting palm oil

production after the decline of state plantations (Adje &

Adjadi, 2001). It is also explained by the social, cultural, and cultic

importance of this plant for the local population. In this region, a

farmer's wealth is measured by his holdings of palm trees (Akouehou

et al., 2013). The decrease in the area of crop-plantation associations

and the strong increase of adult palm groves land uses in 2018 com-

pared to 2000 can be explained by the age of the young palm groves

installed 20 years ago and in association with crops only during the

first years, that is, in their immature stage.

The sharp increase in built-up areas is due to the increase in pop-

ulation density requiring the development of housing, administrative,

and road infrastructures (Brun et al., 2018; Tchibozo, 2020). Benin's

population increased from 6.7 million in 2002 to 10.6 million in 2015

(INSAE, 2015). Based on the last population census, the population

density of the Atlantic epartment, where the Allada Plateau is located,

close to the Cotonou and its agglomeration, increased from 225 inhab-

itants km�2 in 2000 to 316 inhabitants km�2 in 2015 (INSAE, 2015).

4.2 | The carbon stocks and carbon stock changes
between 2000 and 2018

The land use on the Ferralsols of the Allada Plateau affected the C

stocks of the four pools considered. At the plot scale, C was mainly

located in the aboveground biomass of forests, tree plantations, adult

palm groves, and crop-plantation associations. In the same way, the

variation in C stock per hectare between land uses was mainly

explained by large variations in the aboveground biomass

(Houssoukpèvi et al., 2022, Table 3). The sandy soils of the study area

store small amounts of C, unlike the biomass of forest and tree planta-

tion ecosystems (Logah et al., 2020; Olorunfemi et al., 2020). By con-

sequence at the landscape scale C stock was mainly located in

biomass (45%). Nevertheless, the upper (0–30 cm) layer of soils

accounted for 37%–39% of the total C stock because croplands sur-

face represented about 50% of the surface of the area and did not

account for biomass C.

The land use change between 2000 and 2018 modified the distri-

bution of the C stocks from the forest to the plantations, as forest

areas decreased and tree plantations and palm groves plantations

increased (Figure 5). The land use change modified slightly the distri-

bution of the C in the different carbon pools. All the C pools were

affected by land uses except the litter + woody necromass, thanks to

the installation of adult palm groves areas and tree plantations on

croplands, or due to the growth of the palm groves from the crop-

plantation association. Litter in these land uses contained per hectare

less C than in forest (Table 3), but these land uses represented much

higher surface in the area. Because 50% of the surface is used for

croplands and do not present C biomass, the variation of C stocks of

the region between 2000 and 2018 was quite similar in both the soil

and the aboveground biomass pools. The C stock variations were,

respectively, �175 and �125 Gg C for the soil and aboveground bio-

mass pools (Table 5). The decrease of biomass C stocks is attributed

to a significant decrease in the area of forests. However, accounting

only for C losses in the biomass would strongly underestimate the

overall C stock losses in the region. Our results illustrate the need to

measure or at least to estimate all C pools to have accurate estimation

of C balance.

Our study estimated that between 2000 and 2018, the change in

total C stocks in the study area tend to be slightly negative (� 218 Gg

C) and was estimated to be 3%. This result is surprising as the land

use changes concern 61% of the surface of the study area. The strong

decrease in forest area (�2594 ha), that is, the land use with the high-

est C stocks in all pools compared to other land uses (Table 3), was

the main cause of this C stock decrease. This result confirms that the

loss of C stocks was due to land use conversion and in particular to

the decrease in woody cover as observed in other studies

(MCVDD, 2017; Woomer et al., 2004; Zhang et al., 2017). However,

the decrease of C stocks is slight and if built-up areas are excluded of

the calculation, the mean C stock showed a positive trend with a

mean gain of 5 Mg C ha�1. This can be explained by the large increase

in the area of plantations (+6692 ha) and adult palm groves

(+10,957 ha). The high aboveground biomass of these land uses with

the large increase of the area dedicated to them, have been able to

compensate for the loss of woody forest cover. State efforts in pro-

moting the expansion of tree plantations and palm groves (Adje &

Adjadi, 2001; Ganglo et al., 1999) have minimized C losses through

the C stock of biomass, litter, and soil at a regional scale. Neverthe-

less, to secure the C stocks, the lifetime of wood harvested for supply

services (carpentry, furniture, poles, etc.) should be considered in the

long term.

4.3 | Accuracy of the estimated C stocks

The estimated C stocks at each date present uncertainties between

4% and 15% depending on the C pools, the land use or the date con-

sidered. These uncertainties are linked to (i) the heterogeneity of agri-

cultural or forestry practices for a given land use and (ii) the errors in

attributing areas to different land uses (GOFC-GOLD, 2016;

IPCC, 2006; Olofsson et al., 2014). To ensure the representativeness

of C stocks, a diversity of vegetation cover, and management prac-

tices were measured in each land use type (Houssoukpèvi

et al., 2022). For example, state plantations of different ages (last cut

5 years ago and 21 years ago) and private teak and gmelina planta-

tions (last cut 10 years ago and 5 years ago, respectively) were mea-

sured to represent C stocks in tree plantations and presented biomass

C stocks from 55 to 295 Mg C ha�1. It seems difficult to distinguish
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such heterogeneities on satellite images, but field surveys and moni-

toring with a higher sampling pressure could help to characterize the

distribution of C stocks according to different vegetation cover or

management practices inside a given land use, that is, by age, type of

plantation, or cultivation. Also, the methodology used for land use

mapping leads to area errors which could be counted twice, once per

date, and explains part of the uncertainty. The classical diachronic

analysis of land use change ‘wall to wall’ involved a pair-wise compar-

ison of images (Houessou et al., 2013; Padonou et al., 2017). Individ-

ual errors on both the 2000 and the 2018 maps were accounted

twice when estimating the land use change. The weak distinction

between two land uses detailed in the confusion matrices, for exam-

ple, in the 2000 map between crop-plantation associations and crop-

lands or in the 2018 map between forests and adult palm groves,

could be an individual error that can be considered as a change of

cover from 1 year to the next (Fuller et al., 2003).

These errors in the land use change are recognized to be the

main source of error in the carbon emission estimates (Harris

et al., 2012; Pelletier et al., 2011). Improvements could be to use a

supervised classification of several stacked satellite images

acquired at different dates in a single analysis in order to directly

identify changes (Grinand et al., 2013). Training data for the classi-

fication algorithm were not land uses but land use changes. This

approach of the land use changes could be associated to long term

monitoring of diachronic studies of C stocks. This method would

reduce uncertainty but was not usable in our studied area due to

the lack of data and knowledge on accurate localized land use

changes on the Allada Plateau. Obtaining such information is chal-

lenging because precise historical land use changes are not well

known or referenced in Benin yet. An improvement in the classifi-

cation of land use patterns could also be envisaged by using high-

resolution satellite images such as PLEIADES images (resolution

0.5 m per pixel).

Improvements in estimation of the C stocks evolution could also

be suggested. The method we used imposes a strong assumption: the

non-variation of C stocks of the pools (living, dead, litter, and soil bio-

mass) if the land use pattern is unchanged. Thus, the study assumes

that there has been no major change in forest vegetation structure, no

forest degradation, no increase in plantation biomass, no change in

the age structure of plantations, and no alteration of soils under culti-

vation. However, between 2000 and 2018, it is possible that changes

in climate or in forest and crop management practices have altered

soil or vegetation C stocks (including through C fluxes between pools).

Future research should take these possible C stock variations into

account, thanks to diachronic monitoring of C stocks over the long

term. Finally, the study made the strong assumption that the C stock

in built-up areas was negligible. The recent inclusion of urban parks

and trees in cities, notably through green cities programmes, could

significantly improve regional C balances. Given the high level of

urbanization observed (+207% in 18 years in this study, Table 4),

inventories of urban C stocks are necessary even in rural regions and

in Africa, as is currently being done in large Northern cities (Cambou

et al., 2018).

5 | CONCLUSIONS

The agricultural area of the Allada Plateau at the proximity of the eco-

nomic capital of Benin experienced multiple changes in land use on small

private plots as a result of human activities: 61% of the total area has

undergone a land use change between 2000 and 2018. The expansion of

built-up areas, tree, and palm plantations were particularly notable with a

decrease in forest surface area. This strong dynamic of land use, and par-

ticularly the increase of tree plantations and adult palm groves, led to a

small loss of C stock (≈3%) mainly in soil and aboveground biomass pools.

Our results confirm the need to account for soil C, even in sandy areas,

as responsible for non-negligible C stock variations. Our results should

contribute to help planning and monitoring carbon stocks at the land-

scape level in climate mitigation effort plans. For instance, urgently secure

the small remaining forested areas, because forest represent only 1% of

the total surface of the studied area but still stored 3% of the total C;

encourage plantations, as these could limit the loss of C stocks while

improving the socio-economic conditions of the smallholders, and save

land from urbanization. However, it is important to carry out interdisci-

plinary research on different services provided by the different land use

on the Allada Plateau (food, energy, habitat, and biodiversity) and not

only focused on C stocks. In addition, the uncertainties in the C stocks,

between 4% and 15%, and the assumptions in this study encourage

future research to be developed. To improve studies on the evolution of

C stocks from local to national scales, long term field studies in rural areas

as well as in the cities, characterization studies on the forestry and agri-

cultural practices affecting soil C pools and stocks, studies on the history

of the area, and the development of calibration and validation of satellite

images methods should be performed.
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APPENDIX A: Total number of points of interest used on the

Google Earth 2005 and 2017 images for the classification of the

respective LANDSAT images of 2000 and 2018

BA, built-up area; CL, croplands; CP, crop-plantation associations;

FO, forests; PA, adult palm groves; PL, tree plantations
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APPENDIX B: Confusion matrix from the 2000 image

classification

APPENDIX C: Confusion matrix from the 2018 image

classification

Classification

Ground truth Producer accuracy User accuracy

BA CP CL FO PA PL Total %

BA 33 0 1 0 0 1 35 92 94

CP 1 19 7 2 1 0 30 61 63

CL 1 7 45 0 0 1 54 82 83

FO 0 3 1 35 12 0 51 80 69

PA 0 2 0 7 51 1 61 80 84

PL 1 0 1 0 0 45 47 94 96

Total 36 31 55 44 64 48 278

Note: Out-of-bag error (OOB) = 17.7%; Overall accuracy = 82%; Kappa Index = 0.78.

Abbreviations: BA, built-up area; CP, crop-plantation associations; CL, croplands; FO, forests; PA, adult palm groves; PL, tree plantations.

Classification

Ground truth Producer accuracy User accuracy

BA CP CL FO PA PL Total %

BA 79 0 3 0 0 1 83 95 95

CP 0 68 2 1 2 0 73 97 93

CL 2 1 105 0 1 12 121 88 87

FO 0 1 0 49 13 3 66 84 74

PA 0 0 5 7 78 3 93 81 84

PL 2 0 4 1 2 71 80 79 89

Total 83 70 119 58 96 90 516

Note: Out-of-bag error (OOB) = 13.8%; Overall accuracy = 87%; Kappa Index = 0.84.

Abbreviations: BA, built-up area; CP, crop-plantation associations; CL, croplands; FO, forests; PA, adult palm groves; PL, tree plantations.
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APPENDIX D: Transitions between the main lain use between

2000 and 2018 in the study area

Land cover
BA CP CL FO PA PL Total (ha)

Area with change of occupation

2000–2018 Area (ha) Area (%)

BA 2423a 224 711 11 219 451 4039 1616 2

CP 2320 5600a 17,259 236 7425 3394 36,234 30,634 29

CL 6586 3588 26,681a 132 7185 4602 48,774 22,093 21

FO 76 855 1047 184a 852 192 3206 3022 3

PA 667 435 3764 30 2957a 296 8149 5192 5

PL 323 192 1241 19 468 3576a 5819 2243 2

Total (ha) 12,395 10,894 50,703 612 19,106 12,511 106,221 64,800 61

Abbreviations: BA, built-up area; CP, crop-plantation associations; CL, croplands; FO, forests; PA, adult palm groves; PL, tree plantations.
a Represent the permanence of the land use type.
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