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Abstract: Changes in land-use have been observed in banana-based systems in the African Great Lakes
region affected by Xanthomonas wilt disease (XW) of banana. Through focus group discussions (FGDs)
and the 4-cell method (to map the area under production and the number of households involved),
changes in land-use were assessed in 13 XW-affected landscapes/villages along a 230 km transect from
Masisi (where XW arrived in 2001) to Bukavu (XW arrived around 2014) in the Eastern Democratic
Republic of Congo. Farmers’ perceptions on the sustainability of new land uses were also documented.
Soil nutrient content and erosion levels were measured for five major land-use options/trajectories
on 147 fields across 55 farms in three landscapes along the transect. From banana being ranked the
most important crop (92% of landscapes) before XW outbreaks, its importance had declined, with it
grown on smaller farms by most households in 36% of the landscapes, while in 64% of cases by few
households on smaller plots. Farmers uprooted entire banana mats or fields, expanding land under
other crops. Species richness did not change at landscape level, although 21 crops were introduced
at farm level. Banana is, however, still perceived as more sustainable due to its multi-functional
roles. Soils under banana had better chemical attributes, while high erosion levels (Mg ha−1 year−1)
occurred under cassava (1.7–148.9) compared with banana (0.3–10.7) and trees (0.3–5.9). The shifts
from banana could thus affect supply of key services and sustainability of the farming systems.
This study offers a good basis for interventions in XW-affected landscapes.
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1. Introduction

Musa spp. (banana and plantain, hereafter banana) is an important food and income fruit crop
the world over [1]. The crop ranks sixth in production, with an annual world production of about
144.6 million Mg [2]. The East and Central African Great Lakes region contributes one-third of the
world production, with production estimates of 5.2, 1.8, 1.4 and 1.4 million Mg ha−1 year−1 reported
for Uganda, Rwanda, Burundi, and the Democratic Republic of Congo, respectively [2]. In this region,
banana provides above 25% of food energy needs of over 70 million people [3,4] and is also important
for income generation through market sales [5,6]. The region is a secondary centre of diversity for
the East African Highland bananas (AAA genome) and plantains (AAB genome) [7,8]. Banana in
the region, is mainly grown as a perennial crop/permanent vegetation and plantations that are 30 to
50 years old are very common [9,10].

The crop is grown across a wide range of agroecological zones either as the sole crop or in
association with various annual or perennial crops, offering a broad range of ecosystem services
in addition to food, feed and fibre [11]. The thick year-round canopy offered by its broad leaves,
the mulch cover provided by dead leaves, leaf sheaths and harvested plant parts and an extended
superficial root system help reduce soil erosion [12–14], hence contributing to the resilience of the
agroecosystems. The banana crop could thus be considered as a foundation species in this part of the
world. A foundation species is a common/abundant species whose attributes (structural or functional)
define an ecological community or ecosystem [15]. Tampering with a foundation species can potentially
affect the socio-cultural, economic, and ecological resilience of a landscape. Modest to dramatic decline
has been observed over the past two decades in the lifespan and productivity of banana plantations,
and food and income security of banana-dependent households has been severely affected by pests
(weevils and nematodes) and diseases (mainly Xanthomonas wilt, banana bunchy-top disease and
Fusarium wilt).

The banana Xanthomonas wilt disease (XW), which is the most recent of the biotic constraints,
has been particularly devastating to banana production in this period in the region. First observed
in Ethiopia in 1939 [16], XW was reported in Uganda and the Eastern DR Congo in 2001 [17,18] and
has since spread to the entire East and Central Africa region, compromising plantations, and food
and income security at local, national and regional levels [19]. The disease causes the death of
affected plants and makes infected bunches inedible. As a control measure, or out of frustration,
there has been widespread cutting and uprooting of diseased mats or fields. In response to the disease,
farmers have also been reported to have diversified into other crop species and off-farm activities [20].
Thus, in addition to XW effects on food and income security, the disease has been postulated to
be accompanied by changes in land-use and crop species composition at farm and landscape level,
with potential positive or negative effects on the food systems and other ecosystem services. These
changes have not been systematically documented as a basis for evaluating the repercussions to
livelihood outcomes and ecosystem services in the affected landscapes.

This study analysed the (i) trajectories of change in land-use patterns in response to XW in the
XW-affected landscapes, (ii) changes in production, consumption and marketing of banana and other
key crop species in the landscape, (iii) soil nutrient content and amount of soil erosion for major
land-use types and (iv) farmers’ perceptions on the sustainability of the new land uses. Objectives (i)
and (ii) were achieved through recall studies in landscapes exposed to XW disease for time periods
varying between 1 to 14 years. Objectives (iii) and (iv) were attained through field measurements and
interviews across farms.

2. Materials and Methods

2.1. Study Area

This study was conducted in the eastern part of the Democratic Republic of Congo (DR Congo)
that comprises two provinces, North Kivu and South Kivu. The province of North Kivu covers an
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area of 59,631 km2 and has 4.9 million inhabitants. It is located between 0◦58’ latitude North to 02◦03’
latitude South and 27◦14’–29◦58’ longitude East [21], mean annual rainfall ranges between 1268 mm
and 1556 mm and an altitude range of 909–1803 meters above sea level (m) [22]. South Kivu is located
between 1◦36’–5◦ latitude South and 26◦47’–29◦20’ longitude East and has an area of 69,130 km2 and
a population of 3.9 million people [21]. Annual rainfall in South Kivu varies between 1437 mm and
1661 mm and an altitude range varying between 950 to 2019 m [22]. The mean annual temperature
across the study region varies between 23 and 24 ◦C (https://www.accuweather.com/en/cd/democratic-
republic-of-the-congo-weather).

In this predominantly highland region, agriculture is the main basis of livelihoods of the rural
and peri-urban population, with most of them farming at a subsistence level. Banana and plantain
are important staple and cash crops contributing to the food and income security of over five million
people [23]. For example, banana/plantain and their products (e.g., beer) were reported to provide
about 80 percent of incomes in South Kivu (Food for the Hungry, 2013 as cited in [24]).

2.2. Land-Use Trajectories and Food Systems

The study was conducted along a 230 km-long axis from Masisi in North Kivu province to Bukavu
in South Kivu province (Figure 1) in 2015. This transect was selected as a case study because it starts at
a disease front and comprises sites with various timespans of high disease presence/pressure.

A land-use class in this study is described by its purpose for different crop species. de
Bie [25] describes a land-use class as a taxon entirely based on information on land-use purpose and
operation sequence. The land-use data for this study was collected using a total of 13 village-level focus
group discussions (FGDs). Eleven of the 13 FGDs were conducted at approximately 20 km intervals
along the 230 km axis starting from Kahanga-Kabingu village in Masisi territory to Kashusha village in
Bukavu, while the other two FGDs were conducted on Idjwi Island (i.e., Idjwi North and Idjwi South)
located in Lake Kivu, South-Kivu province (Figure 1, Table 1). Xanthomonas wilt disease was first
reported at Masisi in the year 2001, while it arrived at Bukavu, the last FGD location, in 2014 (Figure 1,
Table 1).

The snowball sampling technique was used for the identification of parishes affected by XW
along the study transect. With the snowball sampling technique [26], the existing study objects
inform the recruitment of the subsequent subjects based on their acquaintance. Within the parishes,
villages affected by XW were purposively sampled for the FGDs through interaction with community
leaders, key informants and extension agents in the study area (Table 1).

A total of 10 farmers in a sex ratio 1:1, each at least 30 years of age participated in each FGD.
Precaution was taken to select only farmers that had been fully active in the study sites for a period of
over 10 years. It was postulated that this category of farmers had a better understanding/experience
with the impact of the biotic stresses, especially XW, and understanding of the changes and trajectories
in the crop diversification and food systems at these sites. The distribution of the FGDs in the study
area is detailed in Table 1 below.

The FGDs were guided using a structured questionnaire (S1). The facilitator used a checklist
to elicit information from the participants and probed for triangulation of the responses whenever
necessary. Care was also taken to ensure full participation of all the FGD participants. A four-cell
chart [27,28] was used to retrospectively rank the land-use for crop species or cultivar diversification
trajectories and changes in the landscapes affected by XW. The four-cell is a participatory rapid rural
appraisal technique created to assess agrobiodiversity and local food system flows [28,29]. It allows for
a quick identification and assessment of changes in food security and diet diversity [28]. The four-cell
chart ranks species abundance and distribution by looking at area under production and the number
of households involved in production. This results into four cells or groupings, i.e., a species being
grown on: (i) a large acreage and being produced by many households; (ii) large acreage but by few
households; (iii) small acreage but by many households and (iv) small acreage and few households
(Figure 2).

https://www.accuweather.com/en/cd/democratic-republic-of-the-congo-weather
https://www.accuweather.com/en/cd/democratic-republic-of-the-congo-weather


Sustainability 2020, 12, 3178 4 of 20
Sustainability 2019, 11, x FOR PEER REVIEW 4 of 20 

 

Figure 1. Map showing the locations of the communities/landscapes that participated in the Focus 
Group Discussions conducted in North and South Kivu provinces in the Eastern DR Congo. 

A total of 10 farmers in a sex ratio 1:1, each at least 30 years of age participated in each FGD. 
Precaution was taken to select only farmers that had been fully active in the study sites for a period 
of over 10 years. It was postulated that this category of farmers had a better understanding/experience 
with the impact of the biotic stresses, especially XW, and understanding of the changes and 
trajectories in the crop diversification and food systems at these sites. The distribution of the FGDs in 
the study area is detailed in Table 1 below.  

Figure 1. Map showing the locations of the communities/landscapes that participated in the Focus
Group Discussions conducted in North and South Kivu provinces in the Eastern DR Congo.



Sustainability 2020, 12, 3178 5 of 20

Table 1. The positioning of the sampled villages and focus group discussions along the 230 km
study axis.

Province Territory Village Year of XW
Outbreak Longitude Latitude Altitude Distance from

Masisi

North-Kivu Masisi

Kahanga-Kabingu 2004 - - - 0
Muhanga 2001 S01.24778 E029.05931 1701 20
Burungu 2004 - - - 40

Makombo 2008 S01.47358 E029.04045 2010 60

South-Kivu

Kalehe

Bulenga 2005 S01.71581 E29.01702 1525 80
Ruhunde 2005 S01.81677 E029.00951 1520 100
Kabulu 2005 S01.94952 E028.93301 1757 120

Bushushu 2009 S01.97875 E28.90992 1486 140
Muhongoza 2004 S02.07115 E28.89534 1585 160

Kabare
Kahanga 2009 S01.18282 E028.8617 1488 180
Kashusha 2012 S02.32044 E28.80240 1713 210

Idjwi Chondo 2002 S01.94219 E029.09471 1550 -
Ntalangwa 2008 S02.22220 E029.01602 1492 -
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Figure 2. A four-cell chart (A) and an example of farmers posting of different crop species on a four-cell
chart within a landscape and a point in time (B). The four-cell analyses were conducted across 13
landscapes in South/North Kivu provinces, the Eastern DR Congo.

Through the FGDs, farmers perceptions on the future role of banana and the ability of the major
land-use trajectories to fill the gap left by the banana crop were also obtained. FGD participants
were specifically asked to give the comparative advantage of the alternative crops in terms of food
security and nutrition, incomes, susceptibility to biotic and abiotic shocks, labour demand and supply
of selected ecosystem services.

Data collected through the FGDs were coded and analysed using both quantitative and
qualitative methods. Descriptive statistics were carried out using STATA and GenStat v. 16 software [30].
The qualitative information was either used to explain and interpret the quantitative information
provided by the respondents during the group discussions or compiled and sorted through a coding
process to generate descriptive tables and figures.

2.3. Effect of XW Driven Land-Use Trajectories of Change on Selected Supporting and Regulatory
Ecosystem Services

To determine the potential effect of land-use changes and trajectories towards other crop species
other than banana on selected supporting and regulatory services (objective iv), 147 fields on 55
different farms across three landscapes in South Kivu province along the transect, namely Idjwi North
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(Northern part), Katana (midway) and Mushinga (southern part) were examined. Soil physio-chemical
properties and soil erosion rates were determined for the land-use options on these fields to infer the
potential effect of the land-use changes due to XW on ecosystem services. Soil chemical properties
served as a proxy for nutrient recycling, an import supporting ecosystem function, while soil erosion
rates served as proxy for erosion control, an important regulatory service in the landscape. Soil-related
agroecosystem services such as pest and disease regulation, nutrient flows, soil formation and structure
are provided by several interrelated processes that govern decomposition, soil formation, soil structure,
erosion control, soil moisture and aeration, and cycling of mineral nutrients and carbon [31]. These soil
variables are reported to be good measures of the effect of farm management on soil health and a good
proxy for soil ecosystem services [31–33].

2.3.1. Soil Carbon and Nutrients

The content of soil organic matter (SOM), total nitrogen (N), available phosphorus and
exchangeable bases (K and Ca) were measured as indicators for soil quality and were used to
compare different land-use options and to infer the potential impact of the land-use trajectories.
Composite samples of five soil cores (2 cm in diameter and 15 cm deep; using a soil auger) were
collected diagonally in fields under different land uses (crops or plant species) in the middle of the main
growing season (i.e., October 2016). Each sample was air dried, sieved to pass through a 2 mm mesh
and analysed for soil pH and nutrient composition at the National Agricultural Research Laboratories,
Kawanda, in Central Uganda. The exchangeable cations and available phosphorus were extracted
using Mehlich 3 extraction method at a pH of 2.5 [34] and then determined using an atomic absorption
spectrophotometer. Soil organic carbon content was determined using the colorimetric method at
600 nm after digestion with potassium dichromate and sulphuric acid (i.e., Walkley–Black method).
Nitrogen was extracted using sulphuric/selenium digestion mixture, at 330 °C and later quantified
colorimetrically using the salicylate method. pH was read from a 1:2.5 soil:water extract. Soil texture
was determined using the Bouyoucos hydrometer method [35].

Mean levels of SOM, N, available phosphorus and exchangeable bases across the different land-use
options were analysed through Analysis of Variance (ANOVA), with means separation using Least
Significant Difference (LSD) at 5%. The GenStat statistical package v.16 [30] was used for the analysis.

2.3.2. Soil Erosion Losses

Erosion rates for different land uses were determined using the revised universal soil loss equation
(RUSLE) [36–38]. RUSLE estimates the annual erosion rate in a field based on field slope, rainfall
intensity, soil type, crop characteristics and management practices. It is expressed as [36]:

A = R × K × LS × C × P (1)

where: A = estimated average soil loss (Mg ha−1 year−1); R = rainfall-runoff erosivity factor
(MJ mm ha−1 h−1 year−1); K = soil erodibility factor (Mg h MJ−1 mm−1); L = slope length factor;
S = slope steepness factor; C = cover-management factor; and P = support practice factor.

Rainfall-runoff erosivity (R) is a measure of erosion potential of a rainfall event and is
influenced by duration and intensity of the event; and R for the study site were in the order of
3750 MJ mm ha−1 h−1 year−1, as calculated by Vrieling et al. [39]. Soil erodibility factor K is a measure
of the susceptibility of soil particles to detachment and transport by rainfall and water runoff. K was
determined using the method developed by Kassam et al. [40] for Kenyan soils. Using this approach,
soil texture results for each land-use unit/field (see Section 2.3.1) and soil units for the study areas were
used as input for determining the K classes and the associated K values. The soil units for Mushinga,
Katana and Idjwi were, respectively, haplic Acrisols, humic Cambisols and haplic Ferralsols [41,42].
On-farm data for input in the RUSLE included the slope length (L) and steepness (i.e. % slope, S) of
fields, main crop species grown on fields, tillage practices and supportive field management practices.
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The lengths for each field or segment, was measured using a 100 m length tape measure whereas the %
slope was computed using the equation:

S = Rise of slope/Run of slope × 100% (2)

The rise (m) was obtained from the difference between the elevations of the upper and lower
parts of the field along the length of the slope measured using global positioning unit (GPS, Garmin
-GPSMAP 64s; www.garmin.com), whereas run of slope was obtained using the Pythagoras theorem
(i.e., Run of slope2 = L2

− Rise of slope2).
LS, which is the proportion of soil loss under a given condition compared to that of a site with

a standard slope steepness of 9% and length 22.13 m was determined as described by Stone and
Hilborn [38] using:

LS = [0.065 + 0.0456 (S) + 0.006541 (S)2] (L ÷ constant) N (3)

where: S = slope steepness in %; L = length of slope (m); constant = 22.13 m; and N= N values of 0.2,
0.3, 0.4 and 0.5, respectively, correspond to S values of <1, 1 ≤ slope < 3, 3 ≤ slope < 5, and ≥5.

The crop management and tillage factor (C) determines the relative effectiveness of crop and soil
management in prevention of soil erosion and was computed as the product of the crop type factor
(score of 0 to 1) and the tillage method (score of 0 to 1) [38]. The plant/crop canopy cover factor (ranging
between 0 and 1) was estimated using Equation (4) [36,43]:

Crop type factor = 1 - Fc × exp (−0.1 × H) (4)

where Fc is the proportion of the ground covered by the canopy, H (ft) is the distance the raindrops fall
after hitting the canopy. Fc and H were captured through visual assessments and estimations on-farm.
For the assessment of canopy height (H) in intercropped fields, one species was considered if dominant,
otherwise an average was considered where two or more species had a more or less equal share of the
land cover. Thus, the crop type factor was influenced by the level of species diversity and the attributes
of the species complex. The tillage method factor was scored between ‘0’ and ‘1’ (‘0’ denoting good
practice while ‘1’ a bad practice) as described by Stone and Hilborn [38]. The supportive practice factor
P is the ratio of soil loss through a supportive practice to that through farming up and down the slope
and varies between a scale of ‘0’ (good practice) to ‘1’ (bad practice) [38,43].

The tillage method factors, crop type/cover factor, the support practices and the soil erosion rates
were compared across the dominant land-use options using ANOVA and the means separated as
described in the Section 2.3.1 above. Due to an unequal distribution of land-use options across the sites
and the lack of interaction between the sites and land-use options, ANOVA was only computed for the
land-use options.

3. Results and Discussion

3.1. On-Farm Coping Strategies Against Xanthomonas Wilt Disease

Communities affected by XW disease stated several coping strategies (Figure 3). The most
prevalent practices across communities/ landscapes included uprooting of diseased mats, cutting of sick
plants and removal of male floral buds to prevent insect-mediated infections (Figure 3). These practices
form the basic cultural control practices being promoted for managing XW disease [44]. Other practices
being promoted such as farm tool sterilization and formation of community task forces to enforce
disease control occurred in only 45% and 27% of the landscapes, respectively. Ochola et al. [45] reported
some of these practices as the prevalent agroecological practices in farms affected by XW disease.

www.garmin.com
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Uprooting of entire banana fields was also prevalent across 73% of the communities. In 55% and
91% of the cases, landscapes reported the complete abandoning of the banana crop and expansion of the
area under other crops, respectively (Figure 3). This was mainly due to frustration due to severe yield
losses and persistence of infections on farms. The consumption of banana also declined across 82% of
the landscapes in the Eastern DR Congo, while in 90% of the cases, households had diversified to other
crops for beer making. Nkuba et al. [46] reported changes in diets, with an increased consumption of
maize and root and tuber crops (36% of households) and a reduction in the number and size of meals
(52%) as coping strategies within households affected by XW in Rwanda and Tanzania.

3.2. Crop Diversification Trajectories Due to Xanthomonas Wilt Disease

Prior to the outbreak of XW, farmers ranked banana as the most important crop on farms across the
studied landscapes, followed by beans (Phaseolus vulgaris) and cassava (Manihot esculenta). However,
following XW outbreak, crop rankings changed, with banana dropping to the fourth in importance,
relative to the other crops, across the study landscapes (Figure 4A). Food crops, mainly cassava,
maize (Zea mays), sweet potato (Ipomoea batatas) and soybean (Glycine max) gained in importance
(Figure 4A). Cassava currently ranks as the most important crop across the XW-affected landscapes
in the Eastern DR Congo. A big shift in ranking also occurred for soybean (13th in the year 2000 to
the 8th in 2015). The ranking of beans in the food system remained unchanged while coffee and taro
dropped in importance.

A shift was observed towards increasing the area under a large number of crop species by many
households (i.e., to cell 1), mainly from being grown on small areas by many households (i.e., cell 3)
(Figure 4B).

The four-cell chart predominantly grouped the banana crop into cell 1 before the outbreak of
XW disease across the 13 XW-affected landscapes (Figure 5). Banana was ranked first in 92% of the
villages, produced on large land areas and by many households across the villages. Cassava (85%) and
beans (46%) were also more likely to be grouped into cell 1 across the surveyed landscapes before the
outbreak of the disease (Figure 5; Chi2 = 92.1, p < 0.0001). At the time of this study (after or at the
peak of XW epidemics), only a single village ranked banana first among the crop species. Farmers
reported uprooting entire banana mats and/or fields while expanding land under other crop species
and/or introducing new crop varieties (Figures 3 and 5). Banana no longer fell into cell 1 of the
four-cell chart. In 36% of the villages, banana was produced by many households but on small areas
(cell 3), while in 64% of cases it was produced by few households on small areas (cell 4) (Figure 5;
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Chi2 = 61.1, p < 0.0001). Species richness did not change at landscape level, although 21 crop species
were introduced at farm level across the villages. Pronounced changes in importance were mainly
observed for 14 food crops and tree species, mainly beans, taro (Colocasia esculenta), sweet potato,
cassava, maize, coffee (Coffea spp.), eucalyptus (Eucalyptus spp.) and soybeans in terms of area under
production and the number of households producing them (Figures 5 and 6).Sustainability 2019, 11, x FOR PEER REVIEW 9 of 20 
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Figure 4. Farmers’ perceptions of the rankings in importance of different crop species (A) and trends in
crop species richness (%) along the quadrants of a 4-cell chart (B) following the outbreak of XW in 13
landscapes in the Eastern Democratic Republic of Congo. Cells 1, 2, 3 and 4, respectively stand for
a species being grown on (i) a large acreage and by many households; (ii) large acreage but by few
households; (iii) small acreage but by many households and (iv) small acreage and by few households.
Data were captured in the period 2015/16.

Increase in the importance and production of the 14 crops was reported to target the filling
of the food security and income gap that arose from the loss of the banana crop to XW disease.
Nkuba et al. [46] similarly reported increases in the area under maize, root and tuber crops on
XW-affected farms in Tanzania and Rwanda. Replacement of banana with sweet potatoes and cassava
after devastation by XW has also been reported in Uganda [47]. The high ranking of cassava can
be attributed to its complementary role to banana as a food and income crop in these XW-affected
landscapes. The increments in the area and the number of households growing coffee and taro
(Figures 5 and 6) is not in tandem with the drop in the rankings of these crops (Figure 4). The slight
drop in the rankings for coffee and taro (cf. Figure 4) could be attributed to the urgent need to bridge
the food and income gap, with quick-maturing annual crops taking the priority. This is supported
by the fact that the number of households and area under coffee, taro and cocoyam relative to the
period before XW outbreak had increased (Figure 5). The leap in the rank of soybean was attributed
to ongoing promotion of soybean as a biological nitrogen fixation agent and source of income by
international projects in the region.

Farmers’ choices of replacement crops for banana in XW-affected landscapes mainly comprised of
the urgent need to bridge the income gap, i.e., market value and improve food and nutrition security.
The potential environmental benefits or effects on, e.g., soil erosion, nutrient recycling received the
least attention from farmers when considering crops to replace banana. This could be due to farmers’
limited knowledge on or perceived less importance of such services, in addition to these services often
being intangible [11].
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Figure 5. Spider plots showing the shifts in diversity (abundance) of selected key crop species before
and after the outbreak of Xanthomonas wilt disease of banana across 13 landscapes in the Eastern
Democratic Republic of Congo. Cells 1, 2, 3 and 4, respectively, stand for a species being grown on (i) a
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Figure 6. The frequency of mentioning different crop species as replacements for uprooted banana
fields across 13 landscapes affected by Xanthomonas wilt disease of banana in the Eastern DR Congo.
Error bars represent standard errors.



Sustainability 2020, 12, 3178 11 of 20

3.3. Perceived Changes in The Food Systems Due to XW Stress

XW disease induced changes in the value chains of major staple crops from production to
consumption within the affected areas. Declines in the production and consumption of banana occurred
across all (100%) XW-affected landscapes, while the sale by households and purchase by households
from other markets of banana only increased in 23% and 38% of the affected landscapes, respectively,
relative to the time before the outbreak of XW (Figure 7). The decline in banana production and
consumption within households was predominantly attributed to XW disease. Delayed management
of XW disease is reported to result in up to 100% yield losses. Increases in household sales of banana
in some of the landscapes despite the decline in production and consumption can be attributed to the
attractive higher market prices resulting from a low supply of bunches in the market. Nkuba et al. [46]
also reported a 35% decline in banana sales by farmers and a doubling of banana bunch prices in
Tanzania and Rwanda due to XW disease. The slight increment in household expenditure on banana
bunches, is because some households were able to buy bunches from the local or urban markets
to meet the household demand for banana-based food and banana beer beverage that also had an
attractive price in the market. Increases in production were observed for all the major food and
tree crops in most of the XW-affected landscapes (Figure 7). These increases were due to increased
land allocation (cf. Figure 5) to meet the food and income needs of the households. For example,
increases in consumption were reported for sweet potato, beans, taro, maize and cassava, while relative
sales of beans, coffee, cassava and eucalyptus increased. The increased production of beans was also
attributed to an increased productivity of the crop in abandoned or destroyed banana fields that had a
higher soil fertility. An increase in coffee purchase was also reported, possibly due to farmers and
middlemen buying locally, and bulking for future sales or for transportation to outside markets (e.g., in
neighbouring Rwanda) with higher prices. Pronounced increases in production and trade sugarcane
were also observed (Figure 7).
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Figure 7. Net frequency (%) of landscapes reporting changes production, sale, purchase and
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banana in the Eastern Democratic Republic of Congo.

3.4. Farmers’ Perceptions on The Future Role of Banana and The Sustainability of The Key Land-Use
Trajectories in XW-Affected Landscapes

Despite banana being severely affected by XW, it still occupies a unique position in the
farming system, due to its multi-functional benefits and roles in the production system. The most
important benefits reported by farmers included, its regular and all-year-round production (100% of
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landscapes), household preference to consume banana fruits (100%), its high profitability (92%) and its
ranking as the major contributor to household income (92%) (Figure 8). Farmers described the crop to
be their ‘local bank’, stemming from the ease of its conversion into cash. This is in line with the findings
of Vandamme [48], who reported the banana crop to play an important economic role as a farmers’
‘bank account’ for unexpected or major expenses and thus its importance in the agriculture sector in
the Eastern DR Congo. Banana was also important for beer making, a use that was reported to enhance
social cohesion (70%). Study groups reported the loss of banana to have exposed youth to more
potent alcoholic beverages, increasing health and social problems within their landscapes, thus the
need to restore banana production and the local banana beer industry. The crop is also an important
source for livestock feed, materials for construction of temporary shelters. Farmers were, therefore,
still eager to manage the disease or re-introduce the crop to their farms. Approximately half (54%) of
the landscapes visited in the study area were either still producing or had resumed banana cultivation
despite the presence of the XW, while the other percentage had not. No association (R2 = 0.01) was
observed between the time of exposure to the disease, and the continuation and resumption of a
landscape to produce banana. The continuation or resumption of a landscape to produce banana was
also influenced by farmers’ access to clean planting materials, the differential importance of banana
for food and income, and the variability in incidence and severity of the infection of XW across the
landscape. For example, clean planting materials were not accessible in the study region, while in one
out of the 13 sites, banana was not highly ranked and grown on a large scale, as such, XW disease
was not a major concern. The key replacement crops were also reported to have failed to bridge the
food security and income gap left by the banana crop. Due to the perennial nature of the banana crop,
farmers reported a lower cost of production, e.g., in labour and inputs, whereas the other crops
demanded major cultivation annually and investments in inputs annually.
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Figure 8. Farmers perceived comparative benefits offered by the banana crop across 13 landscapes in
the Eastern Democratic Republic of Congo. Numbers denote percentage of villages reporting.

Not surprisingly, only farmers in about 10% of the landscapes recognized the role of banana in
reducing soil erosion in the landscape. This was because it is less tangible and lacked immediately
visible benefits to most farmers.
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3.5. Soil Quality

The soil chemical properties significantly differed (p < 0.05) between the land-use options and sites,
whereas no significant interactions (p > 0.05) were observed between the land-use options and sites
(Table 2). No use of chemical fertilizers was reported by farmers across the study sites for the analysed
land-use options. Soil organic matter (SOM) and nitrogen (N), potassium (K) and phosphorus (P) were
consistently higher in fields planted with trees and banana (Table 2). The banana crop also scored
high for exchangeable bases calcium (Ca) and magnesium (Mg). Banana extracts large amounts of
soil N and P [49] and as such, a higher depletion of these nutrients in soils with banana would have
been expected.

Table 2. Variation of soil chemical properties for six major land-use options (i.e., banana, cassava,
coffee grass, annual crops and trees) in XW-affected across three landscapes (Idjwi (I), Katana (K) and
Mushinga (M)) in the Eastern Democratic Republic of Congo.

Soil Chemical
Property Site

Main Plant Cover
LSD p Values p Value

(Sites) Cv %
Banana Cassava Grass Annual

Crops Trees

Soil Organic
Matter

I 3.96bcd 3.58def 3.84cde 4.16bc 5.03a
0.43 0.20 0.01 21K 3.49ef 3.52ef * 3.48efg 3.36fg

M 4.37bf 3.68cdef 3.98bcd 3.048g 4.22b
Mean 4.04v 3.61w * 3.54w 4.33v 0.30 0.02

Nitrogen (%)

I 0.30bcd 0.27de 0.28cde 0.30bcd 0.36a
0.03 0.27 0.02 18K 0.26e 0.27de * 0.26e 0.26e

M 0.32b 0.28cde 0.30bcd 0.22f 0.31bc
Mean 0.30v 0.27w * 0.26w 0.32v 0.02 0.03

Phosphorus
(ppm)

I 36.19abc 14.81d 3.81d 20.78bcd 48.26a
21.34 0.99 0.08 194K 23.93bcd 8.85d * 21.27bcd 16.07d

M 13.11d 3.37d 4.45d 12.73d 17.06d
Mean 24.58v 9.08w * 17.81v 29.03v 14.4 0.10

Potassium
(cmol(+)/kg soil)

I 0.21e 0.19f 0.14f 0.13f 0.19f
0.10 0.07 <0.001 65K 0.46ab 0.31cde * 0.36bc 0.50a

M 0.44ab 0.15f 0.16f 0.15f 0.23def
Mean 0.36v 0.20wx * 0.19x 0.27w 0.07 <0.001

Calcium
(cmol(+)/kg soil)

I 9.02c 7.22cd 4.51e 8.67c 5.04de
2.49 0.32 <0.001 49.8K 15.85b 15.97b * 16.15b 21.46a

M 9.18c 4.73de 4.17e 8.94c 3.50e
Mean 10.52v 8.00w * 10.35v 7.83w 1.71 0.02

Magnesium
(cmol(+)/kg soil)

I 4.68de 4.48de 2.69g 5.12d 2.74g
1.25 0.08 <0.001 43K 8.80a 6.99bc * 8.67a 7.98ab

M 6.57c 2.97fg 3.74efg 4.03def 3.51efg
Mean 6.35v 4.38x * 5.42w 4.17x 0.86 <0.001

Means followed by the same letter ‘a’ to ‘g’ and ‘v’ to ‘x’ within rows and a row for a given soil chemical property,
respectively are not significantly different. ‘*’ = missing data.

The observed higher availability of these and other nutrients in banana fields could be linked
to the location of most banana plots close to homesteads, which allows for easy application of
household wastes. The banana crop, due to its large size and wide spacing, and in contrast to
other crops, is more compatible with the deposition of most household wastes in between plants.
It was also common to see banana plots with some mulch and/or heavy crop litter. The permanent
nature of banana fields, high recycling of banana wastes, the application of external mulch and kitchen
wastes under banana fields have been reported to improve nutrient availability and recycling in
banana fields [11]. Bekunda and Woomer [50] also reported farmers to preferentially apply available
organic resources on plots close to the homestead. Mulch and crop residues also intercept, slow and
reduce runoff through retaining a fraction of rainfall/runoff, increasing hydraulic roughness, ponding
and infiltration, obstructing and diverting runoff [51], potentially reducing nutrient loss through
erosion. In contrast, fields under cassava and other annual crops generally received no external inputs.
Stems of cassava and some annual crops, e.g., maize and sorghum were often exported out of fields
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and used as fuel wood while some annual crop residues were burnt on farm, practices that lead to
nutrient depletion.

Fields under grass where generally low in soil P, K and Ca content, possibly due to constant
extraction of nutrients through livestock grazing (Table 2). Such fields also predominantly consisted of
fields previously found to be less productive for food crops.

3.6. Soil Erosion Control

The mean values of the variables for estimating soil erosion levels or its variables with exception
of slope length were significantly different across the land-use options (p < 0.001) and the three study
sites (p < 0.05) (Table 3). Significant interactions between land cover options and sites occurred for soil
erodibility (K), the crop management factor (C), and the support practice (P).

The crop cover factors that influence the crop management factor, C, were highest for land cropped
with cassava (0.41–0.47) and annual crops (0.47–0.54), while least for fields covered by grass (0.01–0.02)
(Table 3). Of the food crops, the banana crop (0.09–0.12) had the least crop cover factor. The cover
factors in this study (Table 3) for the various crop/plant categories are comparable to those reported in
the literature (e.g., [37,38,52–55]). The tillage factor values for fields under grass and trees were low
due to no tillage. Tillage practice values under coffee and banana (often minimum or zero tillage)
were lower and more supportive in controlling soil erosion than those under cassava and annual crops
(Table 3). Fields planted with annual crops and cassava were subjected to routine cultivation, exposing
the soil to run-offs. In line with the low crop cover type factors and tillage method factors, fields under
grass, trees and banana had lower C values (0.002–0.06) compared with 0.21–0.33 for cassava and
0.27–0.43 for the annual crop fields across the sites (Table 3).

In general, most farmers did not adhere to support practices (P) that help minimize soil erosion.
For example, most farmers cultivate down the slope (instead of along contour bands), a practice that
encourages soil erosion. Cassava and annual crops ranked worst with regards to these practices,
while coffee and banana fields were moderate due to minimum/zero tillage being practiced on some
farms (Table 3).

The mean slope factor (LS) was mainly influenced by the slope gradient. LS and slope, respectively,
varied from 0.45–16.3 and 4–39% and were, in general, highest for fields planted with trees and least
for fields planted with the annual crops. The ground surface of fields planted with trees were often
covered by grass and/or thick layers of leaf litter. Growing trees with deep root systems on steep
slopes and annual crops on relatively flatter areas could be a farmer strategy for minimizing soil loss
and/or put such lands to fruitful use. Banana crops (% slope of 4–16%) relative to cassava (4–20%) were
cultivated on relatively flat areas (Table 3), probably due to most banana farms being located close
to homesteads, which were more often located on flatter portions of the available land. The farms at
Katana were on more gentle slopes (4–5%) compared to Idjwi (10–28%) and Mushinga (6–39%).

Soil erodibility factor, K, varied between 0.0053 and 0.0268 Mg h MJ−1mm−1 and was
lower in Katana compared with Idjwi and Mushinga. These K values are comparable to
0.009–0.021 Mg h MJ−1mm−1 reported for the Tangata catchment in Rwanda [56], 0.016 Mg h MJ−1mm−1

for the Kainjuki highlands in Kenya [53] and 0–0.24 Mg h MJ−1mm−1 for the whole of Rwanda [57].
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Table 3. The scores for the RUSLE covariates for different crop/plant covers on farms across landscapes affected by Xanthomonas wilt disease in the Eastern DR Congo.

Site Main Plant
Cover

Soil Erodibility
Factor (K)

Crop
Cover

Tillage
Method Factor C Factor Slope Length (L) % Slope (S) LS P Amount of Eroded

Soil (A)
A for Standardised

Mean Slope

Idjwi

Banana 0.02684 0.12 0.43 0.048 61.1 15.6 4.61 0.43 10.7 12.74
Cassava 0.02642 0.47 0.61 0.284 48.0 19.5 5.94 0.87 148.9 141.87

Grass 0.02371 0.01 0.25 0.002 47.5 20.8 5.80 0.63 0.4 0.36
Annual crops 0.02502 0.47 0.57 0.271 42.3 9.5 1.52 0.83 28.3 55.35

Trees 0.02700 0.04 0.31 0.013 30.5 27.5 8.76 0.47 5.9 3.99

Katana

Banana 0.00527 0.09 0.51 0.047 43.0 4.0 0.46 0.70 0.3 0.33
Cassava 0.00527 0.41 0.53 0.213 47.4 3.9 0.45 0.92 1.7 1.93

Grass * * * * * * * * * *
Annual crops 0.00527 0.47 0.55 0.265 34.8 4.6 0.52 0.63 1.4 1.35

Trees 0.00527 0.04 0.50 0.018 44.6 5.2 0.69 1.00 0.3 0.26

Mushinga

Banana 0.01449 0.12 0.50 0.058 48.0 10.7 2.12 0.77 5.0 8.07
Cassava 0.01479 0.47 0.69 0.329 55.0 17.0 5.29 0.98 98.8 100.31

Grass 0.01449 0.02 0.25 0.005 57.9 14.0 3.47 0.25 0.4 0.49
Annual crops 0.01449 0.54 0.80 0.434 69.7 5.8 0.97 1.00 22.8 67.85

Trees 0.00527 0.02 0.29 0.006 36.8 38.8 16.31 0.28 0.4 0.18

LSD 0.00210 0.03 0.06 0.026 15.9 6 3.24 0.15 46.5 -
F pr (Main plant spp.) <0.001 <0.001 <0.001 <0.001 0.396 <0.001 <0.001 <0.001 <0.001 -

F pr (Site) <0.001 0.005 0.004 <0.001 0.345 <0.001 0.01 0.026 0.026 -
Fpr (interaction) 0.009 0.53 0.009 <0.001 0.71 0.197 0.202 0.003 0.21 -

Cv% 23 19 21 30 57 73 135 37 198 -

A = estimated average soil loss (Mg ha−1 year−1); K = soil erodibility factor (Mg h MJ−1mm−1); C factor= cover-management factor; and P = support practice factor and LS = proportion of
soil loss under a given condition to that of a site with a standard slope steepness of 9% and length 22.13 m. #A= estimated soil loss per land-use for the same slope (%), standardised using
mean slope for each site. ‘-‘ = not computed. Fpr values of > 0.05, <0.05, <0.01 and <0.001, respectively, denote no significant, significant; very and highly significant difference between
mean values for the main factors and the interactions. Rainfall-runoff erosivity (R) = 3,750 MJ mm ha-1 h-1 year−1 [39].
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The mean soil erosion levels (A) computed using the RUSLE equation were, in general, lower for
the fields under grass (0.4 Mg ha−1 year−1 of soil loss per annum), trees (0.5–5.9) and banana
(0.3–10.7) compared with 29.5% Mg ha−1 year−1 for coffee, 1.4–28.3 for the annual crops and
1.7–148.9 Mg ha−1 year−1 for cassava fields (Table 3). The high erosion levels for cassava fields
can be attributed to allocation of cassava to the less fertile steep slopes and the less protective tillage
and support practices under cassava (Table 3). The soil erosion levels were generally lower in Katana
(0.3–1.7 Mg ha−1 year−1), which had less soil erodibility and more gentle slopes compared with
0.4–98.8 Mg ha−1 year−1 at Mushinga and 0.4–148.9 Mg ha−1 year−1 at Idjwi. Several farms at the
Mushinga and Idjwi site were on steep slopes, coupled to their higher soil erodibility rates (Table 3).
The trend in erosion levels for landscapes under banana, coffee and annual crops as reported by [14]
for the Lake Victoria basin catchment are similar, although higher compared with those of the land
uses in this study. Lufafa et al. [14] reported soil loss levels of 32–47 Mg ha−1 year−1 for banana
and coffee systems and 93 Mg ha−1 year−1 for the annual crops. In the Kianjuki catchment area in
Central Kenya, Angima et al. [53] reported higher soil losses between 30–666 Mg ha−1 year−1 for
annual rotations, banana and coffee-based systems. However, despite a comparable LS factor (1–29),
the Kianjuki site had twice higher rainfall erosivity of 8527 MJ mm ha−1 h−1 year−1 compared with
3750 MJ mm ha−1 h−1 year−1 in the current study sites. Apart from land-use under grasses, trees
and banana, and the Katana site, erosion levels for cassava, coffee and annual crops were above the
tolerable soil loss rates of 2.2–10 Mg ha−1 year−1 reported for the Kainjuki catchment in Kenya [53] and
15 Mg ha−1 year−1 used for the Tangata catchment in Rwanda [56].

Given the current trajectory of farmers in these XW-affected landscapes to shift to cassava, beans
and other annual crops, the unsuitable location of several farms on steep slopes (6–28%) coupled
with the poor tillage and support practices under the alternative land uses, erosion levels are likely to
rise on XW affected farms and landscapes. Strategies for supporting farmers alternative land uses to
mimic a banana production system and land uses such as land under trees and grasses needs to be
explored and promoted. Potential practices could include the integration of contour hedges, grass
bands, mulching and the use of cover crops to reduce runoff in erosion-prone land-use options.

4. Conclusions

Xanthomonas wilt disease of banana leads to death of affected plants and decay of infected bunches.
All the study sites reported XW to have severely reduced the productivity of their banana farms.
Uprooting of entire banana fields, expanding area under other crop species and totally abandoning
banana for other crops was common across the landscapes. No changes in crop species richness
at landscape level were observed though changes were eminent at farm level, with some farms
introducing individual crop species. The overall trend across the sites was to increase the production
of crops such as cassava, sweet potato, maize, sugarcane and eucalyptus with the objective of filling
the short-term food security and income gaps arising from the loss or low productivity of bananas
due to XW disease. Cassava and coffee especially, have already been important food and/or income
crops in the region, with better developed market value chains, offering a better option in the short
and long term to bridge the food and income gaps left by the banana crop. However, the observed
trends in crop diversification in XW affected landscapes needs to be supported through deliberate
efforts to improve extension services, seed systems, post-harvest handling and market value chains.
Banana is still perceived as the preferred crop due to its multi-functionality in providing food, fodder,
fiber, incomes and other ecosystem services in the landscape. The current trajectory in land-use will
potentially increase soil loss and negatively affect the productivity and resilience of the soils. Strategies
to manage XW and rapidly restore banana production in affected landscapes are necessary. In parallel,
efforts are needed to support other land uses, especially land under cassava so as to mimic the natural
ecosystems in the supply of services such as erosion control and nutrient recycling e.g., through
planting hedges and grass bands along contours. This study stresses the importance of a holistic
approach focused on the entire banana-based agroecosystem in addressing the XW problem and is a
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good basis/ entry point for interventions to sustainably improve production systems, incomes and
food security in XW-affected landscapes.
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