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Abstract

Banana production landscapes in the African Great Lakes Region (AGLR) have been under

immense pressure from Xanthomonas wilt (XW) disease over the past two decades. XW,

first reported on banana in central Uganda and eastern DR Congo in 2001, has since spread

to the entire AGLR. XW is currently spreading westwards from hot spots in eastern DR

Congo highlands, putting the plantain (Musa AAB genome) belt of central and west Africa at

risk. In-depth understanding of the key variables responsible for disease spread, current

hotspots, and vulnerable landscapes is crucial for disease early warning and management.

We mapped aggregated disease distribution and hotspots in the AGLR and identified vul-

nerable landscapes across African banana production zones. Available data on disease

prevalence collected over 11 years was regressed against environmental and expert devel-

oped covariates to develop the AGLR XW hotspots map. For the Africa-wide risk map, pre-

cipitation, distance to hotspots, degree of trade in fresh banana products, production zone

interconnectedness and banana genotype composition were used as covariates. In the

AGLR, XW was mainly correlated to precipitation and disease/banana management. Alti-

tude and temperature had unexpectedly low effects, possibly due to an overriding impact of

tool-mediated spread which is part of the management covariate. In the AGLR, the eastern

part of DR Congo was a large hotspot with highest vulnerability. Apart from endemic zones

in the AGLR and Ethiopia, northern Mozambique was perceived as a moderate risk zone

mainly due to the predominance of ‘Bluggoe’ (Musa ABB type) which is highly susceptible to

insect-vectored transmission. Presence of XW hotspots (e.g. eastern DR Congo) and vul-

nerable areas with low (e.g. north-western Tanzania) or no disease (e.g. Congo basin, west-

ern DR Congo and northern Mozambique) pressure suggest key areas where proactive

measures e.g. quarantines and information sharing on XW diagnosis, epidemiology, and

control could be beneficial.

PLOS ONE | https://doi.org/10.1371/journal.pone.0213691 April 2, 2019 1 / 19

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Ocimati W, Bouwmeester H, Groot JCJ,

Tittonell P, Brown D, Blomme G (2019) The risk

posed by Xanthomonas wilt disease of banana:

Mapping of disease hotspots, fronts and vulnerable

landscapes. PLoS ONE 14(4): e0213691. https://

doi.org/10.1371/journal.pone.0213691

Editor: T. R. Ganapathi, Bhabha Atomic Research

Centre, INDIA

Received: December 2, 2018

Accepted: February 26, 2019

Published: April 2, 2019

Copyright: © 2019 Ocimati et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Data are available in

the manuscript and CGIAR repository through the

ID: https://doi.org/10.7910/DVN/VHS0LX.

Funding: The fieldwork of this study was

conducted within the framework of the CGIAR

Research Program on Roots, Tubers and Bananas

(RTB) and was led by Bioversity International. This

study was supported by the CGIAR Fund Donors

(https://www.cgiar.org/funders/) with support

through the RTB Program Management Unit

(https://www.cgiar.org/research/program-platform/

http://orcid.org/0000-0001-6177-7073
http://orcid.org/0000-0003-2859-1618
https://doi.org/10.1371/journal.pone.0213691
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0213691&domain=pdf&date_stamp=2019-04-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0213691&domain=pdf&date_stamp=2019-04-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0213691&domain=pdf&date_stamp=2019-04-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0213691&domain=pdf&date_stamp=2019-04-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0213691&domain=pdf&date_stamp=2019-04-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0213691&domain=pdf&date_stamp=2019-04-02
https://doi.org/10.1371/journal.pone.0213691
https://doi.org/10.1371/journal.pone.0213691
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7910/DVN/VHS0LX
https://www.cgiar.org/funders/
https://www.cgiar.org/research/program-platform/roots-tubers-and-bananas/


Introduction

More than one third of Africa’s banana (Musa spp.) production, or nearly 11% of world pro-

duction, comes from the African Great Lakes region (AGLR), i.e., Burundi, Democratic

Republic of Congo (DR Congo), Kenya, Rwanda, Tanzania, and Uganda [1], which is a centre

of diversity of East African highland bananas and plantains [2, 3]. Banana provides 30–60% of

food energy needs for over 70 million people in this region [4, 5] and contributes to incomes

of farm households and businessmen along the value chain of the crop [6, 7]. Since two

decades, banana production landscapes in the AGLR have been subjected to immense pressure

from pests and diseases on top of several abiotic constraints. The outbreak of Xanthomonas

wilt disease of banana (XW) has drawn the greatest attention due its rapid rate of spread and

severe impact on production. The disease was first observed on banana in 1974 in Ethiopia [8].

In the AGLR, it was first observed in 2001 in central Uganda [9] and eastern DR Congo [10],

and has over a period of a decade spread to the whole AGLR [11–14]. Within the affected

countries, the disease has spread to new zones at rates dependent on the agroecological condi-

tions and the characteristics of the production systems. High spread rates have been reported

in lower altitude areas (<1500 m) of central Uganda [15] with slower rates reported at high

elevations (>1500 m) of eastern DR Congo [10]. The disease is currently spreading westwards

from the current hot spots in eastern DR Congo, towards the Congo basin, putting the plan-

tain belt of central and west Africa at risk. XW disease results in severe yield losses reaching as

high as 100% if control is delayed, severely compromising food and income security of house-

holds and communities [16–18]. Potential economic losses between US$ 200 and 295 million a

year due to delayed intervention have been estimated for Uganda [16, 19]. In Tanzania and

Rwanda, a 35% drop in sales and doubling of prices due to XW were reported [20]. In Uganda,

[1] reports 50% less production for 2014, compared to 2002 while area under banana declined

by 39%.

Over the past 15 years, various research and extension efforts have been put in place to

manage and contain the disease. For example, several XW epidemiology studies have been

conducted and control strategies fine-tuned [21–30] farmers sensitized and trained; and

bylaws and task forces formed to foster control [17, 31, 32]. No disease quarantines have been

set up in the region to contain the disease. If attempted, low success rates are anticipated due

to lack of efficient detection tools at border points, porous nature of borders and common eth-

nicities at borders with some households being separated by the borders [17]. Once estab-

lished, landscape-wide XW control is difficult and total eradication is impossible [33]. Ocimati

et al. [25] reported long incubation periods of up to 24 months and latent infections. Though

helpful for reducing disease incidence and recovery of yields, the current measures have been

reactive and are not adequate for containing the disease, especially not from spreading to new

locations.

Knowledge of the vulnerable landscapes and disease fronts could prevent or minimize neg-

ative effects due to the disease. Here we aim to map XW incidence and identify the XW disease

fronts and the vulnerable landscapes across Africa. Making XW spatially explicit can guide the

design of interventions for disease management and containment. Maps will be important for

surveillance; risk assessment; priority setting and resource allocation; and strategizing for dis-

ease management and containment. Mapping will also allow identification of vulnerable sites

for a more pro-active disease prevention strategy, rather than the commonly applied reactive

strategy. Our objectives were (i) to map the spatial spread of XW disease and the vulnerable

landscapes of the AGLR, collating available disease incidence survey data and environmental

and social co-variates from the various countries in the region, and (ii) to develop a first, coarse

XW disease risk map for the rest of Africa. Deliberating on these XW spatial risk maps with
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stakeholders is anticipated to pro-actively guide decisions and strategies for XW prevention

and management at landscape and regional level. This study will build on existing XW map-

ping exercises in the region [12, 15, 34–36] that have often been region- or country-specific.

Materials and methods

Study area

The study area (Fig 1) consists of two geographical zones. The first zone, is the African Great

Lakes region (AGLR) and measures about 1000 x 1000 km2. The area includes Rwanda,

Burundi, the main banana growing areas in western Kenya, Uganda, northern Tanzania and

the eastern DR Congo. The East African highlands are part of the African Rift System with

Lake Victoria as the central basin. The area has a diverse agroecology, resulting from a large

variation in altitude (550–4600 m above sea level; CGIAR-CSI, 2008), mean annual rainfall

(500–2300 mm; [37]) and mean annual temperature (from 3 to 26 oC; [37]). A large part of the

area is very suitable for growing crops such as banana and plantains, maize and cassava

because of fertile soils and high rainfall. Agriculture in the region can predominantly be char-

acterized as subsistence farming with complex mixed cropping. This zone is dominated by the

east African highland bananas. Plantains (AAB genome) can be found in high abundance in

parts of eastern DR Congo while the ABB types can be found localized in patches across this

zone, with higher concentrations in central Uganda. All surveys were carried out in this zone.

The second (much larger) zone covers all the banana growing zones in Africa, including the

AGLR. The area covers 28 tropical or subtropical countries in Africa with a very diverse agro-

ecology resulting from its sheer size and the African Rift System that cuts it in two (Fig 1). It

borders two oceans, has several mountain ranges, river systems/basins and extensive forested

areas. The areas in the west and central Africa are dominated by plantains while the east and

central African highlands (AGLR) are dominated by the east African highland banana (AAA

genome). Other AAA genomes (e.g. Cavendish types) are prevalent in the central, east and

southern parts of Africa. Both study areas are delimited using administrative boundaries

(Global Administrative Areas vs. 2.8; www.gadm.org).

Methodology for zone 1 (i.e. AGLR)

Data collection. Survey datasets: The data set for mapping the AGLR was collated from

nine ground-based surveys conducted between 2005 and 2016 across the zone 1 (Figs 1 and 2)

and comprised of a total of 4,760 farms. An ellipse is added for each survey to show its geo-

graphic extent (Fig 2). The smallest extent is that of survey E, where all samples lie within a 3

km distance. The largest one is survey H, where the samples lie within 1000 km distance. Only

survey H covers the entire area of interest. XW incidence/ distribution was recorded through

farmer interviews and diagnosis of banana farms/fields. The coordinates of the sample loca-

tions were recorded with a handheld GPS with an error margin of about 10 m. The surveys

measured XW as binominal (present or absent) or categorical values (percentage incidence of

infected plants in a farm (i.e. 0 to 100%)). For uniformity, all measurements were transformed

to binominal values (1 = present or 0 = absent).

Dataset of covariates: Most of the area of interest for the AGLR risk mapping is devoid of

samples. Environmental variables (e.g. altitude, rainfall, temperature) and banana cultivar

composition have a relationship with XW disease [17, 21, 35, 36, 38]. Precipitation, tempera-

ture and altitude influence insect vector activity and thus the incidence and severity of XW dis-

ease [21, 39, 40]. The ABB banana types are particularly prone to insect-mediated infections

due to their non-persistent neuter flowers [18], as such depending on their concentrations and

farm management practices, landscapes containing them tend to be more prone to XW

Xanthomonas wilt disease of banana hotspots, fronts and vulnerable landscapes
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infection. Environmental characteristics/banana types can thus help to predict the incidence

of XW or the risk of infection at the unobserved locations. The environmental variables (e.g.

topography, vegetation, temperature, precipitation) and major markets were obtained from

Fig 1. Study areas: 1) African Great Lakes region and 2) entire Africa. Shaded are the main banana growing areas (Source: www.crop-mapper.org).

https://doi.org/10.1371/journal.pone.0213691.g001
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publicly available predictor maps. Data on the distribution and abundance of ABB types in the

AGLR was obtained through literature review and expert knowledge. The level and organiza-

tion of extension services and thus disease management also plays a key role in the spread,

incidence and severity of the disease. To capture this, through expert judgement, management

was incorporated as an additional covariate using a scale varying between 0 and 1, ‘0’ denoting

no efforts to manage XW disease and ‘1’ strong research, extension and management efforts to

control XW. Table 1 lists all environmental variables that have been used for mapping the

AGLR and Fig 3 illustrates them as maps.

Indicator regression kriging. To develop the XW disease map for the AGLR, the indica-

tor regression kriging method was used. Indicator regression kriging is a geostatistical interpo-

lation method that spatially interpolates a response variable, making use of point observations

of the target variable and auxiliary data [42, 43]. Bouwmeester et al. [35], used the method to

map XW in the East African highlands. In this study, the same technique was applied, but mul-

tiple merged survey datasets were used, instead of just one, and hence the spread of XW was

predicted for a larger area. Bouwmeester et al. [35] used data of 2006/7 only, and since then

the disease has spread to other areas in the region. The methodology involves two stages. In

the first stage, the binary survey variables are regressed to auxiliary environmental (e.g.,

Fig 2. Incidence of XW for all nine surveys indicated with letters A to H. An ellipse/circle shows the geographic extent of a survey.

https://doi.org/10.1371/journal.pone.0213691.g002
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terrain, climate, land cover) and social (e.g. management) covariates. In the second stage, the

regression residuals are interpolated using simple kriging and added to the regression map to

further improve the spatial prediction of XW incidence across the entire region.

Regression analysis: Regression models predict at the unobserved locations using the rela-

tionship between the observed locations and the environmental auxiliary covariates. We used

16 auxiliary covariates (Table 1) that were thought to have a plausible and significant relation-

ship with XW or its vectors and for which spatially exhaustive maps in the public domain or lit-

erature and knowledge were available. An overlay of the survey locations and covariates

resulted in a database with XW presence and 16 covariates. This database served as input for fit-

ting the regression models. We applied logistic regression because the dependent variable (XW

presence) is binary, either 1 for present or 0 for absent. The theory and practical application of

logistic regression is well explained by [44] and by Bouwmeester et al. [35] and therefore only

briefly described it in this article. The general logistic regression model was built in four steps:

1. All 16 covariates (Table 1) were entered into a univariate logistic regression model. Covari-

ates with a significance level less than 0.25 were included in further analysis because these

may be significant in two-way interactions.

2. The 16 covariates (Table 1) were then entered into a multivariate logistic regression model.

With stepwise regression, the covariates that were not significant at the p = 0.05 level were

removed one at a time.

3. Two-way-interactions between covariates were included to check for combined effects that

improve the likelihood ratio. Initially, all possible covariate interactions were examined. All

interactions with a p-value less than 0.05 are deemed significant and included in the model,

again using a stepwise approach.

4. The goodness-of-fit of the final model was assessed in terms of deviance and compared to

the null model (i.e., the model without covariates) using the likelihood ratio test.

Finally, the derived logistic regression model was used on the covariate maps, and yields a

regression prediction map for zone 1 of the study area.

Table 1. Covariates used for the regression analysis and for making the infection risk map of the African Great Lakes Region.

Var. Description Resolution Source

1 lon Longitude 30 arc s -

2 Lat Latitude 30 arc s -

3 Alt Altitude above sea level (m) 30 arc s http://srtm.csi.cgiar.org [41].

4 prec Annual precipitation (mm) 30 arc s WorldClim V1 [37]

5 precsq - 30 arc s -

6 precmin Precipitation driest month (mm) 30 arc s WorldClim V1 [37]

7 precvar Precipitation seasonality (-) 30 arc s WorldClim V1 [37]

8 temp Mean annual temperature (˚C) 30 arc s WorldClim V1 [37]

9 tempsq - 30 arc s -

10 tempmin Mean temperature coldest month (˚C) 30 arc s WorldClim V1 [37]

11 tempvar Temperature seasonality 30 arc s WorldClim V1 [37]

12 market Market access (hr) 30 arc s www.forobs.jrc.ec.europa.eu

13 veg Vegetation cover 30 arc s ESA CCI landcover map V1

14 Vegsq - 30 arc s -

15 Man Management Factor (-) 30 arc s Expert knowledge

16 abb Distribution of ABB banana types 30 arc s Expert knowledge

https://doi.org/10.1371/journal.pone.0213691.t001
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The R Statistical software [45] and the Raster package [46] were used for the regression

analysis.

Spatial interpolation: In most cases, the regression model will only describe part of the varia-

tion in the response variables. Through regression kriging, the regression residuals were interpo-

lated with kriging and used to correct the estimate of the regression model. Kriging predicts at

unobserved locations by taking a weighted average of the surrounding observations, where the

kriging weights depend on the spatial autocorrelation between the variable at the prediction and

observation locations. The spatial autocorrelation is characterized by the semivariogram that plots

the semivariance, i.e., a measure of the degree of variation, as a function of geographical distance

[42]. In regression kriging, the residuals from the regression analysis are used instead of the obser-

vations directly. We estimated the semivariogram model parameters based on visual interpreta-

tion of the semivariance plot. Next, simple kriging of the regression residuals was applied since

the regression residuals have zero mean [43]. Finally, the simple kriging method yields a kriging

prediction map for zone 1 of the study area. The GSTAT package in R [47] was used for this.

XW prediction map. To predict the XW incidence of the entire region, the regression

prediction map was simply added to the kriging prediction map. Cells were set to zero if the

Fig 3. Covariate maps that served as input for the regression model for developing the spatial map of Xanthomonas wilt disease in the

African Great Lakes Region.

https://doi.org/10.1371/journal.pone.0213691.g003
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sum of the regression- and the kriging-values was negative and cells were set to 1 if the sum

exceeded 1.

Methodology for zone 2 (banana growing areas in Africa)

For the development of XW infection risk map at the Africa-wide level, we cannot directly rely

on the current surveys because these cover only the AGLR. Therefore, variation in environ-

mental covariates is beyond the range of the samples, and the calculated relationships for study

area 1 will not hold. Also, XW is currently not present in the lowland plantain growing zones

of west and central Africa and not in the Cavendish (AAA genome) growing zones in eastern

and southern Africa. Management as a covariate would also not work for the Africa wide con-

text due to the absence of the disease.

To overcome this challenge, a prediction of infection risk was estimated by calculating a

background risk level to all banana growing zones in Africa based on the relationship between

XW disease and selected covariates (environmental and expert generated). This background

risk was then corrected based on expert knowledge. The expert assessment of covariates was

attained through a two-step procedure. In the first step, a questionnaire was administered to

14 experts on XW epidemiology, to determine the importance of ten suggested covariates on a

scale of 1–5 (Fig 4). Rank ‘1’ stands for not important while rank ‘5’ denotes very important in

influencing XW disease. Table 2 lists the covariates that were finally used for the Africa wide

XW risk map. Subsequently, and using the selected covariates, three experts with good under-

standing of XW disease epidemiology and the banana production zones, independently ranked

the risk scores for each production zone/ country.

Most of the banana production zones for which the XW infection risk was calculated were

downloaded from the crop-mapper application (www.crop-mapper.org). The zones were

modified using ArcGIS [48] because some zones were 1) overlapping, 2) were entered twice, 3)

were split into small polygons or 4) were displaced. In some countries, zones were added

because they were missing in the crop-mapper application despite having significant banana

production [1]. The geographic location of these missing zones was based on the maps of Map-

SPAM V2 [49] banana production.

After editing there were 121 zones within 28 African countries. In some countries there

were many zones with a maximum in Guinea of 15, whereas in other countries like

Fig 4. The percentage of experts giving different ranks for 10 potential covariates influencing risk of

Xanthomonas wilt disease spread and severity. Covariates were ranked at a scale of 1 to 5, “1” denoting that a

covariate does not influence XW disease while “5” has a very important influence on XW disease. Fourteen experts

participated in ranking of the covariates.

https://doi.org/10.1371/journal.pone.0213691.g004
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Madagascar there was only one zone. To each zone relevant covariate data were added. The

relevance was determined through expert assessments and by interpreting correlation coeffi-

cients between environmental data and XW samples in the East African Highlands (Table 2).

The values of the covariates had very different ranges (Table 2). To make comparisons pos-

sible all values were standardized. To calculate the infection risk of each zone, five covariates

(genotype, connectivity, trade, precipitation and distance) were simply summed. Four other

covariates (e.g. production zone size, production level, temperature and altitude) were also

considered but not used in the end because the resulting maps suggested a non-useful relation.

It was assumed that the covariates genotype, connectivity, trade and precipitation increase

risk, whereas distance decreases risk. It was also assumed that all covariates have an equal

weight in determining risk.

Results

Correlation of covariates to XW occurrence in AGLR

Pearson’s correlation between XW incidence and all covariates were significant at the p = 0.05

level, except for the two covariates market and vegetation squared (Vegsq) (Table 3). Three

covariates (precipitation squared, precipitation and management) had an absolute correlation

coefficient of 0.35 or higher, suggesting a higher contribution to the observed variation in XW

disease occurrence. All precipitation covariates, except the variability in precipitation, were

positively correlated to XW. This suggests XW incidence is higher during the wet/humid sea-

sons. In contrast, the disease management factor was negatively correlated with the XW inci-

dence. Thus, a higher occurrence of XW is expected in landscapes that either had no access to

management information or in which disease was poorly managed.

Regression analysis and spatial interpolation

The deviance of the regression model was 25.9% smaller than the deviance of the null model,

which indicates the covariates (S1 Appendix) improved the goodness of fit of the model and

explain a larger part of the variation than the null model. The covariates management (‘man’),

precipitation seasonality (‘precvar’), precipitation in the driest month (‘precmin’) and precipi-

tation (‘prec’) (S1 Appendix) had relatively high absolute values, just like the correlation values

(Table 3). Similar to observations with the correlations, this suggests that the management and

the precipitation related covariates had the highest contribution to the observed variation in

the model, thus XW occurrence. A shift in the sign for ‘prec’ and relative importance of

Table 2. The covariate data used for developing the Xanthomonas wilt of banana risk map for production zones in Africa.

Covariate Detail Source μ S Weight

Zones Banana production zone www.crop-mapper.org and

http://mapspam.info

(-) (-) (-)

Genotype Banana genotype composition. ABB types are prone to insect vector-mediated infections

predisposing landscapes to XW [12].

www.crop-mapper.org

Various banana experts and

authors.

1.3 0.6 +1

Connectivity Interconnectedness to hot spots—isolated areas have a lower exposure to XW. Could be

influenced by a common border, main road axis, water body or forests.

Various banana experts and

authors.

0.3 0.4 +1

Trade Trade with hotspots in fresh fruits. Spread along trade routes has been reported [27, 50]. Various banana experts and

authors.

0.4 0.5 +1

Distance Actual distance to hotspots—closer a site is to a hotspot the higher the XW risk Various banana experts and

authors.

14.0 12.8 -1

Precipitation Annual precipitation (mm)- higher number of infections reported in the wet seasons. WorldClim V1 [37] 1333.4 596.7 +1

https://doi.org/10.1371/journal.pone.0213691.t002
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covariates is observed in the regression coefficients (S1 Appendix) in comparison with correla-

tion values (cf. Table 3). These changes may be explained by the fact that the covariates are

themselves correlated, which is very much the case between ‘prec’ and ‘precsq’ with a correla-

tion efficient close to 1. In the regression model all covariates and interactions are lumped

together in multivariate model, whereas the correlations are univariate. In the multivariate

regression model the contribution of a specific covariate may entirely be covered by another

one, as is probably the case for ‘prec’. With the final regression model a regression map was

calculated (Fig 5A).

The kriging prediction map was calculated from the regression residuals. First a semivario-

gram was calculated (S2 Appendix). It is a near nugget variogram, meaning that there is little

spatial autocorrelation between residuals. With the semivariogram a kriging prediction map

was calculated (Fig 5B). The map consists of different colour shades around the samples repre-

senting relatively small positive or negative prediction values. In the blue areas the sample kri-

ging prediction values were higher than the regression model predictions (i.e. >0) whereas in

the red areas the values were lower (i.e. <0). The kriging prediction value in most parts of the

study area is zero, the average value of the residuals, i.e. the kriging predictions were the same

as the regression predictions.

XW incidence map of the African Great Lakes region

The XW incidence map of the East African Great Lakes region (Fig 5C) is the sum of the

regression predictions (Fig 5A) and the kriging predictions (Fig 5B). The areas with black

stripes/ dashed lines correspond to masked areas, where the altitude is above 2500 m, forests

or national parks and deemed unsuitable for banana production. The resulting high-resolution

map had a cell size of approximately 1 km, which may be too detailed and difficult to translate

into clear-cut policy decisions or recommendations. Therefore, an aggregated map showing

the XW incidence per district was created by calculating the average value for all cells in a dis-

trict (Fig 5D).

Table 3. Pearson’s correlation coefficients between XW incidence and covariates used for the African Great Lakes Region map, ordered from highest positive to

high negative.

Variable code Variable name Pearson correlation coefficient (r) p-value

Precsq Precipitation squared 0.41 2.2e-16

Prec Annual precipitation (mm) 0.40 2.2e-16

Alt Altitude above sea level (m) 0.14 2.2e-16

Precmin Precipitation driest month (mm) 0.09 1.6e-10

Veg Vegetation cover 0.09 6.9e-10

Abb Distribution of ABB banana types 0.03 0.035

Market Market access (hr) 0.02 0.142

Vegsq Vegetation cover squared 0.02 0.112

Lat Latitude -0.09 2.8e-09

Tempmin Mean temperature coldest month (˚C) -0.10 2.3e-11

Tempsq Temperature squared -0.14 2.2e-16

Temp Mean annual temperature (˚C) -0.15 2.2e-16

Precvar Precipitation seasonality (-) -0.17 2.2e-16

Tempvar Temperature seasonality -0.18 2.2e-16

Lon Longitude -0.22 2.2e-16

Man Management Factor (-) -0.35 2.2e-16

https://doi.org/10.1371/journal.pone.0213691.t003
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Both, the high resolution and aggregated XW incidence maps strongly resemble the regres-

sion map as the influence of the kriging is limited and local. The maps show that the risk XW

spreads beyond the original data points (Fig 2) given the biophysical conditions and manage-

ment is high. The disease has a high likelihood of being in all districts of Uganda and eastern

DR Congo. The eastern part of DR Congo is a potential large hotspot with high XW occur-

rence. Uganda has a moderate to high XW occurrence/incidence. Clusters of potential XW

hotspots were also visible in the Kagera region of north-western Tanzania, western parts of

Burundi and Rwanda, southern Burundi and in western Kenya at the border with Uganda.

Large portions of Burundi, Rwanda and the banana producing zones in Tanzania, have low

levels of or no likelihood of appearance of XW. However, large portions of the survey regions

were devoid of data (as surveys did not cover all banana production regions), though could

potentially be having the disease.

XW infection risk in tropical Africa

The XW infection risk for all banana production zones in tropical Africa derived from expert

developed covariates (Fig 6) shows one zone in Tanzania, two zones in Ethiopia and the

infected zones in the AGLR to have a very high risk (>4.5) due to the presence of the disease

in these zones. A high-risk score of 2.1–4.5 was observed for one production zone in Mozam-

bique, a large zone stretching from north eastern-central DR Congo, a zone in northern Ethio-

pia, zones in Kenya and Tanzania. Production zones in Egypt, Sudan, South Africa, Guinea,

Togo, Ghana and Cote d’Ivoire had the least risk to XW infection.

Banana genotype effects on the landscape risk of XW were strong in Mozambique and parts

of the AGLR (Fig 7). Connectivity of landscapes and inter country trade also had strong

Fig 5. The XW incidence in the AGLR (c) is the sum of the regression prediction map (a) and kriging prediction

map (b) and is aggregated by administrative boundaries (d). Large lakes are shaded blue. Areas deemed unsuitable

for banana production, above 2500 m, forests and or national parks are denoted by black stripes/ dashed lines and

correspond to masked areas.

https://doi.org/10.1371/journal.pone.0213691.g005
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contributions to the XW risk in the AGLR. Presence of the ABB-genotypes that are prone to

insect-mediated infections, connectivity to a hotspot, and trade increase the risk of exposure to

XW disease. Risk variability in the western part of Africa was mainly influenced by the distance

from the hotspots and the level of precipitation (Fig 7). A long distance from the hot spot(s)

and a low precipitation is associated with a lower risk. Risk in the northern parts of Africa

were mainly influenced by the low amounts of precipitation.

Discussion

Xanthomonas wilt disease of banana has rapidly spread across the AGLR and the plantain belt

of central and west Africa is currently at risk. This study developed risk maps showing the

aggregated spatial XW disease distribution and hotspots in the AGLR, and vulnerable land-

scapes across African banana and plantain production zones (Figs 5 and 6).

Fig 6. Infection risk of Xanthomonas wilt in tropical Africa developed using five expert generated covariates i.e. banana

genotype, connectivity to disease hotspots, trade with an infected zone or country, precipitation and distance from a

hotspot.

https://doi.org/10.1371/journal.pone.0213691.g006
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XW occurrence and incidence in endemic zones of the African Great Lakes

region

In the endemic zones of the AGLR the occurrence and incidence of the XW disease was largely

explained by precipitation and management (cf. Table 3, S1 Appendix). The occurrence of

XW increased with precipitation and declined with increasing level of disease/banana

management.

High precipitation offers a conducive environment for both the pathogen (Xanthomonas
campestris pv. musacearum (Xcm)) and the host [51]. Higher XW severity and incidence has

often been reported on farms during the rainy season in contrast to the drier seasons [12, 38].

Using Maxent and regression, [36] also reported precipitation to be positively correlated to

XW and to predominantly explain XW development in Tanzania. Rainfall and water availabil-

ity can affect the survival, vigor, multiplication, spore production, inoculum dispersion, spore

germination and penetration of a pathogen [51–54].

A humid microclimate within the crop can result in stomatal opening allowing microbes to

enter the plant apoplast [54] and also modulate bacterial population and disease incidence [55,

56]. Xcm bacteria are in the group of proteobacteria, that are sensitive to desiccation [57, 58]

and thus likely to be favored by high humidity in plant tissues. Results from [30] show banana

plants that receive an adlib supply of water to be more susceptible than those that received a

moderate water stress, and observed that banana plants tended to remain in a latent state when

moisture in the soil was deficient. High humidity has been associated with suppression of R

gene mediated Hypersensitive Response that involves rapid plant cell death at point of infec-

tion in some plant species [59], though not yet investigated or reported for Xcm.

Fig 7. The contribution of five expert developed covariates (i.e. trade with a disease hotspot, connectivity to a

disease hotspot, precipitation, distance from a disease hotspot and banana genotype composition) to the

Xanthomonas wilt disease risk levels of different countries that grow banana in Africa. Covariate scores have been

standardized as Z scores.

https://doi.org/10.1371/journal.pone.0213691.g007

Xanthomonas wilt disease of banana hotspots, fronts and vulnerable landscapes

PLOS ONE | https://doi.org/10.1371/journal.pone.0213691 April 2, 2019 13 / 19

https://doi.org/10.1371/journal.pone.0213691.g007
https://doi.org/10.1371/journal.pone.0213691


Shimwela et al. [36] suggests the short distance spread of XW causing bacteria through rain

splashes as the possible explanation for the higher correlation of XW infections to high rainfall

or the rainy season. Infections through rain splashes would however be feasible in the presence

of wounds on healthy plants and bacterial ooze on the ground and inflorescences, that would

be most likely associated with farm management practices or pest damage. For example, Xcm

has been reported to infect plants and cause disease if it comes in contact with fresh wounds

on the roots or corms resulting from nematode or tool damage [26, 60].

Management plays a crucial role at regulating disease pressure on farms. XW is spread over

both short (at field level and between close fields and farms) and long distances mainly through

contaminated farm tools, insect vectors and infected planting material and occasionally through

fruit/nectar feeding birds and bats [17]. To prevent spread or reduce disease inoculum and inci-

dence, tool sterilization, early male bud removal using forked sticks (prevents insect-mediated

infections), removal of infected bunches, plants and or mats are recommended. Where these

practices have been applied, the disease has been contained or kept to lower levels of severity or

incidence [17,18, 21, 22, 32, 33, 38]. Increased use of farm tools most often without sterilization

in the rainy season during field preparation, pruning of leaves to introduce annual crops could

also contribute to the higher incidence in the rainy season [12, 17, 18].

Altitude and temperature have also been reported to influence XW spread, mainly through

their effect on insect vector activity. Insect vector numbers and population activity is lower at

higher and cooler altitudes resulting in a lower disease occurrence and severity [39, 40]. But

unexpectedly low correlation and regression coefficients between XW and temperature and

altitude were obtained, possibly due to the larger impact of tool-mediated XW spread (cap-

tured in the disease management covariate–cf. Table 3, S1 Appendix). More so, the endemic

AGLR sites are dominated by the east African highland banana types that are not very prone

to insect-mediated XW transmission given most of them have persistent male floral bracts and

flowers [12].

In the AGLR, multiple disease hotspots were observed in the entire study area (Fig 5). The

eastern part of DR Congo was a large hotspot, while Tanzania had most of its production

zones XW free (cf. Fig 5). The XW status in eastern DR Congo could be attributed to the lower

level of control/ management efforts due to a weaker extension support system. A recent study

in eastern DR Congo reported a low adoption of XW management practices, while only 32.3%

of farmers had accessed some training on XW management over the past five years [61]. The

distribution of this training was skewed with some regions having zero access. The eastern DR

Congo also has high precipitation that has been shown in this study and studies of [35] and

[36] to be correlated with high infection levels. In contrast, Rwanda had a strong extension

effort, including a mandatory government driven effort to uproot swathes of plantations in

disease hotspots in western Rwanda with plans to reintroduce the crop after a few years of fal-

low [62]. In contrast, production zones in Tanzania are distant from each other, preventing

the spread of XW.

Clusters of XW hotspots were also visible in the Kagera region of Tanzania, central and

eastern regions of Uganda, the western part of Burundi and in the western part of Kenya on

the border with Uganda. This could be attributed to the rapid rate of spread over short dis-

tances (e.g. though contaminated farm tools, insect vectors, small ruminants, infected planting

materials and rain splashes/floods).

XW infection risk in tropical Africa

Apart from the endemic zones in the AGLR and Ethiopia, northern Mozambique was per-

ceived to be at a very high risk mainly due to the omnipresence in backyards of ‘Bluggoe’
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(Musa ABB type) which is highly susceptible to insect, bird and bat-vectored transmission.

Ocimati et al. [63], observed a significant association between the presence/absence of the

XW-susceptible ABB types with disease incidence on a farm. The ABB banana types have also

been blamed for the rapid spread of XW in Uganda (period 2003 till 2006) from the initial

point of infection in Luwero district in Central Uganda. Proactive preventive measures in both

the southern part of Tanzania and northern part of Mozambique and Malawi will be crucial

for preventing a southward spread of the disease. These could include community awareness

to improve surveillance and introduction of infected planting materials or fresh products and

installation of quarantine measures. Similar measures are also needed to prevent the westward

spread of the disease into the Congo basin and the plantain growing belt of west Africa.

Reflection on the methods

The surveys carried out in the AGLR were an accurate method of scouting for XW disease.

However, their reach was limited by the need of a high financial investment, time constraints

and limited access to some of the study locations (leading to convenience sampling). The study

shows that geostatistical approaches can overcome the above challenges and use limited sur-

veys or data points to make valid and precise predictions beyond the surveyed areas. Bouw-

meester et al. [34], through cross-validation reported regression kriging to yield unbiased

predictions of XW occurrence. The regression model however suffers some limitations and

may not as such capture part of the variation in XW. First, not all underlying processes that

cause spatial variation in XW incidence e.g., mode of transmission, distribution of susceptible

host types and level of disease management are known or can be effectively represented by

covariates in the model. The mode of spread of XW is complex, involving mainly farming

tools, insect vector spread and planting materials. Spread through these modes can be mini-

mized through cultural management practices. In the current study, a management covariate

based on expert knowledge and available literature was incorporated to capture some of these

aspects (cf. Table 1, Fig 3). The ABB Musa types are also known to be highly susceptible and a

covariate on the distribution of ABB Musa types (cf. Table 1, Fig 3) was as such incorporated

on the basis of expert knowledge and available literature. These covariates based on expert

knowledge may suffer from errors due to failure to capture minor details e.g. variations over

short distances and a lack appropriate scale but give valid predictions over large geographical

scopes. For the Africa-wide risk map, a prediction of infection risk was estimated based on the

relationship between XW disease and selected environmental and expert developed covariates

because the variation in environmental covariates outside of the AGLR was beyond the scope

of the surveys. These covariates could as such suffer from errors and or lack appropriate scale.

However, this exercise gives us the first coarse XW disease risk map for the rest of Africa that

can offer a platform to pro-actively make decisions and strategies for containing the disease to

the currently affected zones.

Conclusion

XW is spread across most of the AGLR. All banana landscapes in this region are vulnerable.

Efforts in the region could focus on managing/reducing the disease and its damage on produc-

tivity. Landscapes with high precipitation are hotspots of XW or highly vulnerable to XW

infection. Management plays a crucial role on the current XW incidence and prevalence.

Improving extension services is crucial for the management of the disease in the AGLR. Exten-

sion efforts should be concentrated to such landscapes to curb or reduce the XW pandemic.

Production zones in northern Mozambique and central lowland DR Congo are potential gate-

ways for the spread of XW southwards and eastwards, respectively. Proactive measures are
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crucial for the prevention of the disease to these production zones. Possible actions could

include the institution of quarantine measures and provision of relevant information and

training on diseases diagnosis and epidemiology. The integration of expert judgement in

development of covariates that are not readily available yet capture underlying processes that

cause spatial variation was crucial in improving the regression outcomes.

Supporting information

S1 Appendix. Estimates and standard errors of coefficients of the logistic regression

model. Interactions are indicated with the ‘:’ sign.

(PDF)

S2 Appendix. The semivariogram of the regression residuals (nugget = 0.14, sill = 0.17,

range = 0.2 degrees). The line depicts the variogram model, with little spatial autocorrelation

until a distance of 0.2 degrees where it flattens out.

(PNG)
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