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A B S T R A C T
Promoting plant diversity through crop mixtures is a mainstay of the agroecological transition. Modelling this 

transition requires considering both plant–plant interactions and plants’ interactions with abiotic and biotic environ-
ments. Modelling crop mixtures enables designing ways to use plant diversity to provide ecosystem services, as long 
as they include crop management as input. A single modelling approach is not sufficient, however, and complemen-
tarities between models may be critical to consider the multiple processes and system components involved at dif-
ferent and relevant spatial and temporal scales. In this article, we present different modelling solutions implemented 
in a variety of examples to upscale models from local interactions to ecosystem services. We highlight that modelling 
solutions (i.e. coupling, metamodelling, inverse or hybrid modelling) are built according to modelling objectives 
(e.g. understand the relative contributions of primary ecological processes to crop mixtures, quantify impacts of the 
environment and agricultural practices, assess the resulting ecosystem services) rather than to the scales of integra-
tion. Many outcomes of multispecies agroecosystems remain to be explored, both experimentally and through the 
heuristic use of modelling. Combining models to address plant diversity and predict ecosystem services at different 
scales remains rare but is critical to support the spatial and temporal prediction of the many systems that could be 
designed.

K E Y W O R D S :  Crop mixtures; crop models; individual-based models; modelling synergies; pest regulation; 
process-based models.

1 .  I N T R O D U C T I O N
New models are frequently developed for specialists in a field to 
answer specific scientific questions, without much interaction with 

other disciplines in the initial stages. During the past decade, however, 
modellers have integrated knowledge from multiple disciplines (e.g. 
micro-meteorology, environmental physics, ecophysiology, ecology, 
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soil science) to better represent interactions between processes within 
plants, between plants, and between plants and their environment (e.g. 
Gauthier et  al. 2020). The result is a distinct diversity of modelling 
approaches that can be used to benefit the complementary properties 
and strengths of models (see e.g. Colbach et al. 2021; Pointurier et al. 
2021). This knowledge and model sharing requires certain upstream 
steps that are necessary to render models more accessible, such as free 
licenses, open-source code, accessible software products, improved 
usability, extensive documentation and training sessions. These steps 
are especially important when setting up close collaboration between 
teams of modellers that include in-depth work on exchanges between 
models, such as the international modelling communities working on 
crop models, such as AgMip (‘Agricultural Model Intercomparison 
and Improvement Project’; Rosenzweig et  al. 2013) and MACSUR 
(‘Modelling European Agriculture with Climate Change’; https://
macsur.eu/). A good example of this desire to share and standardize 
practices is the study of Midingoyi et al. (2021) on the development 
of a meta-language to facilitate the exchange and reuse of crop-model 
components between modelling platforms.

The need to combine several modelling approaches, each with 
trade-offs in accuracy and generality, is crucial in all scientific dis-
ciplines and assumes that each model may improve understanding 
and predictions of ecosystem functioning. For instance, Evans et  al. 
(2016) highlighted that the global models used to predict the geo-
graphic distribution of plant species throughout the world have low 
predictive power if they are not improved with process-based range 
models that predict impacts of environmental changes. Therefore, the 
need exists for accurate predictions of processes and more global and 
qualitative modelling approaches to understand an ecosystem, while 
also considering the feedback between different approaches, espe-
cially as the factors involved in ecosystem functioning are not neces-
sarily the same for the spatial scales considered (Pearson and Dawson 
2003; Xu et al. 2021).

Building connections between modelling approaches is particu-
larly crucial in the context of the current agroecological transition, 
which involves in-depth changes to agricultural practices, with more 
complex and diversified agroecosystems and a multifunctional view 
of agriculture (Caron et al. 2014; Duru et al. 2015; Gaba et al. 2015). 
Increasing plant diversity is a mainstay of the agroecological transition 
and the cornerstone for ‘biodiversity-based agriculture’ (Duru et  al. 
2015), which depends on agrobiodiversity at field, farm and landscape 
scales (Kremen and Miles 2012; Prieto et  al. 2015; Tscharntke et  al. 
2021). In these types of agriculture, ecological processes are funda-
mental to agricultural production, which requires particular focus on 
production-ecology trade-offs (Sabatier and Mouysset 2018). More 
than ever, modelling synergies must be identified to enable upscaling 
from plant functioning (i.e. ecophysiological processes and plant–
plant interactions) to ecosystem services to support the agroecological 
transition (Tixier et al. 2013).

To illustrate how these modelling synergies and complementarities 
are essential to better characterize biodiversity-based agriculture, we 
focus on modelling species and cultivar crop mixtures along the con-
tinuum of plant (and plant–plant interactions), field and farm scales. 
Each scale requires representing specific abiotic and biotic factors 
(Pearson and Dawson 2003; Peng et  al. 2020), as well as ecosystem 

functions that support ecosystem services, including production and 
regulating services (Haines-Young and Potschin 2013). The nature, 
importance and level of expression of ecosystem functions also depend 
on the scale considered. While experiments have identified agronomic 
advantages of these diversified systems (e.g. Kiaer et al. 2012; Beillouin 
et  al. 2021), better understanding is needed about their agricultural 
management and especially about how to integrate them into crop-
ping systems to attain the ecosystem services targeted. The diversity of 
ecosystem services targeted and the extent of the temporal and spatial 
scales at which these services are developed make modelling choices 
complex. Issues to consider include which processes the model should 
simulate and at what resolution, as well as which temporal scale (e.g. 
instantaneous, daily, crop-cycle, rotation or long-term) and spatial 
resolution (e.g. plant, field or landscape, along with its multiple cul-
tivated and uncultivated components) to use to represent the multi-
ple interactions of interest. These considerations suggest that a single 
modelling approach is not sufficient to meet these legitimate expec-
tations. Moreover, how these issues are addressed depends on which 
stakeholders use the models.

In this opinion article, we advocate that complementarities and 
coupling of different modelling approaches are critical to consider the 
complex and diversified agroecosystems involved in the agroecological 
transition, as well as to upscale from the plant and/or field scales to 
the ecosystem services targeted in diversified agroecosystems. Using 
several examples, we demonstrate that the complementarity between 
individual-based models (including functional–structural plant mod-
els (FSPMs)), crop models and physical or more qualitative or sta-
tistical models improves understanding and facilitates simulating the 
functioning of crop mixtures and the ecosystem services for which 
they are designed. These modelling complementarities are discussed 
through the lens of crop mixtures or are integrated at larger scales to 
address three important modelling challenges: to (i) quantify and 
understand plant–plant interactions and their underlying processes, 
(ii) represent impacts of the environment and agricultural practices on 
the functioning of crop mixtures and (iii) assess the ecosystem services 
provided by these heterogeneous covers (Fig. 1).

2 .  M O D E L L I N G  P L A N T– P L A N T 
I N T E R A C T I O N S  I N  C R O P  M I X T U R E S  TO 
A S S E S S  E C O S Y S T E M  S E R V I C E S  AT  F I N E 

S C A L E S  ( P L A N T  A N D   F I E L D)
Plant–plant interactions in crop mixtures are the foundation for the 
ecosystem services provided by diversified agroecosystems. Although 
these interactions can provide large-scale ecosystem services, for most 
processes they usually occur at a fine scale due to interactions between 
neighbouring plants or between plants and microorganisms. To illus-
trate this, we focus on complementarities between existing modelling 
approaches to simulate production and regulating services quantified 
at the plant and/or field scales.

2.1 Modelling plant–plant interactions to quantify 
underlying processes for production services

One widely known advantage of crop mixtures is their potential to 
achieve higher yields due to more efficient and complementary use of 
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abiotic resources compared to that of sole crops, especially in a low-
input context (Banik et al. 2006; Dhima et al. 2007; Hauggaard-Nielsen 
et al. 2008; Gaudio et al. 2021). Predicting effects of plant–plant inter-
actions on the capture and use of abiotic resources is therefore crucial 
to assess the production services provided by crop mixtures.

From an ecophysiological viewpoint, some processes are particu-
larly determinant in crop mixtures because they strongly influence 
functioning and performance, especially related to competition (for 
light, water and nutrients), complementarity (spatio-temporal and 
niche processes) and facilitation (Malézieux et al. 2009; Brooker et al. 
2015). The main modelling approaches developed to study plant–
plant interactions within crop mixtures are process-based models 
at plant and crop scales (Gaudio et  al. 2019). We do not provide a 
detailed description here of how process-based modelling approaches 
simulate the processes that underlie these plant–plant interactions, as 
several recent reviews and integrated studies have done so and have 
described their strengths and weaknesses (e.g. Gaudio et  al. (2019) 
for crop or individual process-based models, Evers et al. (2019) and 
Louarn and Song (2020) for FSPMs). When downscaling to quantify 
and understand the relative contributions of primary ecological pro-
cesses in crop mixtures, individual-based models, especially FSPMs, 
are usually required, as the phenotype of individual plants emerges 
from interactions between the local environment they perceive and 
their functioning (Evers et al. 2019). Thus, some FSPMs can quantify 
ecological processes (Zhu et al. 2015; Faverjon et al. 2019) or assess 
the role of given traits involved in the performance or resource-use 

efficiency of crops (usually light or nitrogen; Barillot et  al. 2014; 
Louarn et al. 2020). For instance, Zhu et al. (2015) used an FSPM to 
simulate wheat–maize relay-intercropping and highlighted that plas-
ticity is the main process involved in the higher light-use efficiency in 
intercrops than in sole crops.

Important processes highlighted by FSPMs can be summa-
rized using functional relationships to include them in crop models 
(Escobar-Gutièrrez et  al. 2009), which would enable understanding 
of plant–plant interactions and thus achieve upscaling. However, few 
studies have highlighted complementarities between these two model-
ling approaches. For instance, FSPMs can be used to evaluate simpli-
fied assumptions applied in upscaled crop models. Crop models can 
simulate light interception and partitioning differently, but the com-
mon way to represent light interception is to use the ‘turbid-medium 
approach’ and Beer–Lambert law. However, the question remains as 
to whether this simplified approach is sufficiently accurate to simulate 
light partitioning among plants in crop mixtures. Barillot et al. (2011) 
addressed this question for three grass–legume mixtures (wheat–pea, 
fescue–alfalfa and fescue–clover) and compared light partitioning 
between the component species. They simulated detailed 3D represen-
tations of plants, coupled with a solar radiation model that followed the 
turbid-medium approach, with the plant canopy represented by 1, 2 or 
10 layers. The results indicated that more detailed representation of the 
canopy (several layers or in 3D) improved the prediction of light par-
titioning in mixtures only slightly, thus validating the turbid-medium 
approach for estimating light competition at the canopy scale in crop 

Figure 1. Different features are required to upscale from plant–plant interactions (e.g. competition, complementary, facilitation) 
to agroecosystems that provide ecosystem services. This combines the individual (plant) model level with biophysical (abiotic 
and biotic environments) and technical levels. However, the corollary of this upscaling is downscaling, in the sense that modellers 
and users may need to apply parsimony to simulate these systems at large scales (at which only a few factors explain variability in 
performance) (Pearson and Dawson 2003; Evans et al. 2016), or to identify an optimal system that responds to a set of constraints 
and objectives at a given location. Adapted from Louarn and Song (2020).
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models. Similarly, Pao et al. (2021) transformed a 1D light model using 
Beer–Lambert equation by estimating empirically the light extinction 
coefficient from the canopy geometry formalized by plant and row dis-
tances. The performance of this approach in combination with hourly 
step time resolution of simulation was equivalent to a 3D light model 
using ray tracing, in a dynamic plant model predicting leaf-level pho-
tosynthetic acclimation and plant-level dry matter accumulation. This 
smart solution provided efficient estimation for long-term processes 
integrated over weeks. Another example exhibiting how emerging 
results can be simplified using FSPM demonstrated that a model input 
that is time-consuming to assess, the red:far-red ratio, was successfully 
replaced by a proxy computed from the leaf area of the upper 10 leaves 
and the plant density (Kahlen and Stützel 2011).

The complex integration of local plant responses to light competi-
tion and plant structure considered in FSPMs is largely incompatible 
with the simple representation of plants in crop models. However, 
indirect connections can be identified using inverse modelling and the 
adaptive calibration of input parameters in crop models. For instance, 
these models frequently use the response function of crops to plant 
density to represent the competitive effect of neighbours in mixtures 
by calibrating a dominance ratio or an equivalent-density parameter 
(Brisson et  al. 2008; Confalonieri 2014). These parameters depend 
strongly on environmental conditions and the identity of neighbour-
ing species in the mixture (Van Oijen et al. 2020). Their variations can 
be derived from simulated data produced by more detailed FSPMs, 
such as the relative-density responses of species (e.g. as illustrated by 
Louarn and Faverjon (2018) for contrasting legume species).

Interactions for below-ground resources are not reflected to this 
extent in modelling platforms (Evers et al. 2019). Because the spatial 
distribution of resources and physiological characteristics of species 
drive the growth and plasticity of roots, they are important factors that 
influence the response to water or nutrient changes in intercropping 
(Yin et al. 2020). Results of intercropping studies that focus on how to 
regulate root systems through spatio-temporal variation in the water 
or nutrient supply are rarely reported. However, studies have focused 
on species-specific responses of root morphological plasticity as influ-
enced by nutrient availability, showing greater plasticity in gramina-
ceous species (e.g. maize) than in leguminous species (e.g. faba bean, 
chickpea) (Li et al. 2014). Other studies compared mixed cropping to 
segregated strip-intercropping, showing that using strip-intercropping 
to concentrate low C:N species increased N mineralization potential 
in the planting zone for the subsequent crop (Lowry and Brainard 
2016). Finally, benefits of legume-based intercrops have been shown 
through direct plant-to-plant N transfer, depending on the physical 
co-location of the root systems and thus on the spatial arrangement of 
the two species ( Johansen and Jensen 1996; He et al. 2009; Chapagain 
and Riseman 2014). These results indicate the need to model pheno-
typic plasticity of roots as a function of the distribution of resources in 
a predefined spatial arrangement of intercrops. However, simple and 
generic approaches that focus on below-ground resources already exist. 
For instance, Bertrand et al. (2018) developed BISWAT, a crop model 
that simulates dynamics of water stress in plants in sole crops and crop 
mixtures. The model integrates and combines simple approaches to 
simulate the main processes in the system with a 2D representation of 
the plants and soil, radiation-use efficiency, total transpirable soil water 

content and a simple representation of root dynamics. The resulting 
model requires few data for parameterization and yet remains robust 
for simulating water-stress dynamics in a wide range of systems.

Compared to these ecophysiological approaches, ecological 
approaches are particularly relevant for studying and understand-
ing the functioning of systems in which multiple heterogeneous 
populations, such as crop mixtures, interact. However, representing 
mechanistically the processes that interact within these systems and 
quantifying the resulting ecosystem services requires knowledge 
and conceptual frameworks that are well theorized in ecophysiology  
and agronomy. Thus, dialogue between these different disciplines—
environmental physics, ecophysiology, agronomy and ecology—is 
crucial for modelling these agroecological systems (Evans et al. 2016; 
Brooker et al. 2021). In particular, the concept of ‘functional trait’ com-
monly used in ecology and recently used to characterize agrobiodiver-
sity and ecosystem services (Wood et al. 2015) can be related to the 
parameters and variables in process-based models using the distinction 
between pattern and process traits developed by Volaire et al. (2020). 
Unlike the strict definition of functional traits, which are measured 
independent of the environment (Violle et al. 2007), the authors argue 
that process traits (a trait measured under environmental conditions fluc-
tuating in time, which characterizes processes, that is, flows of material and 
energy in a given environment during a defined period of time, e.g. growth 
rate or phenological stage duration) are also functional and crucial for 
parameterizing models. This distinction may provide a bridge between 
ecology and crop science, partly because it allows to discuss upon a 
common semantics linking pattern and process traits with input 
parameters and state variables which are used in process-based models.

2.2 Modelling plant–plant interactions to quantify 
the underlying processes for regulating services

Crop mixtures should promote regulating services as well as produc-
tion services (Haines-Young and Potschin 2013). For instance, vegeta-
tion diversity at all spatial scales (intra- vs. inter-field) improves pest 
regulation in several ways. It increases the matrix of unfavourable habi-
tats and thus limits pest dispersal (Fabre et al. 2012; Papaïx et al. 2014). 
The spatial heterogeneity of host plants can also restrict pest popula-
tion dynamics, which slows the specialization process (Plantagenest 
et al. 2007). In the next modelling example, a splash dispersal model 
was coupled with a snapshot of virtual 3D canopies provided by an 
FSPM to understand fine processes involved in controlling rain-borne 
diseases in wheat-cultivar mixtures (Vidal et al. 2018; Fig. 2).

By mixing susceptible and resistant cultivars, the habitat favourable 
to a pathogen is spatially fragmented, thus generating (i) a ‘barrier’ 
effect, related to the presence of resistant cultivars, and (ii) a ‘dilution’ 
effect, as the probability of an individual finding a favourable habitat is 
reduced proportionally to the reduction in density of the susceptible 
cultivar (Finckh et al. 2000). This latter effect can be reinforced by a 
difference in height between cultivars when the pathogen spreads from 
the bottom to the top of the plant. Vidal et al. (2018) showed that a 
wheat-cultivar mixture composed of a short resistant cultivar and a 
taller susceptible cultivar would result in a lower layer that mixes sus-
ceptible and resistant leaves, which may provide a strong barrier effect 
(Fig. 2). In contrast, the upper part of the canopy would be less dense 
(containing only the taller susceptible cultivar), and the upper leaves 
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would be protected by their increased distance from the inoculum 
source at the bottom (height effect) and the presence of resistant leaves 
in the lower part of the canopy (barrier effect). In this example, the 
coupled model clarified understanding of the mechanisms involved 
and identified height as a relevant architectural trait to reduce spore 
dispersal when mixing cultivars. However, manipulating such models 
is extremely time-consuming. The idea again is to identify emerging 
results—response functions to plant architecture and cultivar resist-
ance—and then introduce them in a simplified manner into models 
that simulate other important factors in epidemics, such as the micro-
climate in the canopy. The next step is to quantify the influence of these 
associations on regulating pest populations and limiting crop yield 
losses. Consequently, coupling process-based modelling approaches 
and food-web modelling could provide a promising path for upscaling 
(Tixier et al. 2013; Malard et al. 2020).

3 .  R E P R E S E N T I N G  I M PA C T S  O F  T H E 
E N V I R O N M E N T  A N D  A G R I C U LT U R A L 

P R A C T I C E S  W H E N  A S S E S S I N G  E C O S Y S T E M 
S E R V I C E S  P R O V I D E D  B Y  C R O P  M I X T U R E S 

AT  T H E  C R O P P I N G - S Y S T E M   S C A L E

3.1 Representing impacts of external drivers on 
plant–plant interactions

As described in previous sections, understanding mechanisms of 
plant–plant interactions requires describing the plant environment in 

detail. Promoting the use of crop mixtures at the cropping-system scale 
(e.g. rotation, farm) requires considering effects of agricultural prac-
tices and environmental factors that influence plant–plant interactions 
when building and evaluating the ability of crop mixtures to provide 
one or more ecosystem services. Current FSPMs often do not consider 
this particular point as extensively as crop models due to their com-
plex structure and the associated modelling costs (Louarn and Song 
2020). This could be mitigated by borrowing the strengths of differ-
ent approaches and developing hybrid modelling. However, the level 
of precision and degree of simplification required to consider plant–
plant interactions are not necessarily the same and depend on the out-
puts targeted by the simulation study. Colas et  al. (2021) illustrated 
this point by simplifying a complex individual-based model at the 
cropping-system scale to design effective strategies for weed control. 
They simplified light partitioning—which is usually represented with 
a 3D voxelized canopy in their mechanistic model (FlorSys, Colbach 
et al. 2014)—using a random-forest-based metamodelling approach to 
accelerate the simulations and enable interactive testing of many com-
plex cropping systems with end users.

In crop models, agricultural practices influence the crop environ-
ment, such as soil fertility and water availability, which modifies the 
soil-climate context in which crop mixtures may adapt as a func-
tion of their complementarity and/or plasticity properties (Stöckle 
and Kemanian 2020). Crop models are thus able to supply inputs 
for FSPMs, i.e. quantified and dynamic descriptions of abiotic con-
straints under which a crop mixture grows. For instance, the STICS 
crop model was used to simulate impacts of delayed sowing dates on 

Figure 2. Illustration of facilitation against pests resulting from mixing two wheat cultivars that vary in height and resistance to 
pests. An aerial FSPM and a rain-splash model were coupled to simulate facilitation (Vidal et al. 2018). Source of photographs: 
Sébastien Saint-Jean (INRAE, UMR EcoSys).
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plant–plant competition for light (Launay et al. 2009) and impacts of 
different levels of nitrogen fertilization on relative dominance (Corre-
Hellou et al. 2009) in barley–pea intercrops.

3.2 Assessment of a given ecosystem service: pest 
regulation

Pests in agroecological cropping systems can be regulated by significantly 
increasing plant diversity in the field or landscape using arable crops and 
semi-natural or natural elements (Sirami et al. 2019). However, the effec-
tiveness of these systems depends greatly on their spatial organization 
at the field scale (Landis et al. 2000). Collard et al. (2018) transposed 
the spatial concepts of landscape ecology to the field scale, assuming 
that proximity, edge length or aggregation could improve understand-
ing of how the spatial organization of non-crop habitats might alter the 
predator effect and thus increase crop health. They used an individual-
based and spatially explicit model to simulate individual behaviours of 
predators, such as the duration and frequency of visits to orchard crops. 
They tested several spatial organizations that varied in the clumping of 
non-crop habitats, the distance between crop and non-crop habitats, and 
the number of alternative favourable neighbouring non-crop habitats 
around the crop habitat. To assess pest regulation, however, this mod-
elling approach now needs to include the dynamics of pests and their 
interactions with predators. The current version partly meets this aim 
using proxies such as visit duration and frequency, as well as the duration 
of the predator’s absence from the crop.

A good example of a modelling solution that uses complementari-
ties between models and that can represent heterogeneous canopies was 
built by coupling the individual-based model FlorSys (Colbach et  al. 
2014) with RSCone, a metamodel produced using the architectural root 
model ArchiSimple (Pagès et  al. 2020), and the soil submodel of the 
STICS crop model (Brisson et al. 2008). While FlorSys simulates above-
ground crop–weed canopies, the ArchiSimple metamodel represents 
the trophic connection between above- and below-ground growth, and 
the STICS soil submodels represent soil structure and climate and their 
effects on root growth (Fig. 3). Illustrating the issues faced by coupling 
models or modules with different time or space scales, conversions had 
to be done to make optimal days of RSCone compatible with thermal 
time in FlorSys. This smart solution thus generates outputs and proxies 
that can be used to assess contrasting ecosystem services such as crop 
grain yield; weed-caused yield loss; weed seed production (as a proxy for 
future yield loss) and weed-based trophic resources for domestic bees (as 
one example of weed benefits), resource uptake or striga risk (Pointurier 
et al. 2021). It was necessary to develop working and modelling assump-
tions as the aim of this multifaceted model was to cover a wide range of 
flora (including many contrasting annual species) and address multiple 
ecosystem services (Colbach et  al. 2021). Simpler, empirical relation-
ships were preferred for processes for which mechanistic representa-
tion would have required downscaling to the cellular or molecular scale. 
Because representation of individual plants had to be compatible with 
multi-annual and multi-field simulations of thousands of plants per field, 
detailed representations, such as used in FSPMs, were rejected in favour 
of individual-based modelling.

This research model was then used to identify agroecological mech-
anisms and provide decision support for farmers. This mechanistic- and 

individual-based approach induces considerable algorithmic complex-
ity and slow simulations; thus, using it in decision-support systems 
is time-consuming, as it requires assigning many input variables and 
calibrating many parameters, particularly when simulating many 
diverse crops simultaneously. This is solved by aspects of metamodel-
ling (Colas et al. 2020) that can identify potential changes to cropping 
systems that might improve their performance. However, a biophysical 
parent model is still required to provide biophysical explanations that 
farmers will accept (Colbach et al. 2021).

The authors reconstructed the functioning of a diversified agro-
ecosystem by coupling models that could represent systems (the plant 
and its aerial and root structure, seeds, soil layers and their structure 
and microclimate) and mechanisms at similar scales. In particular, 
they integrated two aspects that are essential to understand and man-
age these types of agroecological systems: consideration of long-term 
processes (e.g. evolution of a seed bank) and impacts of management 
decisions on these processes and the targeted ecosystem services, with 
consequences that could occur over several years.

3.3 Assessment of a bundle of ecosystem services at 
the farm scale

Assessing the ecosystem services provided by diverse crop mixtures 
is challenging due to the many ecosystem services targeted by farm-
ers and the diversity of crops to be investigated (Verret et  al. 2020). 
Coupling models may be a promising solution to understand this 
complexity and diversity because it benefits from the strengths of 
diverse modelling approaches. However, predicting how management 
activities and changing future conditions will alter ecosystem services 
is rendered more complex by interactions (e.g. trade-offs, synergies) 
among multiple ecosystem services (Agudelo et al. 2020). More wide-
spread use of process-based models to estimate ecosystem services 
could identify physiological processes, or even the traits, that influence 
interactions between ecosystem services. However, simulating the 
ecosystem services provided by crop mixtures requires representing 
their inclusion in crop rotations and long-term effects of the environ-
ment. This could be achieved by combining the knowledge provided 

Figure 3. Overview of the main processes that connect the 
FlorSys individual-based model (IBM, Colbach et al. 2014), 
which simulates the above-ground crop–weed canopy, to the 
RSCone metamodel (Pagès et al. 2020), which simulates root 
growth, and the STICS crop model (Brisson et al. 2008), which 
provides soil structure and climate and their effects on root 
growth. Adapted from Pointurier et al. (2021).
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Complementarities between modelling approaches • 7

by process-based models and using more qualitative models based on 
farmers’ expertise.

In agreement with this idea, Meunier et  al. (2022) designed a 
serious game to help users (farmers or students) explore and assess a 
bundle of ecosystem services (i.e. cereal and legume grain yield, cereal 
protein content, potential nitrogen supply to the next crop, mainte-
nance of soil structure and pest regulation) provided by a wide range 
of binary cereal–grain legume intercrops (Fig. 4). The serious game 
encapsulates a modelling chain that they constructed from three mod-
elling approaches:

 (i) STICS (Brisson et al. 2008) was used to simulate the potential 
and water-limited biomasses of the cereal and legume sole 
crops independently under a variety of soil-climate conditions 
and management practices.

 (ii) A statistical model built using R software (R Core Team 
2018), using a field-trial database of cereal–legume intercrops 
and their corresponding sole crops, was used to correct these 
potential and water-limited biomasses into attainable (i.e. 
water- and nutrient-limited) biomasses (Van Ittersum et  al. 
2013).

 (iii) A knowledge-based multi-attribute model built using DEXi 
software (Bohanec 2020) was used to turn attainable biomass 
into actual biomass considering pest damage and assessing 
pest-regulation services. Other multi-attribute models also 
enabled assessment of five more ecosystem services that result 
from the actual biomass of the cereal–legume intercrop at 
harvest and/or cropping-system features.

The serious game was designed to explore the ecosystem services pro-
vided by both common and less-common intercropping scenarios, and 
to promote debate and knowledge sharing among users.

4 .  U P S C A L I N G  M O D E L S  F R O M  L O C A L 
I N T E R A C T I O N S  TO  E C O S Y S T E M  S E R V I C E S : 

R E A L I T I E S ,  O P P O RT U N I T I E S  A N D 
O B S TA C L E S

4.1 Modelling solutions to benefit from model 
complementarities

From the examples listed above, different strategies can be identified 
to combine models at different scales and predict consequences of 

Figure 4. Introduction to the serious game ‘Interplay’, used to assess a bundle of ecosystem services provided by including crop 
mixtures in a crop rotation. The game and overall structure of the modelling chain are illustrated. Green boxes are examples of 
options selected in a designed intercropping scenario. The main steps of the game and the variables of the modelling chain are 
in white, the dry matter (DM) of cereal biomass in the scenario is in light orange, the DM of legume biomass is in green and 
additional variables that influence soil structure are in dark orange.

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/article/4/1/diab037/6449487 by C

IR
AD

 C
entre de C

ooperation Internationale en R
echerche Agronom

ique pour le D
eveloppem

ent user on 02 February 2023



8 • Gaudio et al.

plant–plant interactions, from local responses up to ecosystem services 
at the cropping system and farm scales (Fig. 5). Besides direct coupling 
of models, which is rarely feasible across all scales, we identified three 
particularly promising approaches to address this issue:

• Inverse modelling, which connects models by identifying 
input parameters from simulated data. This approach is 
common to many scientific disciplines (Evans et al. 2016) 
and uses simulated data sets to determine parameter 
values from other models to supplement the observed data 
available. Using simulated data sets to improve exchanges 
between models and modellers is particularly valuable to 
facilitate parameterization of existing models, as illustrated 
by the adaptive parameterization of density responses and 
dominance ratios in crop models (individual-based model 
to a crop model, Van Oijen et al. 2020) or the definition 
of input scenarios in serious games (crop model to a farm-
management model; Meunier et al. 2022).

• Metamodelling, which connects models by developing 
a simpler model of outputs from a more complex model 
( Jin et al. 2001). Defining such new models is a particularly 
interesting way to simplify complex simulation models that 
have high computing costs into something tractable and 
reusable in a particular domain using a more integrated 
approach. For instance, this is illustrated by the integration 
of a root-morphogenesis metamodel in FlorSys to represent 
root competition (from root FSPM to a cropping-system 
model, Pointurier et al. 2021). The approach has also been 
effective at scaling-up local plant interactions over large 

areas and representing vegetation dynamics by considering 
soil and landscape variability (e.g. Moorcroft et al. 2001). 
Metamodelling can reduce the computing costs of complex 
models by several orders of magnitude.

• Hybrid modelling, which connects models by combining 
the strengths of existing models in a new model (Louarn and 
Song 2020). The goal is to perform hierarchical modelling at 
multiple scales by including only the level of detail required 
to represent the critical processes involved in targeted outputs 
of the system (e.g. scaling-up a mechanistic model of dynamic 
protein turnover from leaf to canopy level, to provide a 
physiological explanation of the photosynthetic acclimation 
under various light availability and nitrogen supply 
environments; Pao et al. 2019). A direct example is the reuse 
of complementary modules from existing models in original 
modelling solutions (e.g. individual-based plant models with 
soil and management modules from crop models; Faverjon 
et al. 2019). Merging knowledge can also result in formalizing 
emergent properties of a complex model in simpler robust 
equations or in validating a simplified formalism used in 
cropping-system models (Barillot et al. 2011). Although not 
yet developed for agroecosystems, hybrid modelling could 
also consider Bayesian approaches that have been effective 
at aggregating different types of models and data, including 
those that concern consequences of plant–plant interactions 
in natural systems (Pagel and Schurr 2012).

These three broad categories are not mutually exclusive and can 
be combined to build original models across scales. Each can help 

Figure 5. Conceptual illustration of modelling solutions (i.e. inverse modelling, metamodelling, coupling and hybrid modelling) 
used to simulate crop mixtures at different spatial scales (plant, field, farm and landscape), which are characterized by contrasting 
processes and ecosystem services. Asterisks indicate that the multiple spatial scales involve both short- and long-term simulations.

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/article/4/1/diab037/6449487 by C

IR
AD

 C
entre de C

ooperation Internationale en R
echerche Agronom

ique pour le D
eveloppem

ent user on 02 February 2023



Complementarities between modelling approaches • 9

illustrate the potential of process-based models to assess certain key 
ecosystem services (related mainly to crop productivity, biogeo-
chemical cycling and weed control). Moreover, the temporal scale at 
which processes and interactions occur and ecosystem services are 
built may require long-term simulations (Fig. 5). Generally, when 
the spatial scale increases (from plant–plant to the landscape), the 
temporal scale increases. However, modelling could target more 
ambitious applications than those documented to date, such as more 
comprehensive representation of environmental drivers (e.g. pests 
and pathogens, soil phosphorus content, climate change) and greater 
detail in the relationships between plant diversity (crop, service and 
weed plants) and biodiversity at other trophic levels in agroecosys-
tems (pests and diseases).

4.2 Challenges and difficulties linked to modelling 
solutions

Reusing and coupling existing models faces several methodological 
and technical challenges. To be effective, direct coupling and hybrid 
modelling often require developing specific adapters or new model 
code. Too many inconsistencies between models, such as differences 
in temporal and spatial resolutions, concepts and coupling variables, 
can make it more difficult to couple the models. The coupling time 
step must be defined and be consistent with the time step of the 
interactions between the simulated systems. This indicates that 
it may be necessary to increase (temporal upscaling) or decrease 
(temporal downscaling) the time step of one of the coupled mod-
els; the latter assumes knowing how to describe processes at a 
finer temporal resolution. Furthermore, the processes considered 
can occur at different spatial scales (e.g. from field to watershed) 
depending on the type of organisms and the factors involved, and 
can be influenced by multiple interactions. Modelling platforms do 
not always have sufficient technical development to combine these 
contrasting resolutions to describe systems and their functioning. 
Moreover, coupling models promotes dialogue between disciplines 
(e.g. agronomy and hydrology) and thus requires agreeing on a com-
mon lexicon or an ontology.

4.3 Modelling perspectives and opportunities
Many consequences of multispecies systems remain to be explored, 
both experimentally and through modelling and theoretical studies. 
We advocate practicing both during the transition towards more agro-
ecological systems. Models cannot be developed without supporting 
data, and a lack of reliable models hinders data analysis. This is par-
ticularly true regarding consequences of plant–plant interactions, for 
which the magnitude and hierarchy of the major processes involved 
remain hotly debated despite over 80 years of manipulative and obser-
vational studies (Brooker 2006; Weisser et  al. 2017). This lack of 
understanding prevents identification of a consensual, much less opti-
mal, model structure. However, it also promotes the development of a 
variety of models to test and benchmark interactions between mecha-
nisms that act simultaneously (e.g. competition and complementarity 
for resources, different forms of facilitation, physical and chemical 
signalling). In this context, combining specific model developments 
with effective strategies to aggregate them encourages parallel progress 
in key disciplinary issues (related to biophysical aspects and social 

sciences in managed ecosystems), while still enabling integration of 
outputs relevant for predicting ecosystem services at different scales.

Connecting data with models to develop diversified cropping sys-
tems provides an opportunity to address issues involved in quantifying 
biodiversity-based services. As a part of managed ecosystems, these 
services are scrutinized more closely than those in natural systems and 
benefit from observation in agricultural networks (e.g. Lechenet et al. 
2017), as well as developments in digital agriculture that are increas-
ingly used for diversified systems (Chen et  al. 2019; Reboud 2019). 
They also depend greatly on crops that have a long history of biologi-
cal characterization and modelling and are now benefiting from the 
early development of high-throughput information systems in plants 
(Tardieu et al. 2017). Rich benchmarking data sets that cover multi-
ple ecosystem services rather than only productivity are increasingly 
available. These data remain rare, but they are required to understand 
potential trade-offs between services and to identify inconsistent pre-
dictions across scales (Schneider et al. 2014). Here, models are needed 
to go beyond the observational posture of naturalists and quantita-
tively represent and analyse effects of plant diversity in a high number 
of possible scenarios.

To this end, the ability to predict consequences of within-field 
diversity at different spatial and temporal scales is required in order to 
assess the overall interest of various diversification scenarios. A  gen-
eral belief about natural ecosystems is that plant diversity alone pro-
vides the ecosystem services targeted, and that increasing species and 
genetic diversity in cropping systems should be a goal to provide mul-
tiple services. However, how and why a particular arrangement of prac-
tices, or a given range of diversity, should be chosen largely remain to 
be solved. By definition, managed agroecosystems have an economic 
purpose and often target particular marketable products. From a farm-
er’s perspective, diversification thus has advantages (resilience) and 
disadvantages (not all species are equal from an economic viewpoint; 
more complex management). Our opinion is that combining models 
that can represent plant diversity and predict ecosystem services at 
multiple scales is critical to support the spatial and temporal predic-
tion of the many systems that could be designed.

5 .  C O N C LU D I N G   R E M A R K S
Diversified agriculture points a clear route towards more sustainable 
systems able to provide a range of services to the society beyond agri-
cultural production. Exploring and evaluating the diversity of possible 
solutions is by no means simple, and will require the combination of 
different approaches relying on field experiments, farmers networking 
and new technological tools taking advantage of heterogeneous sources 
of data. We support that plant, crop and cropping system models will 
be among the key tools to help achieving this goal. We illustrated it 
here through the example of one major option regarding crop diver-
sification, the increase of within-field variability by mixing different 
crops, and highlighted potential connection and complementarities 
in the range of models already at hand. A proximate use of multiscale 
modelling solutions could be to help explore numerically the benefits 
and constraints of different diversification scenarios and address the 
‘diversification dilemma’ of an almost infinite number of combinations 
to test. At the very least, it could help focusing the experimental devel-
opment efforts on the most promising solutions and limit the test in 
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10 • Gaudio et al.

field trials of non-beneficial systems (e.g. non-compatible diversity that 
does not provide the expected services or whose costs decrease sys-
tem resilience or farmers’ incomes). When mature and more robust, 
an ultimate use of these models could also be to help quantify non-
productive ecosystem services. It is clear that intercropping and other 
diversification practices will not become widespread without suffi-
cient economic justification. Such models could be very useful to help 
determine the added value of diversified systems. We are witnessing a 
renewal of interest for these systems and anticipate that further devel-
opments of models in this area will be critical in the coming years.
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