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ABSTRACT 
The objective of the RTBfoods project is to pinpoint the quality traits that determine the 
adoption of root, tuber and banana (RTB) varieties developed by breeders according to 
consumer and farmer preferences. 

The aim of work package 3 (WP3) of the RTBfoods project is to develop high throughput 
phenotyping protocols, mainly Near Infrared Spectroscopy (NIRS), that could be applied in 
national and international breeding programs, postharvest processing and quality control 
procedures. This paper reviews research progress on hyperspectral imaging applied to RTB 
product characterization. This characterization may concern the quantification of different 
biochemical constituents, the measurement of physical properties and/or the internal and 
external defects. 

This literature review is based on a selection of papers found through Scopus, Science Direct, 
Web of Science and Google Scholar. The search formula used was HSI OR and Cassava (And 
Yam) (And Banana) (And Potato) (And Sweet Potato) (And Root) OR tuber. 

According to these requests, 48 references were found (Annex 1); these papers were 
published in different scientific journals between 2004 and 2018. Prior to 2010, the number of 
published articles was quite low (1) and stable (Fig. 1). The number of references increased 
after 2010 with a maximum of 12 publications in 2016. After 2016, the number of publications 
fell to 6, and 8 articles were published in 2018 for the 5 crops. 

  

 

Figure 1 : Number of references per year relating to characterization of cassava, yam, banana, 
sweet potato and potato using hyperspectral imaging.  

Most of the publications (85 %) concern potatoes and potato products (Fig.2). Over this period, 
only 11 % of scientific research on HSI techniques focused on the banana, and 2 % related 
both sweet potatoes and cassava. 
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Figure 2: percentage of publications relating to potatoes, sweet potatoes, banana and cassava (period: 2004-2018). 
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1 QUALITY ATTRIBUTES CHARACTERIZED BY 
HYPERSPECTRAL IMAGING  

The work that has been done in the selected articles on each product is summarized according 
to the analytical techniques used, the sample preparation procedure, the chemometric 
methods applied and the results obtained (Table 1).  

Regarding fresh and processed potatoes, sweet potatoes, banana and cassava, most HSI 
investigations report quantification of the biochemical constituents. These constituents are 
moisture content, nitrogen stress, sugars, solid soluble, volatile compounds, water binding, dry 
matter, starch, acrylamide, protein, chlorophyll, water stress, soluble sugar and amino acid. 

Some of the papers concern internal and external defects such as black spot, scab detection, 
late blight sugar-end growth defect, bud and green rind, hollow heart, crop hail damage, 
bruising and brown streak disease.  

Another part concerns physical proprieties such as specific gravity, cooking time, clods 
detection, irregular potato, weight, shape and firmness. The majority of applications are based 
on VIS-NIR spectroscopy in diffuse reflectance, and the principal chemometrics methods 
selected and applied are PLS (31%) and SVM (13%) for quantification and classification 
respectively. As mentioned above, much of the research used HSI fresh (intact, peeled and 
sliced) and processed potato (dried and chips). 
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Table 1 : Summary of hyperspectral imaging for the quality evaluation of RTB crops and products 

Crop Acquisition mode  Product Product 
processing 

Quality traits  spectral 
range 

chemometrics Results Reference  

Potato  Reflectance potato slices  moisture content, 
chromacity 

500-1000 nm PLS, MCUVE, 
CARS-PLS 

RMSE=0.16-0.36/0.61-1.78 (Amjad et al., 2018) 

Reflectance potato Manual 
bruising  

Blackspot 400-1000 
nm, 1000-
2500 nm  

PCA, SIMCA 
and PLS-DA 

98.56 vs. 95.46% CC (López-Maestresalas 
et al., 2016) 

Reflectance potato Boiled  Cooking time  400-1000 nm PLSDA Less than 10 % relative error  (Nguyen Do Trong et 
al., 2011) 

Reflectance potato 
leaf 

 
Nitrogen stress VIS/NIRS PLS RMSEV=0.14 % (Nigon et al., 2015) 

Transmittance/interactance potato whole tuber 
and slices  

constituents of 
potato (glucose, 
sucrose, specific 
gravity, primordial 
leaf count and 
soluble solids 

NIR and 
visible/NIR 
(446-1125 
nm) 

PLSR ______ (Rady et al., 2014) 

Reflectance  organic potato and non-
organic potato 

Moisture level, 
visual 
authentication 

897-941 nm 
and 944-
1678 nm 

PCA, PLSDA et 
MC-PLSDA 

Organic potato 100% accuracy 
of classification , moisture level 
PLSDA, RMSEP=<0.532   

(Su and Sun, 2016a) 

Reflectance potato Slices  volatile 
compounds, 
cooking degree 

900-1700 nm PLSR, TBPANN 
 

(Su and Sun, 2016b) 

Reflectance tuber Slices water binding 
capacity (WBC) 
and specific 
gravity (SG) 

897–961 nm 
and 
1658–1753 
nm 

PLSR, locally 
weighted 
principal 
component 
regression 
(LWPCR), 
genetic algorithm 
(GA) 

WBC: RMSEP=0.199 SG: 
RMSEP =0.009 

(Su and Sun, 2016c) 

Reflectance potato 
and 
sweet 
potato 

Slices  Dry matter (DMC) 
and starch (SC) 
concentration 

 
MLR, PLSR, 
locally weighted 
partial least 
squares 
regression 
(LWPLSR) 

RMSEV: SC=0.015, 
DMC=0.014 

(Su and Sun, 2017) 
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Crop Acquisition mode  Product Product 
processing 

Quality traits  spectral 
range 

chemometrics Results Reference  

Potato Reflectance  potato 
leaves  

Intact 
leaves  

Water content 862.9-1704.2 
nm 

correlation 
analysis (CA) 
and competitive 
adaptive 
reweighted 
sampling 
(CARS), CARS-
PLSR 

validation accuracy coefficient 
was 0.9366. 

(Sun et al., 2018) 

Fluorescence   potato 
chips 

intact chips Acrylamide 
 

SVM 98.33% (Yadav et al., 2018) 

RGB potato ______ Classification(clods) 480 nm LDA 98 % accuracy (Al-Mallahi et al., 
2008) 

Reflectance potato ______ detect potato tuber 
on potato harvester 
(clods) 

UV(350 nm) segmentation 
algorithm 

98.28% of clods were detected  (Al-Mallahi et al., 
2010) 

Reflectance and 
Transmittance   

potato 
leaf 

______ Protein and 
chlorophyll 

400-2500 nm 
and 1000-
2500 nm 

______ ______ (Botha et al., 2006) 

Reflectance intact 
potato 

______ Scab detection 900-1700 nm SVM, Random 
Forest 

97.1 % accuracy(SVM)+CFS 
method (1300 nm, 1303 nm, 
1336 nm, 
1339 nm, 1342 nm and 1503 
nm) 

(Dacal-Nieto et al., 
2011) 

Reflectance potato 
leaf 

potato leaf late blight 
(Phytophthora 
infestans) 

450-900 nm ______ near 490, 530 and 670 nm) are 
better for classification 

 (Franceschini et al., 
2017) 

Transmittance  potato potato leaf black heart and 
weight 

400-1000 nm PLSDA, PLS black heart accuracy  is 100%,  
Weight (Rp) = 0.99, and  
(RMSEP) = 10.88 g (9 
variables) 

 (Gao et al., 2012) 

Reflectance potato potato leaf Water stress 869-1298 cm-1  ______   (Gerhards et al., 
2016) 

Reflectance potato  peeled 
potato 

Sugar-End growth 
defect 

1100-1700 nm ______ 91.7 % accuracy of 
classification 

(Groinig et al.) 

Reflectance potato potato 
leaves  

potato late blight 374-1018 nm LS-SVM 94.87 % accuracy (Hu et al., 2016) 

Transmittance ______ intact 
potato 

external defects 
(bud and green 
rind) and internal 
defect (hollow 
heart)  

390-1040 nm supervised 
locally linear 
embedding 
(SLLE)+LSSVM 

 bud, green rind and hollow 
heart potato reached 96.83%, 
86.96%, 86.96% and 95% 

(Huang et al., 2015) 
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Crop Acquisition mode Product Product 
processing 

Quality traits spectral range chemometrics Results Reference 

Potato semi-transmission potato  Hollow heart  390-1 040 nm SVM, CARS, 
artificial fish 
swarm algorithm 
(AFSA) 

 Accuracy: CARS-SPA 
(94.64%) and AFSA-SVM (100 
%) 

(HUANG et al., 2015) 

______ potato  disease detection   SVM 95 % of accuracy (Islam et al., 2017) 

Reflectance potato potato multiple defects  390-1040 nm Diffusion map 
and extreme 
learning machine 
DM-ELM)  

 sprouting potatoes, green rind 
potatoes, blackheart potatoes 
and normal potatoes 
respectively reached 97.30%, 
93.55%, 94.44% and 100%,  

(Jin et al., 2015) 

Reflectance  potato intact 
potato and 
cylinder 

Starch, soluble 
sugar, amino acids 

380-925 nm 
and 400-1040 
nm  

PLSR amino-acid HS-full and HS-part 
registered R2 values of 0.70 
and 0.54 starch: HS-full and 
HS-part registered 
R2 values in the ranges of 
0.66–0.71 and 0.31–0.42, 
respectively sugars: HS-full 
and HS-part registered R2 
values in the ranges of 0.19–
0.20 and 0.33–0.40, 

(Kjær et al., 2016) 

Reflectance potato peeled 
potato 

Glycoalkaloids and 
Chlorophyll 

UV-a, UV-b or 
UV-c  

______  ChlR2 = 0.92,  TGA, R2=0.21 (Kjær et al., 2017) 

 sweet 
potato 

purple-
fleshed 
sweet 
potato 

Anthocyanin 
content  

371–1023 nm  PLSR, LS-SVM, 
MLR 

best results  with MLR (ten 
variables)(R2P 
RP2)=0.866 

(Liu et al., 2017) 

Reflectance   Raw 
French fries  

Latent defects and 
diseases 

400-900nm support vector 
classifier (The 
fisher linear 
discriminant 
classifier 
(fisherc) 

varied from 99.1 % for Asterix 
to 93.9 % 

(Noordam et al., 
2005) 

______ sweet 
potato 

drying 
sweet 
potato 

the moisture 
content and color 
changes during 
drying 

and laser-
induced 
backscattering 
imaging 
(LLBI) 

PCA, PLS Moisture: R2=0.718 
SECV=0.175, Lightness (L*): 
R2=0.672 SECV=6.545, 
Redness (a*)=: R2=0.758 
SECV=4.322, Yellowness: 
R2=0.462, SECV=3.281   

(Onwude et al., 2018) 
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Acquisition Product Product 
processing  

Quality traits  Spectral 
range  

chemometrics Results  Reference  

Reflectance potato two 
cultivars RN 
and FL, 
fresh use 
and 
chipping 
potato 
cultivars. 

glucose and 
sucrose  

 
PLSR, KNN, 
PLSDA 

PLS: glucose (RN: R2=0.97 
and RMSEP=3.58, FL: 
R2=0.81, RMSEP=1.70) 
sucrose: FL: R=0.60 and 
RPD=1.14, RN: R=0.38, 
RPD=1.00, classification: 
glucose misclassification errors 
of 14 % and 18 % for FL and 
RN, sucrose indicating lower 
accuracy for this sugar (34 and 
30 % for FL and RN). 

(Rady et al., 2015) 

 
multi-angular reflectance leaf 

potato 
potato crop improvement leaf 

area index (LAI) 
and leaf chlorophyll 
content (LCC) 

VIS/NIRS PROSAIL model RMSE from 0.70 to 0.65 
m2/m2 for estimating LAI, and 
from 17.35 to 17.29 μg/cm2 for 
estimating LCC 

(Roosjen et al., 2018) 

Reflectance  Purple-
Fleshed 
Sweet 
Potato  

slices 
potato 

Water content, and 
Freezable Water 
Content 

371–1023 nm PLSR  (RP2) of 0.9837 and 0.9323 
for moisture content and 
freezable water content, 
respectively 

(Sun et al., 2017) 

Machine vision system 
 

potato Weight and shape 
of potato  

 
MLR, PCA Weight: The distinguished 

accuracy were respectively 
90%, 100%, 90% for large, 
medium and small sizes in 
potato sample. Size:  
approximation ellipsoid and 
approximation spherical were 
83.3% and 89.3% respectively. 

(Wang et al., 2016) 

Reflectance potato intact 
potato 

Bruising  400-1000 nm ______ Reached 87.88% accuracy (Ye et al., 2018) 

Banana Reflectance  Banana dried  
banana  

Moisture, texture 
and color 

400-1000 nm PLSR water: RMSEP=0.05 kg 
water/kg DM), color, b 
(RMSEP=1.95), texture 
(R2P=0.66, RMSEP=11.8 ) 

(Nguyen-Do-Trong et 
al., 2018) 

Reflectance  Banana  Intact 
banana 

moisture content, 
firmness and total 
solid solub  

400-1000 nm MLR, PLS, PCA R2=0.85, 0.87, and 0.91 for 
total soluble solids, moisture 
and 
firmness of the banana fruits, 

(Rajkumar et al., 
2012) 

Reflectance  Banana  Intact 
banana 

color and firmness  380-1023 nm PLS RPD: L∗= 2.234, a∗=6.098, 
b∗=2.119 and firmness=2.062, 

(Xie et al., 2018) 

Reflectance Banana  Intact 
banana  

Browning level 
(shelf-life) 

400-1100 nm PCA, back 
propagation (BP) 

Best classification rates of 
95.6 % for training set and 
90.5 % for testing set. 

(Wang et al., 2015) 
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2 RESULTS AND APPLICATIONS 
In this part, we discuss the main results found in the literature about application of 
hyperspectral imaging for high throughput phenotyping of RTB and RTB products. 

2.1 Potato 
2.1.1 Biochemical constituents and physical properties 

Sun et al., 2017 demonstrated the potential of HSI and chemometrics methods for predicting 
moisture content and freezable water content, during drying process of sweet potato slices. 
Hyperspectral images were obtained by reflectance in VIS-NIR, and the corresponding mean 
spectra were extracted. Two linear calibration algorithms, known as PLSR and multiple linear 
regression (MLR), and a non-linear calibration algorithm known as back propagation (BP) 
neural network were used to establish models. Comparing the PLSR model with MSC pre-
treatment presented better results with coefficients of determination for prediction (R²P) of 
0.9837 % and 0.9323 % for moisture content and freezable water content, respectively. Su 
and Sun, 2017a developed models for DM and starch quantification with an accuracy 
expressed as (R²P=0.985, RMSEP= 0.016 %) and R2P=0.983, RMSEP =0.015), respectively. 
These models based on locally weighted partial least squares regression (LWPLSR) were 
developed on slice samples using an InGaAs (Indium Gallium Arsenide) camera (Xeva 992, 
Xenics Infrared Solutions, Belgium). Furthermore, the time series variations of DMC and SC 
on tuber samples were visualized based on an equation to apply the simplest models to the 
spectral images. Amjad et al., 2018 developed a model for determination of moisture content 
in potato slices with three thicknesses (5 mm, 7 mm, 9 mm), during a dying process (50 °C, 60 
°C, 70 °C). The best model (R2= 0.93-0.98, RMSEP= 0.16-0.36 %) was obtained by using PLS 
method in spectral range of 400-1000 nm and an imager (ImSpector V10E, Specim Spectral 
Imaging Ltd., Finland). (Botha et al., 2006) evaluated the ability of the PROSPECT model to 
estimate leaf chlorophyll and protein contents of two contrasting potato cultivars during two 
growing seasons, using the ASD FieldSpec Pro FR spectroradiometer (Boulder, CO) in a 
spectral range of 250-2500 nm. They conclude that the chlorophyll predicted with a low 
accuracy (R2= 0.32-0.53, RMSEP= 4.53-5.33 μg cm–2) was probably related to sample 
variability induced by prolonged drought conditions, and protein content could not be predicted 
with any degree of accuracy by the model (R2= 0.00-0.01, RMSEP= 0.0020-0.0041 mg.cm-2). 
Then in the paper of Gerhards et al., 2016 the HyperCam-LW HIS camera (Telops Inc., 
Quebec, Canada)  was used to measure water stress of 60 potato plants with one half of the 
plants watered and the other half stressed. No striking differences were apparent for 
hyperspectral and broadband TIR imagers in deriving accurate leaf temperatures (5) among 
the temperature based measurements.  

Kjær et al., 2016  evaluated the potential use of HSI in potato assessment and sorting. For 
this purpose, 60 samples of potatoes of 10 different cultivars analysed by hyperspectral 
camera with an ImSpector V10 spectrograph (Specim, Finland) in the spectral range 380-1050 
nm. The samples were analysed with two different methods, the first on intact potato (HS-full) 
and the second on cylindrical pieces (HS-part) for prediction of density, DM, starch, amino-
acid, soluble sugars and conductivity. For density, DM and starch the results from the two 
methodologies, HS-full and HS-part, registered R2=0.66–0.71 and 0.31–0.42, respectively. 
Concerning the prediction of soluble sugars HS-full and HS-part registered R² values in the 
ranges of 0.19–0.20 and 0.33–0.40, respectively, for the reducing sugars glucose, fructose, 
0.41, and 0.31, respectively. Results from all the methods HS-full, HS-part, R2=0.45, 0.23 
respectively.  Kjær et al. 2017 also investigated the use of HSI to detect and quantify 
chlorophyll (Chl) and total glycoalkaloid in potatoes. Four varieties were wounded or treated 



 Page 12 of 23 

with red, blue, red/blue, UV-a, UV-b or UV-c light. The results showed that the HSI system 
predicted the concentrations of Chl with a relatively high degree of accuracy, and a prediction 
R2=0.92. Prediction of TGA was not satisfactory, with R2= 0.21. The study of (Liu et al., 2017) 
aimed to investigate the potential of HSI for prediction of anthocyanin content within purple-
fleshed sweet potato (PFSP) during the drying process. Three algorithms including PLSR, LS-
SVM, and multiple linear regression (MLR) were used to build models based on ten optimal 
wavelengths selected in the spectral range of 371-1023 nm. The best results were obtained 
with RC-MLR with R²p=0.87. The visualization of anthocyanin during the drying process cannot 
be achieved by those methods.  

(Nguyen Do Trong et al., 2011) demonstrated the potential of HSI in the wavelength range 
400-1000 nm to detect the optimum cooking time (CT) of potatoes using an ImSpector V10 
spectrograph (Spectral Imaging Ltd., Oulu, Finland). For this purpose, 33 samples were bought 
in the market. The samples were scanned at 3, 6, 9, 12, 15, 18, 21, 24, 27 and 30 mins cooking 
time. The supervised method of classification PLSDA was employed to discriminate between 
the pixel spectra for the cooked regions, and those for the remaining raw regions. In this study 
the cooked and raw parts of boiled potatoes were discriminated successfully; the optimal 
cooking time could be predicted with less than 10 % relative error. Su and Sun, 2016  also 
investigated the potential feasibility of using hyperspectral imaging (900–1700 nm) for 
predicting cooking degree (TCD) and the volatility of tuber compositions (VTC) in low 
temperature baking (LTB). To do this, they used six tuber categories from different origins. The 
tuber slices were cooked by LTB for five time periods including 40, 80, 120, 190, and 260 mins; 
for each time, the samples were scanned by HSI. The partial least squares regression (PLSR) 
and three-layer back propagation artificial neural network (TBPANN) models were established 
to predict VTC and TCD using the entire spectral range and the feature wavelengths. The 
optimal combination of characteristic wavelengths was 991, 1031, 1071, 1138, 1252, 1403, 
1460 and 1641 nm. The best model was obtained by the FMCIA-TBPANN approach (R² 
=0.967 and RMSEP=0.307 mins). 

The objective of the study of Nigon et al., 2014 was to evaluate the implications of using high 
spatial resolution broad-band imagery for determining Nitrogen (N) prescriptions at different 
growth stages of potatoes. Aerial images were obtained for research plots, as well as for a 
commercial potato field (59 ha) near Becker, Minnesota on 30, 56 and 79 days after 
emergence (DAE) with a multispectral camera (AEROCam, Grand Forks, ND, USA). Five N 
treatments with varying rates and timing of N fertilizer, and two potato varieties were used. N 
stress based on leaf N concentration was predicted adequately within dates (R²= 0.49 to 0.82). 
One year later, Nigon et al. evaluated the ability of HSI to predict N stress in potatoes 
(Solanum tuberosum) during two growing seasons (2010 and 2011). For this purpose, five N 
treatments with varying rates and timing of N fertilizer were applied, on two potato cultivars, 
Russet Burbank (RB) and Alpine Russet (AR). The hyperspectral reflectance images were 
acquired with an (AISA Eagle) visible/near (401-982 nm) infrared hyperspectral imaging sensor 
(SPECIM, Spectral Imaging Ltd., Oulu, Finland). The best PLS models predicted N 
concentration R² = 0.79, RMSECV = 14% across dates for RB; R2 = 0.77, RMSECV = 13% 
across dates for AR.  

Rady et al., 2014a demonstrated the possibility of rapid prediction of the glucose and sucrose 
in two fresh potato cultivars using VIS-NIR hyperspectral reflectance imaging. The samples 
were cut uniformly into slices 12.7 mm thick. PLSR, feed forward neural networks (FFNN), 
radial basis functions neural networks (RBFNN), and exact design radial basis functions 
(RBFNNE) neural networks were used for building calibration and prediction models.  The 
results showed a strong correlation for glucose for Russet Norkotah (RN) with R =0.97; 
whereas those values= 0.81 for Frito Lay (FL). Sucrose models showed less correlation 
performance with R= 0.60 for FL, and 0.38 for RN. The K-nearest neighbor (Knn) and partial 
least squares discriminant analysis (PLSDA) results were glucose misclassification errors of 
14 % and 18 % for FL and RN, respectively. However, classification errors were higher for 
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sucrose, indicating lower accuracy for this sugar (34 and 30 % for FL and RN). Rady et al., 
2014b also used visible/NIR HSI to determine glucose, sucrose, specific gravity, primordial 
leaf count, and soluble solids of (FL) (chipping) and Russet Norkotah (RN) (table) potato 
cultivars. The hyperspectral images for the whole and sliced samples were acquired in the 
range 400-1000 nm using hyperspectral reflectance mode within a Hamamatsu dual mode 
cooled CCD camera (model No. C4880, Hamamatsu Photonics, Hamamatsu, Japan). PLSR 
was used to obtain the prediction models; the optimum model for leaf counts and glucose were 
obtained for leaf count from interactance with sliced samples resulting in R (RPD) = 0.95(3.29) 
for FL, and 0.90(2.19) for RN. For glucose, interactance also yielded the best model with R 
(RPD) =0.90(2.14) for FL, and 0.95(3.12) for R. The best performance for soluble solids for FL 
with R (RPD) = 0.55(1.18). Also, for sucrose = 0.81(1.63) for FL from sliced samples, and 
0.81(1.64) whole tubers. Poorer performances were obtained with transmittance mode.  

Roosjen et al., 2016 described an innovative and fast method using a hyperspectral 
pushbroom spectrometer mounted on a multirotor unmanned aerial vehicle (UAV) to perform 
such multi-angular measurements. They used this method to study the reflectance anisotropy 
of the potato at different growth stages, with a Rahman-Pinty-Verstraete (RPV) model in the 
450–915 nm range. The UAV measurements were performed using the Wageningen UR 
Hyperspectral Mapping system (HYMSY) on board an Altura AT8 octocopter. The results of 
this study indicate that the presented method is capable of retrieving anisotropic reflectance 
characteristics of vegetation canopies, and that it is a feasible alternative for field goniometer 
measurements.  

The discrimination of organic potato (OP) and identification of tuber moisture levels were 
investigated by Su and Sun, 2016b on sliced tuber samples and dehydrated in an oven under 
the temperature of 80 ± 2 °C  for six time periods of 0, 30, 60, 90, 150, and 210 mins. The 
images were acquired using a Specim ImSpector N17E spectrograph (Spectral Imaging Ltd., 
Oulu, Finland) covering an NIR range of 897–1753 nm. They concluded that has a great 
potential for discrimination of OP and identification of tuber moisture levels using PLSDA 
models. The OP samples were identified correctly (100% accuracy) from non-organic tubers, 
R²P= 0.979 and RMSEP ≤0.532. For tuber moisture levels, in the results obtained were correct 
classification of ≥91.6 %.  

In order to indicate potato crop water content and guide precision irrigation, Sun et al., 2018 
developed a competitive adaptive reweighted sampling PLS model (CARS-PLS) to predict the 
leaves water content, with a calibration accuracy of 99 % and validation accuracy of 94 %. The 
spectral reflectance of 355 samples was collected by hyperspectral camera (i2D CCD array, 
detector (LT365), spectrometer (V10E), uniform light source), in the range of 862.9-1704.2 nm. 
Detection of acrylamide in fried potato chips using continuous wavelet transform was 
determined by Yadav et al., 2018. An 8 mega-pixels digital camera was used in the proposed 
work to capture the image of potato slices. The potato chip area was segmented from its 
background by extraction of discriminatory features in the continuous wavelet transform 
domain using Morlet wavelet. The discriminatory features were analyzed by the Support Vector 
Machine classifier (SVM). The results registered a good accuracy of 98.33% with 100% 
specificity. In order to improve the precision of dry matter content determination in potatoes by 
HSI technology, Zhu et al., 2012 tested several variable selection methods, comparing PCA, 
siPLS, GA-PLS, UVE and CARS. A combinatorial method known as CARS-SPA (successive 
projections algorithm) was proposed to select variables from 678 wavelengths. The MLR 
model based on 27 selected wavelengths was developed to predict DM content with R²p=0.86, 
and RMSEP=1.06%. 
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2.1.2 Internal and external defects 

Discrimination between potato tuber and clods using HSI by detecting a significant wavebands 
was investigated by Al-Mallahi et al., 2008. The intact potatoes were measured using a 
hyperspectral camera (SPECIM, ImSpector V10), in the range 321-1044 nm. The authors 
applied a machine vision system for optimum discrimination. It was found that the success rate 
of discrimination using one waveband at 480 nm was 98.8% under wet conditions, whereas 
another waveband at 752nm had a success rate of 94.7% under dry conditions. Two years 
later Al-Mallahi et al., 2010 compared the previous discrimination and those by ultraviolet. 
The discrimination by UV showed the best results with 98.79% of the tubers, and 98.28% of 
the clods were detected successfully. The detection of common scab in potato was assessed 
by Dacal-Nieto et al., 2011 using a spectrograph from Specim Imspector N17E (900-1700 
nm). The authors developed Support Vector Machines (SVM) and Random Forest classifiers 
models based on spectra of 234 intact potatoes with different degrees of common scab 
incidence. The best results were obtained with the SVM classifier; they registered 97.1% 
accuracy to detect the percentage of the surface affected by common scab. Ray et al., 2011 
initially investigated the utility of reflectance HSI for potato late blight disease detection. The 
HSI data was collected for a potato crop at different levels of disease infestation in the range 
of 325 to 1075 nm and then Stepwise Discriminant Analysis was carried out to find out the 
most appropriate band to discriminate between different levels of infestation. The optimal 
hyperspectral wavebands to discriminate the healthy plants from disease infested plants were 
540, 610, 620, 700, 710,730, 780 and 1040 nm; whereas up to 25% infestation could be 
discriminated using reflectance at 710, 720 and 750 nm. 

Hu et al., 2016 tested HSI in order to determine the late blight in potato leaves. 60 potato 
leaves were used, 48 of them were vitro inoculated with pathogen of potato late blight, HSI 
data infected potato samples of different disease severity were acquired in 374 to 1018 nm 
and the least squares-support vector machine (LS-SVM) models were developed to 
discriminate healthy and affected potato leaves with 94.87% of accuracy. Franceschini et al., 
2017 also investigated the assessment of late blight (Phytophthora infestans) incidence on 
potato under organic cultivation. For this purpose, hyperspectral images were acquired during 
growing season by aerial pushbroom camera (WageningenUR Hyperspectral Mapping 
System) in the spectral range 450-915 nm.  Results indicated that indices based on three 
spectral bands performed better and optimal wavelengths (i.e. near 490, 530 and 670 nm) are 
not only related to chlorophyll content but also to other leaf pigments like carotenoids.  

Gao et al., 2012 used transmission hyperspectral imaging to detect internal black heart and 
external weight of potatoes. 266 images were collected in the spectral range 400-1000 nm. 
Only 9 wavelength Uninformative variable elimination (UVE) and successive projections 
algorithm (SPA) were applied to conduct the variable selection for the spectrum of the black 
heart samples. Then, PLSDA was applied to detect black heart with 9 selected wavelengths 
and a weight detection model by PLS. The results indicate that HSI transmission could be used 
to detect black heart with 100 % of accuracy (the minimum shoddy area which could be 
identified was 1.88 cm²) and weight with (Rp=0.99, RMSEP=10.88 g). Groinig et al. 
investigated the inline detection of sugar-end defects in potatoes.  For this purpose, they used 
steam peeled potatoes; the images were acquired by HELIOS-EC3 NIR system (EVK DI 
Kerschhaggl GmbH/Raaba) in the wavelength range 900-1700 nm. The discrimination showed 
a good accuracy with 91.7 % of defects correctly classified using the EC3 prediction model.  

The works of Huang et al., 2015 made use of semi-transmission HSI combined with LSSVM 
algorithm to recognize internal and external defects in potatoes simultaneously. 315 potatoes 
from a farmers’ market were used, and then HSI images were taken of normal external defects 
(bud and green rind) and internal defects (hollow heart). After that, the average spectrum was 
taken in the 390-1040 nm range. To reduce the dimensions of spectrum data including 
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supervised locally linear embedding (SLLE), locally linear embedding (LLE) and isometric 
mapping (ISOMAP), the best results were obtained with SLLE-LSSVM and the single 
recognition rate of normal, bud, green rind and hollow heart potato reached 96.83%, 86.96%, 
86.96% and 95% respectively. In another paper HUANG et al., (2015) conducted more in-
depth research on detection of hollow heart by transmission HSI and competitive adaptive 
reweighed sampling algorithm (CARS) and successive projection algorithm (SPA) to select 
important variables. With 8 selected variables, the SVM model recognized hollow heart in 
potato with 94.64 % accuracy. This model was optimized by artificial fish swarm algorithm 
(AFSA), and then the recognition reached 100% of accuracy. 

Jin et al., 2015 investigated the possibility of simultaneously distinguishing multiple defects by 
combined HSI and extreme learning machine (ELM). In this paper, 367 potatoes were picked 
which were made up of 111 sprouting potatoes, 90 green rind potatoes, 46 blackheart potatoes 
and 120 normal potatoes. The reflectance HSI images were acquired (SPECIM, V10E, 
Finland) in the wavelength range 390-1040 nm. Several models were tested. However the best 
models were obtained by using Diffusion maps (DM)-ELM model, the single recognition rate 
of sprouting potatoes, green rind potatoes, blackheart potatoes and normal potatoes 
respectively reached 97.30%, 93.55%, 94.44% and 100%, and the mixed recognition rate 
reached 96.58%. 

HSI was investigated  by  López-Maestresalas et al., 2016 to detect blackspot in the potato 
subsurface. 188 samples belonging to 3 different varieties were divided into two groups. 
Bruises were manually induced and samples were analyzed 1, 5, 9 and 24 h after bruising. 
The raw samples were analyzed in the reflectance Vis-NIR range 400-1000 nm and one for 
the SWIR range 1000-2500 nm using  the ImSpector V10 (Spectral Imaging Ltd., Oulu, 
Finland) and HS SWIR XSM320C4-60 (Headwall Photonics Inc., Fitchburg, MA) cameras 
respectively. PCA, SIMCA and PLS-DA were used to build classifiers. The PLS-DA model 
achieved the better results above 94% for both hyperspectral setups. Furthermore, more 
accurate results were obtained with the SWIR setup at the tuber level (98.56 vs. 95.46% CC), 
enabling identification of early bruises within 5 h of bruising.  

The paper of Noordam et al., 2005 describes an application of both multispectral imaging and 
red/green/blue (RGB) color imaging for discriminating between different defect and diseases 
on raw French fries. Four different potato cultivars generally used for French fries production 
were selected from which fries are cut. The color images of the experiments were captured by 
a Sony 3-CCD color camera (www.sony.com), and the multispectral French fries images were 
recorded in 430-900 nm with an ImSpector V9 spectrograph (Spectral Imaging Ltd, Oulu, 
Finland). The modified snv preprocessed multispectral images and k-nearest neighbor’s 
classifier (KNNC) give the best classification performance for raw RGB images. The detection 
of the latent greening defect in French fries with the exploration of multispectral images shows 
the additional value of multispectral imaging for French fries. 

In the paper of  Ye et al., 2018,  the detection and classification of minor bruised potato were 
investigated. 

Raw samples, including healthy and bruised potatoes belonging to 3 different levels (level I, II, 
and III bruises). In addition, the hyperspectral images were collected from 400 to 1000 nm by 
SOC710-VP portable visible light/near infrared (Vis-NIR) hyperspectral imager produced by 
Surface Optics Corporation, USA. In order to classify the bruise levels of bruised potatoes, two 
SVM models were established. The first one obtained the bruise recognition rate of 100% and 
the second one achieved a 100% success rate for the classification of bruised potatoes with 
level II and III. Zhou et al., 2011 proposed a new method to detect external defects in the 
potato (dry rot, normal and other six kinds of common defect). PCA was used to classify defects 
of potatoes, the overall classification success rate was only 61.52%. In addition, band ratio 
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algorithm and the symmetrical second difference algorithm were combined in order to improve 
classification accuracy, the success rate was increased to 95.65%.  

In 2012 Zhou et al., compared VIS-NIR diffuse reflectance and transmittance mode to detect 
black heart in potato. Reflectance and transmittance spectra were acquired using a 
hyperspectral image acquisition system, portable transmission spectrum acquisition system 
and FT-NIR spectrometer, respectively. The authors developed PLS-LDA model to classify the 
potatoes with or without black heart. Best results were obtained based on transmittance 
spectra with an accuracy of 98.46%. The works done by  Zhou et al., 2016 on two potato 
varieties to evaluate crop hail (damage levels of 0% (control), 33%, 66% and 99%) assessment 
by aerial multispectral  imaging during two seasons. The images were collected 77 and 108 
days after planting (0–60 days after damage) by using NiteCanon ELPH110 (LDP LLC, 
Carlstadt, NJ, USA) in the NIR range. Vegetation indices such as green normalized difference 
vegetation index (GNDVI), normalized difference vegetation index, and soil-adjusted 
vegetation index were calculated. The results showed 99% defoliation damage at the early 
bulk stage which also affected the crop yield significantly. Furthermore correlation analysis 
between vegetation indices and yield data indicated a strong relationship (r = 0.77–0.90) for 
damage at the early stage compared to other stages. 

2.2 Banana  
A few publications were found about HSI applied to banana characterization. They could be 
classified in two groups. (i) Quantification of chemical constituents and evaluation of physical 
properties such as maturity, firmness, color, moisture and total soluble solids. (ii) Evaluation of 
banana defects and diseases. 

2.2.1 Chemical constituents and physical proprieties 

Maturity stages, moisture content, firmness and total soluble solids were determined by 
Rajkumar et al., 2012  at three different temperatures, viz., 20, 25, and 30 °C, and ripening 
stages from 1 to 6, with each group comprising 15 banana fruits, and using a hyperspectral 
imaging system spectrograph (ImSpector V10E, Optikon Co., Canada) in the spectral range 
400-1000 nm. The Prediction model of Moisture content, TSS and firmness was developed by 
MLR on the optimal wavelengths with R² = 0.87, 0.85 and 0.91 respectively. In 2018 Xie et al., 
investigated the feasibility of using HSI for determining banana color (L∗, a∗ and b∗) and 
firmness as well as classifying ripe and unripe samples. The HSI images were acquired using 
an imaging spectrograph (V10E, Specim, Oulu, Finland), a charge coupled device (CCD) 
camera (C8484-05, Hamamatsu City, Japan) at wavelengths 380-1023 nm. PLS models were 
built to predict color and firmness. Based on the selected wavelengths, good results were 
obtained, with an Rp² of 0.795 for L∗, 0.972 for a∗, 0.773 for b∗ and 0.760 for firmness. The 
corresponding residual predictive deviation (RPD) values were 2.234, 6.098, 2.119 and 2.062, 
respectively. The monitoring of the moisture, content, texture and color of banana slices during 
the drying process by using reflectance HSI was evaluated by Nguyen-Do-Trong et al., 2018. 
Thanks to a cross-polarized configuration the effects of glare or specular reflection on the 
banana slice surfaces in the hyperspectral diffuse reflectance images were greatly reduced.  
The data were collected at drying times of 0, 30, 60, 90, 120, 150, 180 and 210 mind by a 
hyperspectral system, which combined a CCD camera (TXG14NIR, Baumer, Switzerland), and 
spectrograph (V10 Specim, Finland) in the range 400-1000 nm. The PLSR calibration models 
were developed, and obtained very good results for water content (R²P=0.97, RMSEP=0.05 
kg water/kg DM), quite good results for and b*value (R²P=0.83, RMSEP=1.95), and reasonable 
results for texture (R²P=0.66, RMSEP=11.8 N), a* value (R²P=0.53, RMSEP=1.32) and L* 
value (R²P=0.61, RMSEP=5.92). 
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2.2.2 Defects and diseases  

Wang et al., 2015 investigated the potential of HSI to predict the shelf life of bananas with 
different browning levels. Five optimal wavelengths (454, 486, 559, 686, and 728 nm) were 
selected by PCA. Then, image features and average spectra were used to develop 
classification models for determining their browning levels using back propagation (BP), radial 
basis function (RBF), and self-organizing feature maps (SOM) networks. BP classifier had the 
best performance with classification rates of 95.6 % for the training set and 90.5 % for the 
testing set, respectively. The work of Ochoa et al., 2016 related to in-vivo detection of Black 
Sigatoka (BS) disease pre-symptomatic responses in banana leaves. 

2.3 Cassava  
Only one article was published on HSI applied to cassava. The goal of Su et al., 2017b was 
to detect cassava flour (CaF) adulterants in Irish organic wheat flour (OWF). Hyperspectral 
images (900–1700 nm) of OWF samples with a series of adulteration percentages were 
collected. PLSR and principal component regression (PCR) were employed for quantitative 
analysis.  Feature wavelengths were selected from the loading plots of PCA, and from a first-
derivative and mean centering iteration algorithm (FMCIA). The best model was developed 
using FMCIA. After, the corresponding feature wavelengths were further reduced based on 
model regression coefficients (RC). The optimal result of admixture detection was emerged by 
the RC-FMCIA-PLSR model, with R2

P=0.973 and RMSEP=0.036 for OWF adulterated with 
CaF. 

3 CONCLUSION 
This literature review highlights the potential of Hyperspectral imaging (HSI) to qualify, sort 
and/or characterize roots, tubers or bananas. The techniques used vary in terms of complexity, 
accuracy, performances and robustness.  

HSI covering ultra-violet, visible and/or NIR is one of the most recently emerging tools and 
provides the advantages of vision and spectroscopic systems; and can be used, after speeding 
up image acquisition time, for prediction of processing-related constituents as well as defects 
detection. HSI has the advantage of providing both quantification and information on spatial 
distributions of the traits in the whole tuber, root or banana. There is an inevitable trend for 
multispectral imaging with only a few important bands instead of full wavelengths in the non-
destructive and rapid evaluation of food quality. 

The research using HSI relates to fresh and processed products. Most of the time, quality 
control or process monitoring are achieved through the quantification of biochemical 
compounds: moisture content, nitrogen stress, sugars, solid soluble, volatile compounds, 
water blinding, dry matter, starch, acrylamide, protein, chlorophyll, water stress, soluble sugar 
and amino acid. 

Another part of the research refers to internal and external defects such as black spot, scab 
detection, late blight sugar-end growth defects, bud and green rind, hollow heart, crop hail 
damage, bruising and brown streak disease. And some research focuses on physical 
proprieties such as specific gravity, cooking time, clods detection, weight, shape and firmness. 
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The products were analyzed in different conditions and presentations (intact, peeled, sliced, 
cooked, frying and chips). Regarding vision and spectroscopic techniques the measurements 
were taken in diffuse reflectance, transmittance or interactance mode using a static or moving 
sample holding systems. HIS measurements do not require contact with the sample and light 
levels are relatively high. However, spectral fingerprint is dependent on the skin properties of 
the tuber, in the case of intact tubers.  

The chemometrics methods used to achieve calibration are numerous and depend on the 
product and on the trait to be characterized. The approaches cover linear methods (PCA, PCR, 
MLR, PLSR, LDA, PLSDA, SIMCA…) and non-linear methods (ANN, SVM, KNN, CARS...), 
and are divided into two groups: quantification and classification. In some cases classification 
(supervised or unsupervised) gives the opportunity to perform HTP screening, when 
quantification is not relevant.   
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