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Abstract 

In many countries, particularly in West Africa, there is a strong social 
demand for increased cereal production. Responding to this demand 
involves the improvement of cereal varieties. Modern varietal breeding 
programs in the sub-region need to establish the relationship between plant 
genotype and phenotype to select high-yielding stress-tolerant plants and 
to enhance agricultural production. However, in most cases, accurate 
phenotyping of large mapping populations is a limiting factor. The Regional 
Study Centre for the Improvement of Drought Adaptation (CERAAS) has 
developed a robust drone-based data collection and spatial modelling 
process to better measure cereal crops’ traits for the benefit of plant 
breeding programs. Herein, we report an unmanned aerial vehicle (UAV) 
driven crop characteristics analysis throughout the crop cycle. We present 
a fully automatic pipeline based on a multispectral imaging system for the 
indirect measurement of agronomic and phenological characters of crops in 
agricultural field trials. The pipeline is made up of different stages including 
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image acquisition, georeferencing, generation of orthoimages, creation of 
masks to delimit individual plots, and calculation of proxies. The 
incorporation of the UAV into agricultural field experiments has the potential 
to fast-track the genetic improvement of adaptation to drought. 

Keywords: UAV, multispectral, field phenotyping, sorghum 

Introduction 

If the world’s population and food demand continue to grow, food 
production will need to increase 60% by 2050. It is urgent to develop new 
strategies to feed future generations. Over the last few decades, many 
breeding programs have focused on the improvement of major traits for 
crop varieties such as yield, disease resistance, and resistance to other 
environmental constraints (Cuenca et al., 2013). Nowadays, breeding 
methodologies employ innovative digital tools such as artificial intelligence, 
bioinformatics, genomics, and statistical advances to enable the speedy 
creation of cultivars (Vardi et al., 2008). A fundamental condition to new 
breeding methods such as genomic selection is the development of a training 
population with an exceedingly high genetic diversity (Aleza et al., 2012). 
Therefore, carrying out large-scale plant phenotyping experiments is 
critical; the fast and precise collection of phenotypic data is especially 
important to explore the association between genotypic and phenotypic 
information. 

In Africa, sorghum is the second major staple cereal and constitutes the 
only viable food for the most food-insecure populations of the world
(Hariprasanna & Rakshit, 2016). However, its genetic improvement relies 
mostly on manual phenotyping. Traditional phenotyping techniques are 
often expensive, labor-intensive, and time-consuming (Cruz et al., 2017;
Luvisi et al., 2016). Using unmanned aerial vehicles (UAV) equipped with 
sensors has recently been considered as a cost-effective alternative tool 
for rapid, accurate, non-destructive, and noninvasive high-throughput 
phenotyping (Pajares, 2015). However, the measurements of plant traits using 
UAVs are carried out through vegetation indices obtained by image 
processing. Many studies demonstrated the efficient use of UAV to monitor 
plant biomass (Lussem et al., 2019), crop health status, nitrogen content, 

174  |  UAV Method Based on Multispectral Imaging for Field Phenotyping



plant water need estimates (Romero et al., 2018), or even to help in the 
detection of plant diseases (Abdulridha et al., 2018). Unlike satellites, UAVs 
represent a relatively low-cost method for image acquisition with high 
resolution and they are increasingly used for agricultural applications. Hunt 
et al. (2010) established a good correlation between leaf area index (LAI) and 
normalized difference vegetation index (NDVI) by using UAV multispectral 
imaging for crop monitoring. Ribera et al. (2018) deployed UAV trichromatic 
imagery to count the number of leaves in sorghum. Nebiker et al. (2008) 
reported the successful application of UAV imagery to evaluate grapevine 
crop health. 

The use of high-performance sensors for plant imaging has resulted in 
the generation of enormous amounts of image data that required processing 
to extract useful information. Here, we present our full image processing 
pipeline to store, preprocess, and analyze sorghum UAV images in a holistic 
way to extract the spectral indices that correlate the most with structural 
and physiological variables measured. The pipeline provides valuable 
information about key priority traits for breeding programs, and it can be 
used as a decision support tool. 

UAV Image Data Acquisition 

For this study, images were collected with a hexacopter UAV 
(FeHexaCopterV2, MikroKopter, Germany) at an altitude of 50 m and a 
constant speed of 4.5 m.s-1. This UAV can fly by either remote control or 
autonomously with Global Positioning Systems. The UAV’s support software 
(MikroKopter tools, MikroKopter, Germany) implements a flight plan, 
monitors the flight, and allows information such as drone position. An
Airphen multispectral camera (Hyphen, France) with 6 spectral bands (blue = 
450 nm, green = 532 nm, green-edge = 568 nm; red = 675 nm; red-edge = 730 
nm; NIR = 850 nm) combined with a thermal infrared camera (Flir Ltd, USA) 
was used. In addition, a RGB SONY ILCE-6000 digital camera (Sony, Japan) 
with a 6000 x 4000-pixel sensor equipped with a lens of 60 mm focal length 
was used. To reduce the effects of ambient light conditions, we limited data 
capturing missions to clear and cloudless days. 

Both the RGB and the Airphen multispectral cameras acquired images 
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continuously at 1 Hz frequency. The Hexacopter tools were used to design 
the flight plan so that it covered all the area and ensured 80% of overlapping 
both across and along the track. We used a 2.5 m² carpet reference panel 
placed horizontally on the ground at 1.5 times the height of the closest 
plants, as recommended by Ahmad et al. (2021). Besides, 6 circular panels 
of 50 cm diameter were placed in the 4 corners of the field as ground 
control points (GCPs) (Kääb et al., 2014). The exact positions of these GCPs 
were defined with GPS GNSS (Global Navigation Satellite System) equipment, 
providing an accuracy of 2 cm. 

Regarding phenotyping in RGB, we calculated proxies from the literature 
such as the Brightness Index, the Soil Color Index, etc. These indices were 
shown to have a positive correlation with measured traits. 

Figure 1 

Figure 1 – Field-based UAV Aerial Phenotyping Platform and Methodology Used to 
Extract the Multispectral Image 

Note. MS is the multispectral camera, LWIR is the thermal camera, and RGB 
is the red-green-blue camera. D1 to D6 are the flight dates. 

Flight dates are optimized according to the traits of the measured plants. 
Some traits cannot be measured at certain stages of plant development. For 
example, if the leaf area is 2 cm, the determination of biomass becomes 
extremely difficult. Thus, the flight date D1 is used to create a Digital 
Elevation Model (DEM), which is the field’s reference height (h0). Flight dates 
D2-D3-D4 are used to measure a plant’s agro-morphological traits, such 
as biomass, Leaf Area Index (LAI), and plant height. Flight dates D5-D6 are 
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used to assess varieties’ performances at the maturity stage (yield estimation 
and panicle number). Specific flights are carried out for the characterization 
of stresses including water, nitrogen, and thermal stresses. The thermal
imaging camera is used more during stress characterization to calculate 
temperature distribution according to cereal varieties. 

After the flights, images were uploaded to Agisoft software (Agisoft LLC, 
St. Petersburg, Russia) to create a geo-referenced multi-layer orthoimage 
of the flight for each date. A subsample of microplots was designed in both 
sites and georeferenced using FieldImageR package (Matias et al., 2020). The 
plot-level reflectance data and vegetation indices were calculated using R 
(Hijmans & van Etten, 2016). The entire process of spectral index extraction 
is fully automated, and the outputs are directly obtained in a CSV file. 

Workflow of the Image Processing Pipeline 

1. Generation of the Orthomosaic Image 

All the image datasets collected from every flying date for both cameras were 
processed separately to generate mosaics of the entire plantation. The RGB 
imagery was assembled using Agisoft PhotoScan software fully automated 
scripting API by applying three consecutive phases of superimposed image 
alignment, field geometry construction, orthoimage, point cloud, and dense 
surface model (DSM) generation using structure-from-motion algorithms. 
The final ortho-product is a three-band orthomosaic. Multispectral images 
were assembled using Agisoft PhotoScan and the multi-band imaging plugin
Airphen. The final product was a six-band orthomosaic and a DSM. 

2. Radiometric Calibration 

Depending on the lighting conditions, sensor configuration, sun position, 
and measurement angle, the luminance measured by the multispectral 
sensor occasionally differed from the energy reflected by the crop due to 
radiometric distortions. To ensure radiometric consistency between the 
different drone images, radiometric distortions and inconsistencies were 
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accurately processed for subsequent analysis of the images. Radiometric 
correction consists of converting a digital number of multispectral images 
into reflectance by absolute or relative calibration (Liang, 2008). In this 
pipeline, we calibrated the reflectance using a reference surface: the carpet 
located on the ground at a distance from the plot which was imaged at 
each flight, and the radiometric calibration tool (Agisoft PhotoScan and the
Airphen plugin) which used known reflectance indices of the carpet from 
laboratory measurements. 

3. Geometric Correction 

Due to the drone’s speed, altitude, and the angle of sensor view, geometric 
distortions are possible. As a result, the pixels recorded in the different 
images might not project onto the same geographical grid due to these 
distortions. Thus, corrections must be made to increase the spatial 
coincidence between the images. Firstly, we carried out geometric 
correction through multiband co-registration to modify and adjust the 
image coordinate system to decrease geometric distortions and make pixels 
in different pictures coincide to the similar map grid points. The co-
registration process is simply based on internal GPS from raw image 
metadata. Ortho-rectification was then completed using the GCPs to 
increase the accuracy of the generated orthomosaic. 

4. Extraction of Spectral Vegetation Indices 

Automated scripts were developed to load RGB and MS orthoimages. Then 
we used RGB orthomosaic to segment and separate sorghum plants from 
the soil background by converting mosaics from RGB to HSV colour space 
and by performing thresholding operations over green pixels to create a 
sorghum mask. Escadafal’s (1993) modified HUE index was used for effective 
soil masking of both MS and RGB images. Figure 2 illustrates the output of 
the soil masking operation. This process is important for reducing bias since 
the spectral signature of soil mixed with vegetation layers tend to introduce 
strong outliers. 
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Figure 2 

Figure 2 – Image Obtained After Using the Soil Masking Technique to Extract Both Soil 
and Vegetation Layers with the Traditional HUE Index Thresholding 

We extracted calibrated reflectance in red, green, and NIR bands using 
that mask raster. Modified scripts from RSToolbox (Leutner et al., 2017) and
FieldImageR (Matias et al., 2020) libraries were used to derive the following 
well-known spectral indices for crop physiology and biomass monitoring: 
NDVI, GNDVI, MSAVI2, RVI, CTVI, and NDWI (Table 1). In total, automated 
extraction of 15 proxies with 7 spectral bands from drone imagery was 
operated. In addition, the GPS coordinates of each plot were extracted using 
the QGIS geographic information system software (Menke et al., 2016) and 
exported as spatial vector data. The extraction of the average values of each 
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vegetation index was performed according to the GPS coordinates extracted 
on QGIS using the features of the sf and raster packages. 

Table 1 
Popular Vegetation Indices are Used in Drone Phenotyping with the RGB Camera. 

Vegetation index Formula 

Normalized Ratio Vegetation Index 

Normalized Difference Water Index 

Ratio Vegetation Index 

Green Leaf Index 

Green Normalized Difference Vegetation Index 

Normalized Difference Vegetation Index 

Visible Atmospherically Resistant Index 

Soil Color Index 

Brightness Index 

Spectral Slope Saturation Index 

Overall Hue Index 

Difference Vegetation Index 

Corrected Transformed Vegetation Index 

Figure 3 shows different combinations of orthomosaic bands from the 
multispectral sensor on field trials of water-stressed and irrigated plots. For 
each combination, important information can be deduced as parts of the 
test subjected to water stress or experimental units that are less developed. 
Figure 3(c) is an overlay of the shapefile of the experimental units with
the generated orthomosaic. On each experimental unit, vegetation indices 
were calculated and further analysis on the spatial modelling on crop 
characteristics was conducted. 
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Figure 3 

Figure 3 – Outputs of an RGB Image Showing Spatial Variation Based on Some 
Vegetation Indices (VIs) on Soil-free Orthomosaic Data 

Note. 3(a) is a True-Color map, while 3(d) is a false-color. 3(c) shows the 
shapefile generated from each variety. 

5. Regression Analysis 

Two approaches have been developed in our image processing and analysis 
pipeline. The first approach uses statistical modelling and machine learning 
regression to link the agronomic traits to vegetation indices, especially the 
NDVI. Nevertheless, more than 15 other vegetation indices have been 
determined including the Soil Color Index (CSI), the Simple Ratio Vegetation 
Index (SRI), the Green Normalized Difference Vegetation Index (GNDVI), and 
the Modified Soil Adjusted Vegetation Index (MSAVI). The leaf area index 
calibrated with data from previous sorghum tests with measurements of 
NDVI derived from the drone images was estimated according to the 
statistical model proposed by Gano et al. (2021). An exponential regression 
law with a coefficient variation of 0.92 was used to estimate the LAI. 

Figure 4 illustrates the spatial-temporal evolution of biomass, NDVI, and 
LAI of plants grown under water stress and non-stress conditions. This time 
series plot allowed us to make a rapid survey of how crops are sensitive to 
stress conditions. It appears from the figure that biomass, as well as LAI, 
shows a similar trend as the NDVI. This correlation is also noted for other 
vegetation indices such as GNDVI. Most importantly, water stress decreased 
the biomass of all the three varieties tested. However, the magnitude of this 
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decrease was not homogeneous across varieties. For example, the variety V3 
stands better water stress. 

Figure 4 

Figure 4 – Time Series Analysis of Plant Traits (biomass, NDVI, LAI) in 3 Sorghum 
Varieties (V1-V3) at Different Dates of Crop Cycle 

In this report, the regression models developed showed an excellent 
correlation between LAI and vegetation indices such as NDVI, CTVI, and 
GNDVI (0.76 < R2 < 0.96). Figure 5 illustrates regression analysis and indirect 
estimation of the LAI. The logarithmic transformation of the LAI shows a 
linear correlation between the estimated vegetation indices. These indices 
also have a strong linear dependence of the order of 0.99. From a modeling 
point of view using one of the indices would give the same result in terms of 
LAI prediction. 
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Figure 5 

Figure 5 – Regression Analysis of Linear Dependency Between Drone Vegetation Index & 
in Situ LAI 

For the second approach, we used a densely connected neural network to 
estimate the LAI based on drone vegetation indices and the RGB bands. 
Our network consisted of four hidden layers with the succession of two 
drop-out and batch normalization layers. The hidden layers consisted of 128, 
64, 128, and 11 units respectively. The drop-out rate was 40% (first layer)
and 30% (second layer). We used the Mean Absolute Error as metrics and 
the Mean Standard Error as loss. For the optimizer, the Gradient Descent 
with the Root Mean Squared Propagation was used. Deep learning with 
the above-mentioned vegetation indices showed a better linear relationship 
with an error of 2% and a coefficient of determination of 0.99. However, 
deep learning with RGB optical bands produced a 10% error with an R2 of 0.7. 
Figure 6 shows the deep learning regression model for LAI estimation with 
the deep learning model architecture and the output of the loss function for 
two different regression models (drone RGB and multispectral). 
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Figure 6 

Figure 6 – A Densely Connected Neural Network for LAI Estimation 

The use of statistical regression or deep learning approaches depends on 
the volume of field data and the experimental data acquisition protocol. 
However, statistical regression models are more likely to produce bias and 
prediction errors compared to deep learning models. It is important to note 
that for large-scale phenotyping, it is much easier to implement statistical 
models. 

Conclusion 

In this study, we evaluated the use of multispectral UAV imagery coupled 
with a fully automated image processing pipeline for the phenotyping of 
cereal crops. To optimize the computation, we developed 6 proxies from 
the RGB camera and around 10 other proxies for the multispectral camera. 
The generation of the shapefile from the experiments is now simplified and 
allows an easier extraction of the vegetation indices. However, due to the 
high resolution of the images, the computation time is still long with the 
processors at our disposal. With this process, we were able to accurately 
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estimate agro-morphological traits using machine learning regression or 
deep learning architecture. 
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