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ABSTRACT In the context of Epidemic Intelligence, many Event-Based Surveillance (EBS) systems have
been proposed in the literature to promote the early identification and characterization of potential health
threats from online sources of any nature. Each EBS system has its own surveillance definitions and priorities,
therefore this makes the task of selecting the most appropriate EBS system for a given situation a challenge
for end-users. In this work, we propose a new evaluation framework to address this issue. It first transforms
the raw input epidemiological event data into a set of normalized events with multi-granularity, then conducts
a descriptive retrospective analysis based on four evaluation objectives: spatial, temporal, thematic and
source analysis.We illustrate its relevance by applying it to anAvian Influenza dataset collected by a selection
of EBS systems, and show how our framework allows identifying their strengths and drawbacks in terms of
epidemic surveillance.

INDEX TERMS Epidemic intelligence, event-based surveillance, retrospective analysis.

I. INTRODUCTION
At least 60% of infectious human diseases originated in ani-
mals.1 The emergence and spread of any animal infectious
disease, such as Avian Influenza, has serious consequences
for animal health and a substantial socio-economic impact for
agriculture. For instance, the 2021–2022 season have experi-
enced the largest observed highly pathogenic avian influenza
(HPAI) cases in Europe so far, with a total of 2,467 outbreaks
in poultry, 3,573 HPAI events in wild birds, and 48 million
birds culled in the affected establishments.2 Due to this highly
contagious nature, it is critical to monitor new and emergent
infectious animal diseases. To this aim, epidemic intelligence
has been used to remedy this public health issue.

Traditionally, a public health surveillance system has
long used Indicator-Based Surveillance (IBS) for a global
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epidemic monitoring approach, the well-known ones being
the World Organisation for Animal Health (WOAH)3 and
the Food and Agriculture Organization of the United Nations
(FAO).4 This type of surveillance consists in collecting struc-
tured and verified official health threats, hereafter referred to
as epidemiological events (or events for short), through rou-
tine national surveillance systems and public health authori-
ties. However, IBS typically undergoes some reporting delay
in the detection of these data, as it relies only on laboratory
confirmed animal cases. To improve this timeliness issue,
several Event-Based Surveillance (EBS) systems have been
proposed with the aim of promoting the early identification
and characterization of potential epidemiological events from
online sources of any nature, including online news out-
lets and social media, thanks to the recent developments in
internet and digital technologies [1]. Recently, several EBS
platforms have shown their effectiveness by detecting the first
signals of emerging infectious disease outbreaks in a timely

3www.woah.org
4www.fao.org
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manner and providing alerts within previously unaffected
areas (e.g. [2]).

In the literature, there exist two categories of EBS sys-
tems by their functioning nature: 1) moderated (i.e. human-
curated) and 2) automated. The first type of systems are
human-curated ones that rely on pure manual data collec-
tion and analysis. The data can be provided by official or
unofficial data sources, but in any case their accuracy is
manually assessed by moderators. The Program for Moni-
toring Emerging Diseases (ProMED) is such an example of
a moderated system [3]. The second type of systems dif-
fers from the first one in that it includes in some or all of
their pipelines automated text-mining based steps for data
collection and processing. Furthermore, automated systems
are also categorized into semi- and fully-automated systems.
The main difference between them is that the former includes
a dedicated team of curators to assess and verify the outputs,
whereas the latter does not. An example of semi-automated
system is the Canadian Public Health Agency Global Public
Health Intelligence Network (GPHIN) [4]. Likewise, fully-
automated systems include BioCaster [5], [6], HealthMap [7],
MediSys [8], PADI-web [9], DANIEL [10], Sentinel [11] and
Epitweetr [12].

Each EBS system has its own priorities (e.g. geography,
disease) and surveillance definitions (e.g. collected epidemi-
ological information), so there is no such candidate as a best
EBS system, that would fit all situations. However, due to
the profusion of available EBS systems, selecting the most
appropriate one(s) for an effective surveillance system of a
given situation is a challenge for end-users. Some existing
works try to compare them according to the guideline of
the Centers for Disease Control and Prevention (CDC) [13],
[14], but they either focus only on few evaluation aspects
or require human resources for manual assessment, which
brings some cost to practitioners. Furthermore, there exist
many other studies conducting a retrospective analysis using
surveillance dataset, without any objective of comparison.
These works deal with additional evaluation points that are
not considered in the CDC’s guideline, which would bring
valuable additional information for evaluation purposes.

In this work, we propose a new automatic evaluation
framework to solve all these issues. It is based on four
evaluation objectives: 1) spatial analysis (how the events are
geographically distributed), 2) temporal analysis (how the
events evolve over time and what temporal aspects charac-
terize it), 3) thematic entity analysis (what thematic entities
are extracted from the events and how they are related to
spatio-temporal analysis) and 4) news outlet analysis (what
news sources play key role in epidemiological information
dissemination). For each aspect, we compare the obtained
results with a reference gold standard database, along with
an appropriate visualization for end-users. All these anal-
yses aim to highlight the strengths and drawbacks of the
considered EBS systems in terms of epidemic surveillance.
We illustrate its relevance by applying it to a selection of EBS
systems. Our main contribution is essentially threefold. First,

we propose a generic evaluation framework, which is not tied
to any specific disease, geographical region, or surveillance
definition, so it can be applied to any situation, as long as we
have access to a gold standard database. Second, we model
the studied epidemiological events with multi-granularity in
order to better understand the spatial and temporal evolution
of disease events, as well as their thematic characterization.
Third, we take into consideration in our framework the fact
that there exist some gaps between EBS systems in dis-
ease detection and collection, an issue so-called reporting
bias [15], [16].
The rest of the article is organized as follows. First,

in Section II, we review the literature on EBS systems, focus-
ing on different evaluation strategies. Next, in Section III,
we introduce our evaluation framework designed to study
and compare EBS systems and their outputs. We put it into
practice on a selection of EBS systems in Section IV and
discuss these results in SectionV. Finally, we review ourmain
findings in Section VI, and identify some perspectives for our
work.

II. RELATED WORK
In this section, we review the existing evaluation strategies for
EBS systems. The performance assessment of these systems
are traditionally performed according to the CDC’s guide-
line, which aims at understanding the internal and external
performances of EBS systems [13], [14]. Nevertheless, most
of these evaluation metrics are more in line with an end-
user perspective, which require human resource for manual
assessment.

On the other hand, there exist many studies which conduct
a retrospective analysis using surveillance dataset, i.e. the
output of an IBS/EBS system, without performing any com-
parative study. These works deal with additional evaluation
points that are not considered in the traditional evaluation
methods [14], [17]. In particular, we are interested in those
works performing a descriptive analysis, rather than predic-
tive analysis, which is in line with our work. For this reason,
we widen the scope of our review with these works.

In the following, we overview the existing works in four
parts: 1) Spatial (Section II-1), 2) temporal (Section II-2),
3) thematic (Section II-3) and 4) source (Section II-4) dimen-
sions. Note that although the surveillance data is naturally
spatio-temporal, we review each dimension separately for the
sake of clarity.

1) SPATIAL DIMENSION
The spatial dimension is the most studied dimension in the
existing works. We summarize these works in two aspects:
1) geographic coverage and 2) hotspot analysis. The most
widespread evaluation analysis is the assessment of geo-
graphic coverage of the surveillance data, and it is often time-
invariant. This geographic coverage is calculated for either
the whole world [15], [18], [19], [20] or some particular
regions/countries [21]. Hence, this analysis allows showing to
what degree the locations (e.g. countries) are covered by the
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data at hand.Moreover, it can be used tomanually identify the
events appearing in an unusual geographic zone in the context
of early warning detection [19].

Another analysis for the spatial dimension is hotspot anal-
ysis. The hotspots are the areas, where a substantial number
of events are concentrated over time. The task of identify-
ing the hotspots is also referred to as outbreak detection in
the literature of Epidemic Intelligence. Such hotspots are
usually found through three different approaches. The first
one is the exponentially weighted average method [7] by
assigning large values to more recent alerts coming from
multiple sources through the decay parameter of the expo-
nential weight. The second one is the spatial auto-correlation
analysis, which statistically identify the hotspots [22], [23],
[24], [25]. The most used technics are the Moran’s I [26] and
the Getis-Ord Gi⋆ [27]. The last approach is spatio-temporal
clustering analysis, which aims at determining regions where
the number of events is significantly higher than expected.
Space-time scan statistics [28] and ST-DBSCAN [29] are two
such well-known clustering methods.

In our work, we only include the geographic coverage-
based assessment. This is because we want to evaluate the
epidemiological information collected by EBS systems at
fine-grained level. This is only possible at event level, rather
than at outbreak level. Nonetheless, as in hotspot analysis,
we take the temporal aspect into account by adapting the
traditional calculation of geographic coverage.

2) TEMPORAL DIMENSION
The temporal dimension is another important aspect in a
retrospective analysis of surveillance data. Since our goal
is to perform a descriptive analysis, in the following we
focus only on it with two aspects: qualitative vs. quantitative
assessments.

There are two main approaches for the qualitative assess-
ments to describe the temporal evolution of the events.
The most widespread approach is trend analysis to capture
underlying temporal features in time-series event data. This
includes methods that can identify discriminatory informa-
tion about a particular time-series data (e.g., shapelets [30]),
those that look for temporally frequent sub-sequences that
occur in a majority of time-series (e.g., temporal pat-
terns [31])), and those that investigate on seasonal [32] and
periodic [33] effects. The second approach is to identify
anomalous cases in a time-series [34]. These anomalous cases
can represent either the locations having significantly high
infection cases (e.g. outbreaks) [11] or the locations that have
remarkably different infection history than neighbor locations
(e.g. potential early signals) [19].

Another evaluation analysis is through the quantitative
assessments. The most widespread analysis is using the con-
cept timeliness in order to evaluate how timely the events
are detected by an EBS system [13], [14], [35], [36], [37],
[38]. If an EBS system reports the events in a timely manner,
this would allow public authorities to mitigate potentially
dangerous situations as soon as possible. Another approach

for quantitative assessments aims at evaluating how two time
series data are in a similar trend. This evaluation is usu-
ally done with the correlation analysis between the daily
or weekly event time series derived from IBS/EBS sys-
tems using Pearson’s correlation coefficients [39]. The final
approach relies on the concept of transmissibility. It is used
to quantify how easily a disease can spread through a popu-
lation, i.e. how rapidly an outbreak is growing or declining.
It can be measured by estimating the basic [40], effective or
time-varying reproduction numbers [41], [42], [43].

Regarding the connection with our work, we include a
qualitative assessment based on frequent temporal events
in time-series data, and we perform it with an appropriate
frequent spatio-temporal pattern mining method. Moreover,
we include a quantitative assessment based on timeliness.
However, we do not include the other works presented above
for the following reasons. First, EBS systems rely on unof-
ficial data sources, therefore false alerts might be introduced
in the data. This requires to handle it with a specific method,
which is out of scope in this work. Second, each EBS sys-
tem collects epidemiological data of different size, and their
differences can be substantial. In which case, calculating the
correlation coefficient of two time series data, each associated
with a different source, can be biased towards the most pop-
ulated source. Finally, estimating the transmissibility and the
reproduction number are disease-dependent. This requires to
develop a different model for each disease, which is also out
of scope in this work.

3) THEMATIC DIMENSION
The thematic dimension is not always well elaborated in
the existing surveillance systems. This is probably because
the collected events are characterized by spatio-temporal
attributes in practice, rather than their thematic attributes
(e.g. disease and host) [44]. Therefore, to the best of our
knowledge, there exist only a handful of works for evaluating
the thematic dimension of the existing EBS systems.

All the existing works in the literature are interested only
in the ranking of thematic entities. This ranking can be
obtained with the frequency [19], a statistical measure (e.g.
F-measure [9], [45], chi-square [46]) and a constraint based
objective (e.g. temporal periodicity [47]). In all these works,
there are two factors, which directly affect the ranking results.
The first one is related to the multidimensionality nature of
the elements, for which the ranking is computed. In case of
two ormore dimensions, this corresponds to the identification
of co-occurences in the same events. The second factor is
related to the normalization of thematic entities, i.e. how they
are individually expressed for comparison purposes. This nor-
malization step consists in transforming a raw text into one of
well-defined taxonomy classes, which results in hierarchical
information. In the literature, most of the works focus only
on one [6] or a few [9], [44] hierarchical levels.

In this work, we also include the assessment based on
the ranking of thematic entities. We use the combina-
tion of all mentioned approaches: frequent pattern mining,
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F-measure [9], [45] and temporal periodicity [47]. Moreover,
the thematic elements are normalized with multi-granularity.
Finally, we take temporal periodicity into account in the
ranking results.

4) SOURCE DIMENSION
All EBS systems partially or completely rely on various
online news and press agencies, news outlets for short, for
ensuring their monitoring of emerging infectious diseases
across the world. Nevertheless, there are not enough studies
that characterize and assess the news sources involved in
EBS systems. The existing works study these sources at two
different levels: news aggregator and news outlet levels.

On the one hand, the first level aims to assess the degree
to which news aggregators contribute to the news collected
by EBS systems. Lyon et al. [18] show based on the main
EBS systems that themost contribution is provided byGoogle
News, then to a lesser extent ProMED, MeltWater and Baidu.
On the other hand, the second level focuses on how countries
are covered by the news outlets at hand. References [13]
and [48] show that international news outlets do not capture
well news infection events occurring in some less-developed
regions, which results in a reporting bias. In which case, local
news outlets performs better, because these events are mostly
reported in local television or recorded in local print media
in local or regional languages. Finally, the news aggregators
and news outlets are inherently related and dependent to each
other, if an EBS system collects its news data from news
aggregators. The authors of [49] analyze this aspect with
a network analysis approach by describing how outbreak-
related information disseminates from a news outlet to a news
aggregator.

In this work, we only analyze the publishing sources at
news outlet level. This is because not all EBS systems rely
on multiple news aggregators (e.g. PADI-web). Unlike the
existing works, we rely on a ranking based assessment of
news outlets with two different objectives: importance and
timely detection.

III. EVALUATION FRAMEWORK
In this section, we describe the framework that we propose
to evaluate and compare a number of EBS systems based on
the epidemiological data that they collect. Our goal here is to
highlight the strengths and drawbacks of the considered EBS
systems in terms of epidemic surveillance. Put differently,
we want to know what we lose when we monitor a number
of high-threat diseases with a single EBS platform, while
there might be some different epidemiological information
captured by other EBS systems.

To this aim, we propose a two-step pipeline approach,
which is illustrated in Figure 1. The input of the pipeline is a
set of unnormalized events, accompanied by the associated
news documents. Since each EBS system can collect and
extract epidemiological information from online sources in
a different way, the first step is to extract the normalized
events from the input. We detail this step in the Appendix

(Section II in the Appendix), for space matters. Then, the
second step consists in performing a retrospective analysis
of these events with four objectives: 1) spatial, 2) temporal,
3) thematic and 4) source dimensions. Each dimension allows
answering a question that naturally arises in our analysis,
and it is implemented through a well-known existing tool
deemed appropriate for this purpose. Our methodological
contribution is found in the combination of these tools. In the
rest of this section, we describe the different steps of our
framework in detail.

In the following, we first describe in Section III-A.
how we define an event in our context, as well as event
related definitions and notations. Second, we explain how
to identify common events across IBS/EBS platforms in
an automatic manner, a task that we call event matching
(Section III-B). Then, we evaluate an EBS system based on
the spatial (Section III-C), temporal (Section III-D), thematic
(Section III-E) and source (Section III-F) dimensions. Except
the last dimension, these evaluations are always performed
with respect to a gold standard database, which is supposed
to contain all events confirmed and notified by national and
supranational authorities. Moreover, we take into consider-
ation the fact that there exist some gaps between EBS sys-
tems in disease detection and collection, an issue so-called
reporting bias [15], [16]. To do so, our evaluation relies on
either ranking results (see Section III-A in the Appendix) or
the concept of representativeness (e.g. Section III-C).

A. DEFINITIONS AND NOTATIONS RELATED TO EVENTS
An event definition depends on the application at hand, and
there is no unified standard. In the literature, an event is
minimally defined as a disease-location pair, and associated
with an infection time (or time period) [9], [10]. Although
this minimal definition shows to what degree the locations
are covered by the data at hand over time for a particular
disease, the other works expand this definition with 1) the
news outlets by which news documents are found [9], [18]
and 2) thematic information (e.g. disease serotype, hosts,
symptoms) [4], [5], [6], [9], [11], [50]. Although the extracted
thematic information can be very rich, depending on a system,
relating thematic entities to the events can be challenging.
This is because there can be multiple events in the same news
document, even in the same sentence. Based on these previous
event definitions, we define an event throughout this work
as the detection of the virus for a specific host at a specific
date and in a specific location.Moreover, we also consider the
fact that an event is reported by a news outlet. We illustrate
in Table 1 how we define an event from the following text:
‘‘A highly pathogenic strain of bird flu (H7N9) has been
detected in two captive birds of prey at a private property in
Skelmersdale on March 31’’.

Next, we introduce the definitions and notations related
to events. An event database E is a finite set of events

5www.liverpoolecho.co.uk/news/liverpool-news/highly-pathogenic-bird-
flu-detected-20309813.
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FIGURE 1. Workflow of our evaluation framework.

TABLE 1. The corresponding event for the text reported from Liverpool
Echo5: ‘‘A highly pathogenic strain of bird flu (H7N9) has been detected
in two captive birds of prey at a private property in Skelmersdale on
March 31’’.

collected by an EBS system. Let D = {D1, . . .Dn} be a
set of dimensions to define the events in E . Every event is
expressed as a tuple e = (d1, . . . , dn), where we call di
event attribute for every i = 1, . . . , n. Concretely, in this
work, the set D contains five dimensions, and it is defined
as {DZ ,DT ,DD,DH ,DS}. The dimension DZ is the loca-
tion, where disease events have been occurred, and they are
expressed as polygons (e.g. country or city polygons). The
dimension DT is the notification date of events and it is a
totally ordered domain. Moreover, the dimension DD is the
disease which infects a number of hosts. The dimension DH
is the host who have caught the viruses of a specific disease.
Finally, the dimension DS is the news outlet publishing a
given epidemiological event.

Each dimension Di is associated with a domain of (dis-
crete) values, denoted by dom(Di). Given an event database
E over D, for every i = 1, . . . , n, we denote by DomE (Di)
(or simply Dom(Di) if E is clear from the context), the active
domain of Di in E , which corresponds to the set of all values
of Dom(Di) occurring in E . In this work, we consider only
values in active domains. Moreover, we assume that each
dimension Di ∈ D is associated with a hierarchy, denoted by
Hi, in order to consider different granularity levels of domain
values. Every hierarchyHi is a tree whose nodes are elements
of Dom(Di) and whose root is ALLi. For instance, for the
spatial dimension DZ , ALLZ corresponds to the whole world
containing all existing locations. We illustrate in Table 2 the
hierarchical representation of the event from Table 1.
Moreover, we sometimes need to fix the spatial and tem-

poral scales (i.e. hierarchical levels) of an event database
E . This operation amounts to discretize the dimensions DZ
and DT over a set Z of geographic zones and a set T of
time intervals, depending on the spatial and temporal scales.
We denote this fixed scaled event database by EHZ∼lZ

HT∼lT (E lZlT
for short), where lZ (resp. lY ) represents a spatial (resp.
temporal) scale in HZ (resp. HT ). When this fixed scaled

TABLE 2. Hierarchical event representation for the event illustrated in
Table 1.

database is ordered by time, then it is defined as E lZlT =

{(t1,X1), (t2,X2), . . . , (t|T |,X|T |)}, where |T | represents the
size of database, Xj ⊆ Z is a set of spatial entities and
tj represents a time interval for which Xj ∈ Z occurs in
E lZlT . Note that if an event does not have precise information
with respect to lZ and lT (e.g. an event occurring in France,
while lZ = city), we do not include it in E lZlT . We illus-
trate a fixed scale event database E lZlT with an example in
Table 3. This example relies on a toy fictional event database,
in which we fix the spatial and temporal scales to country
and week, respectively. Each row in Table 3 includes the
countries reporting at least one epidemiological event for
a given weekly time interval. For instance, we observe the
first disease cases in France, Italy, China and India during
the first week. Then, in the second week the viruses spread
over neighbor countries, which are Spain, India and Nepal.
Finally, it is also possible to restrain all literal values of a
dimensionDi, i.e.DomE (Di), with a fixed spatial or temporal
scale. For a given spatial (resp. temporal) scale, we denote it
as DomE (Di, lZ ) (resp. DomE (Di, lT )).

B. EVENT MATCHING
In this section, our goal is to identify common events between
two event databases in an automatic manner, which is not a
trivial task. We propose here an approximation scheme by
modeling this task as an assignment problem, also known as
maximum weighted bipartite matching problem, as already
done in the literature (e.g. [51]). In the end, we obtain a set of
‘‘putatively’’ associated events between two event databases.
Let E1 (resp. E2) be two event databases associated

with IBS or EBS systems, containing NE1 and NE2 events,
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TABLE 3. Illustrative example of E
lZ
lT

, where lZ = country and lT = week .
The first column describe the time intervals, for which epidemiological
events occur, and the second column indicates the countries, in which
epidemiological events occur. Note that E

lZ
lT

contains only the country
information, even though more specific spatial information can be
present in the data.

respectively. Also, we assume NE1 ≤ NE2 without loss of
generality. Moreover, let S be theNE1 × NE2 similarity matrix
of E1 and E2. The term Sij, with 1 ≤ i ≤ NE1 and 1 ≤ j ≤ NE2 ,
represents the similarity score between events ei and ej and it
is calculated as described in Section I of the Appendix. Then,
we look for a bijection f : {1, 2, . . . ,NE1} → {1, 2, . . . ,NE2}
such that the objective is to maximize the similarity between
E1 and E2, as defined in Equation 1.

Max

NE1∑
i=1

Sif (i). (1)

Since this problem can be modelled as an assign-
ment or a maximum weighted bipartite matching problem,
it can be solved in various ways. One of them is through
the well-known Hungarian algorithm, whose complexity
is O(n3) [52].

Finally, in the solution of the assignment problem, some
events might be assigned to other events with negative or
weak positive similarity scores. Therefore, we perform a
post-processing by removing the assignment results, whose
similarity scores are lower than some threshold value.

C. SPATIAL DIMENSION
Our evaluation strategy for the spatial dimension relies on
the concept representativeness. Barboza et al. [14] define this
concept as the ability of describing accurately the distribu-
tion of events in terms of place, time and host. Particularly,
geographic representativeness constitutes an important aspect
in Epidemic Intelligence. For this reason, we propose to
compare the spatial dimension of the events collected by an
EBS system through geographic representativeness by taking
the temporal aspect into account. We call it spatio-temporal
representativeness, and it allows measuring how well the
event database E of an EBS system represents geographic
zones (e.g. country, regions) in terms of the events found in
a gold standard database ER, for a given time period. In the
end, the obtained results enable us to know to what degree
geographic zones are represented by E .

In the definition of the spatio-temporal representative-
ness, we say that an EBS system represents well a specific

geographic zone for a given time interval, if it finds at least
one event in ER. For this reason, its calculation requires fixing
the spatial and temporal scales of the events in E (resp. ER)
with lZ and lT , i.e. E lZlT (resp. ERlZ

lT ). Since there can be some
reporting delay between the events of E and ER, we also
consider in this calculation the previous (resp. next) time
interval in order not to penalize an EBS system. For a given
geographic zone, we perform this calculation for all the time
intervals, and then we take their average to obtain a final
score. This score is in the range [0, 1], where the score of 0
(resp. 1) indicates that E lZlT never (resp. always) finds an event
in ERlZ

lT for a given geographic zone.
For space matters, we explain in the Appendix how we

calculate the spatio-temporal representativeness score of an
event database E with respect to a gold standard database ER
(Section III-B in the Appendix).

D. TEMPORAL DIMENSION
For the temporal dimension, we include two evaluation
assessments. The first one is a quantitative assessment based
on the concept timeliness (Section III-D1). The second one
is a qualitative assessment related to the consistent periodic
behavior of the events (Section III-D2).

1) TIMELINESS
We start with the first comparison, which is based on the con-
cept timeliness [13], [14], [35], [36], [38]. Barboza et al. [14]
define this concept as the ability of identifying disease events
in a timeframe enabling utilization of the information by
decision makers to mitigate potentially dangerous situations
as soon as possible.

In the literature, timeliness is measured as the time dif-
ference between the publication date of an event in an EBS
system and that of the same event in a gold-standard database.
Nevertheless, we model it with an exponential decay function
in order to obtain a normalized score, as proposed in [53],
[54], and [55]. Its calculation for an event database E of
an EBS system is performed with respect to a gold stan-
dard database ER. This requires to know the binding of the
events between E and ER, which is unknown in advance.
To estimate such a binding we rely on the method described
in Section III-B. In this method, for a given event e ∈ E ,
we define a bijective function f (e, E), which returns the puta-
tively associated event e′ in ER with e ̸= e′. Then, when we
repeat it for each event in E , and we obtain the set E of events
with E ⊆ E , which represents a subset of events having the
correspondence with the events in ER. Note that not all events
in E has a binding in ER. In the end, the obtained score is in
the range [0, 1], where the score of 0 (resp. 1) indicates that
an EBS system is never (resp. always) timely in the detection
of the events in ER.

For space matters, we explain in the Appendix how we
calculate the timeliness score of an event database E with
respect to a gold standard database ER (Section III-C-I in the
Appendix).
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2) FULL AND PARTIAL PERIODICITY
Another interesting temporal dimension analysis is to check
if there are any periodically occurred events (e.g., at least
once every n weeks), which are geographically close to each
other. For instance, we know from the literature that some
Avian Influenza events can occur seasonally due to migratory
birds, or it can become endemic due to its persistence in some
regions. Therefore, it can be useful to characterize the cyclic
behavior of the epidemiological events by taking into account
the spatial information. We perform this task by identifying
periodic-frequent spatial patterns from the field of spatio-
temporal frequent pattern mining [33], [56]. Next, we first
introduce the necessary definitions and concepts.

As in Section III-C, in the following, we also fix the
spatial and temporal scales of the events in E (resp. ER)
with lZ and lT . Therefore, we investigate on the temporal
aspects discussed above through E lZlT (resp. ERlZ

lT ). Let Z
(resp. T ) represent all spatial (resp. temporal) entities with
respect to a spatial (resp. temporal) scale lZ (resp. lT ) in
E lZlT , i.e. Z = DomE (DZ , lZ ) (resp. T = DomE (DT , lT )).
Each element in E lZlT is called transaction. Moreover, in each
transaction, we call pattern a set X of spatial entities, with
X ⊆ Z . If X contains k spatial entities, then it is called a k-
pattern. A patternX is called spatial, if themaximum distance
between any two of its spatial entities is no more than the
user-specified distance α. That is, X is a spatial pattern if
max(Dist(zp, zq)|∀zp, zq ∈ X ) ≤ α.

Furthermore, the number of transactions containing a spa-
tial pattern X in E lZlT is called the support of X , and denoted
as sup(X ). If this support is large, then one can naturally ask
how recurrent X is in E lZlT . Let t

X
i and tXj be two consecutive

time intervals at which X appears in E lZlT . The time difference
between tXi and tXj is defined as an inter-arrival time of X ,
and defined as tXj − tXi . Let T

X
ι be the set of all inter-arrival

times of X in E lZlT . The recurrence of a spatial pattern X is
considered full periodic (periodic for short), if any value in
the set T Xι is never no more than the user-specified maximum
inter-arrival time ι. The cardinality of T Xι in E lZlT constitutes
the period-support of X , denoted as psup(X ). In other words,
X periodically appears psup(X ) times within the data, and at
least once every ι time intervals. Our aim in this section is to
find all spatial patterns that periodically appear in E lZlT .We call
them periodic spatial patterns.

We illustrate all these concepts with the same example
illustrated in Table 3. On top of that, since we are interested
in spatial patterns, Table 4 depicts the spatial neighborhood
of the countries with respect to the parameter α. Overall,
some countries (e.g. India) face against a long infection
period, whereas the others (e.g. France) succeed in stop-
ping quickly the propagation of the viruses. Regarding the
frequency of the spatial patterns from Table 3, we have
sup(India) = 8 (the most frequent), whereas we have
sup(Nepal) = 2 and sup(China) = 2 (the least fre-
quent). Moreover, India is the only periodic spatial pat-
tern (with psup(India) = 7) when ι = 2. Nevertheless,

TABLE 4. Spatial closeness between the considered countries used in the
example illustrated in Table 3. For the sake of clarity, we consider only
neighbor countries sharing a border as spatially close.

TABLE 5. All partial periodic spatial patterns obtained with ι = 2 and
ϱ = 2 based on the example illustrated in Table 3. The spatial closeness
between the considered countries is defined in Table 4.

when we set ι = 4, in this case, the periodic spatial pat-
terns are India (with psup(India) = 7), Portugal (with
psup(Portugal) = 3), Spain (with psup(Spain) = 3) and
Portugal-Spain (with psup(Portugal−Spain) = 3). Note that
the patterns India-Portugal and India-Spain are also periodic
(with psup(India−Portugal) = 3 and psup(India−Spain) =

3), but they do not fulfill the requirement of spatial closeness
(see Table 4).

For some cases, the periodicity condition can be too strict.
For instance, in Table 3 France (resp. Pakistan) appears in
the first (resp. last) 3 transactions, which is also valuable
information. Toweaken this strict definition, we also consider
the partial periodicity condition. In this weaker condition,
it is sufficient for a spatial pattern to periodically appear only
in some transactions of E lZlT . Concretely, a spatial pattern X
is said to be a partial periodic spatial pattern if its period-
support psup(X ) is no less than the user-specified minimum
period-support ϱ. For instance, if we take the same example
illustrated in Table 3, all partial periodic spatial patterns for
ι = 2 and ϱ = 2 are illustrated in Table 5. It is worth noticing
that the parameter ι has a positive effect on the generation
of partial periodic spatial patterns, while ϱ has a negative
effect on the number of patterns being generated from the
database.Moreover, note that the input parameters ι and ϱ can
be both expressed in percentage or in count, respectively. For
instance, when we set ϱ = 1.0 (resp. ϱ < 1.0), this amounts
to generate full (resp. partial) periodic spatial patterns.

In this work, given spatial and temporal scales lZ and lT ,
we discover all full and partial periodic spatial patterns in
E lZlT with respect to the input parameters ι, ϱ and α through
the method ST-ECLAT (ST for short), proposed in [33].
Particularly, we are interested in two use cases for obtaining
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these patterns. First, we want to know what spatial enti-
ties (e.g. countries) have consistently epidemiological events
throughout the year. We call the obtained results continuous
periodic patterns. Second, we want to know what spatial
entities (e.g. countries) have a seasonal effect and are exposed
to disease events only for some period of time every year.
We call the obtained results seasonal (or yearly) periodic
patterns.

For space matters, we explain in the Appendix how we
quantitatively evaluate the performance of E in terms of
its ability to detect these continuous and seasonal periodic
patterns with respect to a gold standard database ER (Section
III-C-II in the Appendix).

E. THEMATIC DIMENSION
In this section, we aim to evaluate EBS systems in terms
of thematic entities they extract from the events. In other
words, we want to know whether the dimensions DD and
DH in an event database E provides fine- or coarse-grained
information. Ideally, we expect E to provide very detailed
information, as in a gold standard database ER. Note that
this aspect is related to one of the relevant characteristics of
an EBS system in the CDC’s guideline, so-called complete-
ness [14].

In our evaluation, we want to discover the rich data rela-
tions between spatial, temporal and thematic entities with two
use cases. In the first use case, we totally omit the temporal
aspect, and we propose to find out what thematic entities
characterize most a spatial entity. For instance, if we take
the same example illustrated in Table 1, we might want to
know where the specific Avian Influenza serotype H7N9 is
more prevalent. Our second use case is the temporal version
of the first one [47], in which we are interested in the periodic
aspects, as in Section III-D2. For instance, when several
Avian Influenza events with particular spatial and thematic
characteristics repeat themselves at regular intervals in the
data, this would indicate an ongoing spreading pattern with
specific characteristics. In this work, we propose to perform
these two use cases within a single evaluation scheme through
the identification of frequent patterns, as in Section III-D2.
As opposed to Section III-D2, there are several key dif-

ferences in this section, because we consider the fact that
each event in E can be described with different hierarchical
event attributes. First, we do not fix any temporal, spatial or
thematic scale on E , and we ensure that each transaction in E
corresponds to a single event. Second, a transaction in E does
not simply consist of atomic spatial entities, it is rather rep-
resented by a tuple Y = (dZ , dD, dH ), with dZ ∈ DomZ (E),
dT ∈ DomT (E) and dH ∈ DomH (E). In this context, we call
this tuple Y multidimensional pattern [57]. Therefore, with
the multidimensionality of the patterns, E is defined as E =

{(t1,Y1), (t2,Y2), . . . , (t|NE |,Y|NE |)}, where |NE | represents
the size of E , Yj is a multidimensional pattern and tj rep-
resents the timestamp of Yj. Third, we adapt E to include
various hierarchical information of the event attributes. To do
so, we modify E by adding all ancestors in the associated

hierarchy of every multidimensional pattern. In the end, each
transaction consists of the original multidimensional pattern
and its variants with all ancestors in the associated hierarchy.
We denote this modified event database as E+. We illustrate
how we obtain E+ from E with an example in Table 6.

In this work, we perform the two use cases discussed above
by discovering frequent multidimensional patterns, accompa-
nied by the partial periodicity condition. When the temporal
aspect is omitted, we simply calculate the support sup(Y )
of each multidimensional pattern Y in E+, as such pattern
always corresponds to a single tuple (dZ , dD, dH ) in this
context.We call them staticmultidimensional patterns.When
we take the partial periodicity condition into account, this
amounts to find partial periodic multidimensional patterns,
as it ensures that two multidimensional patterns appear in the
same time interval in E+. We call them temporalmultidimen-
sional patterns. In practice, we use the ST algorithm described
in Section III-D2 to generate these static and temporal mul-
tidimensional patterns. The flexibility of ST is that when we
set a very large inter-arrival time value to ι, this allows us to
omit the partial periodicity condition.

For space matters, we explain in the Appendix how we
quantitatively evaluate the performance of an event database
E of an EBS system in terms of its ability to detect these static
and temporal multidimensional patterns with respect to a gold
standard database ER (Section III-D in the Appendix f).

F. SOURCE DIMENSION
Finally, the last part of our evaluation framework is regarding
online news and press agencies, that we call short news outlets
or news sources, involved in the propagation of epidemiolog-
ical information on the web.

All EBS systems rely partially or completely on vari-
ous online news outlets for ensuring their monitoring of
emerging infectious diseases across the world. Nevertheless,
there are not enough studies that characterize and assess
the news sources involved in EBS systems. For instance,
Schwind et al. [13] point out that local news outlets are more
likely to report ongoing epidemiological events than interna-
tional media sources do. For this reason, we aim to identify
and characterize important news outlets, and we propose
in this section an evaluation scheme for the news outlets
involved in the propagation of epidemiological information
on the web. Our evaluation scheme consists of two different
objectives. Our first objective is that we want to identify
important news outlets for information dissemination. In our
second objective, we are interested in the ability of news
reporting in timely manner. In other words, we want to rank
news outlets publishing epidemiological events as fast as
possible. In the following, we propose to perform these tasks
through network analysis. Note that some EBS systems are
designed to collect epidemiological data from both official
and unofficial data sources. In order to a have fairer evaluation
across EBS systems, we do a preprocessing step by eliminat-
ing the official data sources and keeping only unofficial ones
within the data.
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TABLE 6. Illustrative example of the modified version E+ of a subset of an event database E with three events. The first column indicates the timestamp
of the events, and the second column describes the multidimensional patterns. Note that the second column contains all ancestors in the associated
hierarchy of every multidimensional pattern. For the sake of clarity, we show in bold the elements in E , before obtaining its modified version E+.

FIGURE 2. Illustration of the network construction steps. In the first step,
we build an initial matrix, in which we indicate for each event if the news
outlets report it or not. In the second step, we convert the first matrix into
a second one to encode to what degree the news outlets report the same
events.

1) IDENTIFICATION OF IMPORTANT NEWS OUTLETS
We say that a news outlet needs to fulfill two conditions
in order to be considered as important. First, it reports epi-
demiological information that are reported by both local and
international news media. In other words, if someone follows
the news reported by an important news outlet, it means she
receives sufficiently necessary epidemiological information
for her country and nearby. Second, it also reports the events
that are reported by important news outlets. We perform
the task of identification of important news outlets through
network analysis. We design our approach in two steps. First,
we extract the news outlet networkGE from an event database
E , where nodes represent news outlets and edges describe the
relations for node pairs. We do this process on the whole or
a subset of data for each considered EBS platform. Then,
we apply a well-suited centrality measure to rank the news
outlets by their importance score. Next, we describe how we
process these steps.

Traditionally, most of the existing works in the literature
extract a news outlet network, when citation information (i.e.
what sources cite what other sources) between news outlets
is available. Nevertheless, this information is hardly available
in the data collected by EBS systems. For this reason, we pro-
pose to use a co-occurrence fraction counting method known
from the field of scientometrics [58], as also used in [59]. The
construction of GE is as follows and illustrated in Figure 2.
Let us say an EBS system monitor |P| news outlets for |E|

distinct events. First, we construct a |P|×|E|matrix A, where
the rows represent news outlets and the columns represents
the distinct events detected by an EBS system. Each element
of matrix A is defined as in Equation 2.

aie =

{
1, if news outlet i reports event e,
0, otherwise

(2)

Next, we transform the matrix A into another |P|×|P| sym-
metric matrix B to measure how frequent two news outlets
report the same events. Each element bij ofmatrix B is defined
as in Equation 3.

bij =

E∑
e=1

aieaje
a2ie

(3)

In the end, we obtain a score of 1 (resp. 0), when two news
outlets always (resp. never) report the same events, or a score
in [0, 1] otherwise.
Finally, in the second step of our approach, we apply a

centralitymeasure overGE to identify important news outlets.
A centrality measure aims to rank the vertices of a network
by assigning them a score. The more central a vertex is, the
larger score it has. In the literature, there is a large number
of centrality measures, each having a particular objective.
In this work, we propose to use the PageRank centrality for
GE , as it is more suitable to our definition of important news
outlets. In the end, wewant to see how similar important news
outlets are among multiple EBS systems. If it is very similar,
this would indicate that they rely mostly on the same news
sources. In the rest of the work, we denote the first k most
important news outlets from the PageRank centrality result
by PageRank(GE , k).

2) TIMELY DETECTION
One specific criteria that one may want to optimize in event
detection is to minimize detection time (i.e. capturing an epi-
demiological event as soon as possible). Our second objective
is related to this timeliness capability of the news outlets.
We want to identify the news outlets, which are timely in
event detection, and not those detecting as many events. To do
so, we follow the work of Leskovec et al. [60]. Their method
first creates the news outlet network GE from E , then finds
through their method CELF a set A of news outlets, which
minimizes detection time, while covering all the event set E .

First, we extract our news outlet network GE as follows.
Let us suppose that the set Se of news outlets reports through
their news documents the same event e in an event database
E . For every event e ∈ E , we create a path structure Pe, that
we call cascade, such that a news outlet in Se sequentially join
the cascade Pe by linking to other news outlets in Se, whereby
the edges obey time order and the weights of directed edges
represent the time difference between two news documents.
When we repeat this process for each event e ∈ E , this gives
us a network in the end. We illustrate this network creation
for several events with an example in Figure 3.
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FIGURE 3. Illustration of the event cascades for five events. The nodes
represent news outlets publishing news documents, and the edges
between them obey time order and the edge weights represent their time
difference. For instance, the cascade for the first event starts at the news
document published by Khatmandu Post, and then the edges are
sequentially created by adding other news documents in Se linking to it.

Then, we apply the CELF algorithm to GE in order to
identify a set A of timely news outlets. This algorithm starts
with the empty set A0 = ∅ and iteratively adds in step k the
news outlet sk maximizing the marginal gain as in Equation 4.

sk = argmax
s∈P\Ak−1

R(Ak−1 ∪ {s}) − R(Ak−1). (4)

The algorithm stops, once it has selected k = |A| elements.
The marginal gain is expressed for a subset A of news outlets
in terms of the function R(A), which is used as a penalty
reduction function. It is defined as in Equation 5.

R(A) =

∑
e∈E

P(e)
(
Tmax − min

s∈A
T (e, s)

)
, (5)

where Tmax is time horizon, P is a (given) probability distri-
bution over the events and T (e, s) represents the time delay
in days, until news outlet s participates in the event path Pe.
Note that T (e, s) equals Tmax , if s does not report event e.
Moreover, in our context each event has uniform probability,
therefore we omit P(e) from the definition of R(A). In the rest
of the work, we denote the first k most timely news outlets
obtained from the CELF method for GE by CELF(GE , k).
For space matters, we explain in the Appendix how we

quantitatively evaluate the performance of an event database
E in terms of its ability to detect the important and timely
news outlets (Section III-E in the Appendix).

IV. EXPERIMENTAL SETUP
In this section, we define our experimental setup in order to
illustrate how to use our framework and interpret its results.
We first present the selected EBS/IBS systems, to which we
apply our framework (Section IV-A). Then, we describe the
input event data, as well as its processing (Section IV-B). The
results are presented afterwards, in Section V.

A. SELECTED EBS SYSTEMS
We show the relevancy of our framework on two well-known
EBS systems PADI-web [2] and ProMED [3]. Moreover,
we use the reference gold standard database Empres-i from
the World Organisation for Animal Health (WOAH) and the
Food and Agriculture Organization of the United Nations

(FAO) [61] to evaluate the performances of PADI-web and
ProMED. Our choice of the Empres-i database is based on
the fact that it is a well-populated official database for the
main animal diseases, such as Avian Influenza and African
Swine Fever [62], [63]. ProMED collects and organizes its
disease events through 50 subject matter expert moderators
from 34 countries,6 who provide written commentary, giving
the reader the necessary historical context and/or clinical
background to understand the importance of the information
being reported. ProMED also supply references to previous
reported events and to the scientific literature for the sake
of completeness. In principle, ProMED first searches for an
official source (e.g. WOAH report) if it is available at the
same time that an online news document is available. For
this reason, ProMED relies on both official and unofficial
sources for event detection. On the contrary, PADI-web is an
automated surveillance system, which automatically collects
online news documents with customized queries using the
Google News aggregator, translates all non-English docu-
ments into English, classifies the documents, and extracts epi-
demiological information (diseases, dates, symptoms, hosts
and locations) from the relevant news documents. PADI-web
is currently integrated in the French Platform for Animal
Health Surveillance (ESA Platform) [63].

We choose ProMED and PADI-web in our experiments for
several reasons. First, each one belongs to a different EBS cat-
egory: moderated vs. automated. Second, both EBS systems
have a well-established surveillance system, since they are
operational for a long time. They are currently collaborating
with and used by national and supranational health authori-
ties. Third, they are open-access tools. Finally, several works
have assessed PADI-web and ProMED, separately [13], [64]
or together [36], [63]. We base our discussion in Section V
on these previous results, when possible.

B. EVENT DATA AND PROCESSING
The event datasets we use concern the Avian Influenza (AI)
cases affecting bird species from 2019 to 2021. These AI
cases can be high pathogenic AI (HPAI) or low pathogenic
AI (LPAI). They are retrieved from PADI-web, ProMED
and Empres-i, respectively. Regarding the PADI-web data,
we rely only on those considered as relevant from PADI-
web’s automatic process. We chose a three-year study period
(2019-2021) to sufficiently capture the space-time epidemi-
ological characteristics of the AI events around the world.
In order not to penalize ProMEDwe keep all its data provided
by official and unofficial data sources, although PADI-web
relies only on online news outlets. Nevertheless, for the sake
of completeness, we compare both systems in Table 8 and
Figure 8 by discarding the ProMED data provided by official
data sources (i.e. WOAH reports). Furthermore, it is also
worth noticing that automated EBS systems, such as PADI-
web, might report false event information due to their auto-
mated location detection and extraction strategies. Evaluating

6https://promedmail.org/team
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TABLE 7. Event statistics for PADI-web, ProMED and Empres-i in the
Avian Influenza dataset.

the rate of reporting false events for such systems is not the
scope of this work.

We process the collected raw event datasets by transform-
ing them into normalized event databases, as explained in
Section II of the Appendix. During this processing, we deal
with the different event definitions that PADI-web and
ProMED have, which do not exactly match the one proposed
in Section III-A, as the definition of an event can be differ-
ent from one EBS system to another. Regarding ProMED,
we only extract the information regarding news outlets from
the raw news documents. Regarding PADI-web, the events
are essentially disease-location pairs. Moreover, PADI-web
extracts event-related thematic information for each collected
news document, without relating them to any event. For this
reason, we complete the minimally defined events with the
extracted thematic entities, as detailed in Section II-A of
the Appendix. In the end, we obtain three normalized event
databases for PADI-web, ProMED and Empres-i, denoted by
EPW , EPM and EEI , respectively. These normalized data are
not publicly available due to third party restrictions, never-
theless, they are available on request.7

V. RESULTS
We now assess, compare and discuss the performances of
the considered EBS systems when applied to our framework
on the Avian Influenza event databases EPW , EPM and EEI .
In our experiments, the number of events by year for those
event databases are shown in Table 7. In total, there are 1515,
786 and 5229 events for EPW , EPM and EEI , respectively.
We present the results in line with our four evaluation objec-
tives: 1) spatial (Section V-A), 2) temporal (Section V-B), 3)
thematic (Section V-C) and 4) source (Section V-D) dimen-
sions. Our source code is publicly available.8

A. SPATIAL DIMENSION
We evaluate through spatio-temporal representativeness how
accurate EBS systems describe the distribution of events
found in the gold standard Empres-i database in terms of
place and time. We calculate the spatio-temporal representa-
tiveness scores for each region and country withmonthly time
intervals. In the following, we discuss only these scores at
country scale and leave those at region scale in the Appendix,
due to lack of space. We plot the scores at country scale in
Subfigures 4a and 4b (see Figures 1 and 2 in the Appendix
for region scale). In these plots, countries without an Empres-i

7https://entrepot.recherche.data.gouv.fr/dataset.xhtml?persistentId=doi:
10.57745/Y3XROX

8github.com/arinik9/compebs

TABLE 8. Countries covered by PADI-web and ProMED according to the
spatio-temporal representativeness scores.
γ Here, we focus only on the countries, where the spatio-temporal
representativeness score is the maximum value of 1 for both PADI-web
and ProMED. If we focus on the countries covered both PADI-web and
ProMED instead, there are 58 countries in common.

event are indicated in gray, and the degree to which an EBS
system covers the events occurring in a country is shown with
different blue scales, where the large (resp. small) values are
indicated in dark (resp. light) blue. When an EBS system
never finds an event in EEI , it is shown in white.
We see from these plots that both PADI-web and ProMED

report the events from a large number of countries, but they
represent well only some of them. Moreover, although some
countries (e.g. Ireland, Australia) are equally represented by
PADI-web and ProMED, there are some discrepancies in the
spatial focus of these EBS systems. For instance, PADI-web
(resp. ProMED) better covers the USA, Spain, France, India
and China (resp. South Africa, Vietnam, Kazakhstan, Ukraine
and Sweden) than ProMED (resp. PADI-web). Furthermore,
PADI-web never reports an event from Canada, Portugal and
Afghanistan that ProMED covers well. All these similarities
and differences at country scale are summarized in Table 8.

Finally, we also plot the spatio-temporal representativeness
score differences between PADI-web and ProMED in Sub-
figure 4c (See Figure 3 for region scale) to ease their com-
parison. In this figure, it is colored in blue (resp. red) when
ProMED (resp. PADI-web) gives better spatio-temporal rep-
resentativeness score for a country and in yellow in case
of non-zero equality. We see from the figure that ProMED
gives better scores than PADI-web does for the overwhelming
majority of countries. The average spatio-temporal represen-
tativeness score over all these countries also confirms this
superiority (0.59 vs. 0.80, see Section III-B in the Appendix
for the calculation details). Note that when we consider the
country and region scales together in the calculation of this
score, it still confirms the superiority (0.40 vs. 0.55), although
the score is lower than that at country scale. This decrease is
mostly because of the difficulty of geocoding task in event
normalization, i.e. accurately assigning geographic coordi-
nates to spatial entities, due to the ambiguity among place
names [65].

In summary, both PADI-web and ProMED report the Avian
Influenza events for a large number of countries. This is
mostly due to the fact that Avian Influenza (with African
Swine Fever) is one of the animal disease cases reported
well by both systems [36], and that the number of detected
Avian Influenza events increases each year (see Table 7).
Nevertheless, there are some discrepancies in the spatial focus
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FIGURE 4. Spatio-temporal Representativeness scores at country scale for PADI-web and ProMED with respect to the
results of Empres-i. In (a) and (b), the degree to which an EBS system covers the Empres-i events occurring in a country
is shown with different blue scales, and it is shown in white when an EBS system never finds an event in EEI . In (c), the
score differences between (a) and (b) are shown. It is colored in blue (resp. red) when ProMED (resp. PADI-web) gives
better spatio-temporal representativeness scores for a country and in yellow in case of non-zero equality. In all these
plots, countries without an Empres-i event are indicated in gray.

VOLUME 11, 2023 31891



N. Arinik et al.: Evaluation Framework for Comparing Epidemic Intelligence Systems

TABLE 9. Countries covered by PADI-web and ProMED according to the
spatio-temporal representativeness scores, when we discard the ProMED
data provided by official data sources (i.e. WOAH reports).
γ Here, we focus only on the countries, where the spatio-temporal
representativeness score is the maximum value of 1 for both PADI-web
and ProMED.

of these EBS systems. These discrepancies are also consistent
with the previous works. For instance, in [36], the official
Avian Influenza events lie mostly in Central America, Africa
(mostly Egypt, Nigeria and South Africa), Middle East and
Asia. Although both PADI-web and ProMED cover these
areas, the degree to which they report the events are different
in [36]. Indeed, PADI-web covers more countries in Asia
(particularly in China and India) than ProMED does, a point
also highlighted in a ProMED’s publication [3]. Similarly,
ProMED better covers Africa, Eastern Europe and Middle
East than PADI-web does.

The most important factor that determines the events the
EBS systems find is inevitably related to the online news
outlets [18].We also investigate on this aspect in Section V-D.
PADI-web relies only on the news aggregator Google News,
whereas ProMED cooperates with 50 human moderators and
curators from all around the world. Although these modera-
tors rely on both the WOAH reports and online news outlets,
the latter plays a substantial role for ProMED (338 out of 786
Avian Influenza events in our experiments). For the sake of
completeness, we also compare in Table 9 these systems in
terms of spatio-temporal representativeness scores by dis-
carding the ProMED data provided by official data sources
(i.e. WOAH reports).

B. TEMPORAL DIMENSION
We present the results of the temporal dimension in two parts:
Timeliness (Section V-B1) and periodicity (Section V-B2)
analyses.

1) TIMELINESS ANALYSIS
We study how timely the EBS systems PADI-web and
ProMED are compared to the Empres-i events, as well as
the assessment of timeliness between them. Note that we per-
form this assessment based on the identification of the puta-
tively associated events between a pair of event databases,
as explained in Section III-B. The obtained statistics regard-
ing these putatively associated events are shown in Table 10.

In Figure 5, we plot the time lag values for each pair of
systems. In these plots, when the first (resp. second) system
reports an event earlier than the second (resp. first) one, then
this results in a negative (resp. positive) value. Moreover,
we summarize the statistics in terms of timeliness in Table 11.
We can see from Figure 5 and Table 11 that although both

TABLE 10. Event matching statistics in the Avian Influenza dataset.

PADI-web and ProMED can be timely depending on events,
PADI-web is more timely with respect to the Empres-i events
compared to ProMED (49% vs. 28%). Indeed, the timeli-
ness scores also confirm this superiority (0.18 vs. 0.12, see
Section III-C-I in the Appendix for the calculation details).
Furthermore, when we look at the same events detected by
PADI-web and ProMED (see the third row in Table 11),
PADI-web is also more timely (60% vs. 33%). The delay for
ProMED is mostly related to its events collected from the
official data sources (i.e. the WOAH reports). For instance,
when we discard the ProMED data provided by official data
sources (i.e. WOAH reports), the timely detection rate of
ProMED increases from 28% to 44%. Nevertheless, when we
focus only on the events, where PADI-web and ProMED are
late, i.e. those reported after the Empres-i events, the average
delay in days for ProMED is better compared to PADI-web
(6.00 vs 14.8, here the less is better). This fact is also due to
the official WOAH reports, as the publication dates of the
WOAH-based ProMED events and those of the associated
Empres-i events are very close, which reduces the average
value.

Overall, PADI-web detects the 209 putatively associated
events (49%) before their publication in Empres-i, and those
39 of them are 30 days in advance. Likewise, ProMEDdetects
the 134 putatively associated events (28%) before Empres-i,
and those 16 of them are 30 days in advance. Moreover,
PADI-web (resp. ProMED) detects the 273 (resp. 150) puta-
tively associated events before ProMED (resp. PADI-web),
and those 47 (resp. 30) of them are 30 days in advance.
Finally, our results for time lags and timeliness are also
consistent with the previous works [36], [64]. Indeed, the per-
formances of PADI-web and ProMED are also comparable
in these works, and PADI-web is slightly more timely than
ProMED.

2) PERIODICITY ANALYSIS
We now study how accurate EBS systems detect full or par-
tial periodic continuous and seasonal patterns with different
temporal scales based on the evolution of the epidemiological
events.We compare the obtained results based on the Empres-
i dataset to see to what extent PADI-web and ProMED can
capture similar patterns.

To ease our discussion, we visualize the evolution of the
events occurring in some countries of interest with fine-
grained temporal scale from 2019 to 2021 in Figure 6.
We describe it generically here, for matters of convenience.
This figure is in a form of heatmap matrix. The columns
represent distinct events provided by PADI-web (in pink),
ProMED (in gray) and Empres-i (in yellow). The rows
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FIGURE 5. Time lags of the putatively associated events between PADI-web and Empres-i (a), between ProMED and Empres-i, between PADI-web and
ProMED. In these plots, when the first (resp. second) EBS system reports an event earlier than the second (resp. first) one, then this results in a negative
(resp. positive) value.

TABLE 11. Timeliness summary statistics for the comparisons between PADI-web and Empres-i, between ProMED and Empres-i, between PADI-web and
ProMED.

correspond to the bi-weeks of 2019, 2020 and 2021. Each cell
of the matrix indicates the absence or presence of at least one
event for a given time period and country. Only the cells in
brown indicate the presence of events. Finally, the columns
(i.e. the events) are regrouped by country, as indicated on the
top part of the plot.

We start with the full and partial periodic seasonal pat-
terns. We obtain the results from PADI-web, ProMED and
Empres-i by discretizing the time (resp. spatial) dimension
into monthly intervals (resp. country zones) and by applying
the STmethodwith the parameters ι = 12, ϱ = {0.5, 1.0} and
α = 1000km. Recall that in our dataset the full periodicity,
with ϱ = 1.0, amounts to be the events occurring every year
for the same time period from 2019 to 2021. Regarding the
partial periodicity, with ϱ = 0.5, a seasonal pattern is valid
in our dataset, when the events occur during two consequent
years between 2019 and 2021 for the same time period. In the
comparison, we need to take into account the fact that the
detection time for the same events can differ up to 30 days
in average for PADI-web and ProMED with respect to the
Empres-i events (see Figure 5). Therefore, it is reasonable to
observe some time delay in the results.

Table 12 shows the full and partial seasonal periodic fre-
quent patterns of six countries for each EBS/IBS system
to see when and where epidemiological events repeatedly
occur every year from 2019 to 2021. These countries are
China, South Korea, Vietnam, India, United Kingdom and

France. In Table 12, the Empres-i patterns detected by both
PADI-web and ProMED are in orange, and it is colored in
red (resp. blue) when only PADI-web (resp. ProMED) finds
them. We see from the table that the results of PADI-web
and ProMED are not very inline with the Empres-i seasonal
patterns, and we summarize the comparison in two points.

First, we observe the full periodic seasonal patterns in
the Empres-i data for some countries, and we expect PADI-
web and ProMED to detect them. These countries are China,
Vietnam, India, United Kingdom, Taiwan, South Africa, Bul-
garia, Japan and Denmark (see Table 12 and Figure 6 for
some of them). PADI-web captures its full periodic seasonal
patterns for the considered four countries of Table 12, plus
for Taiwan and Japan. In these patterns, PADI-web accurately
detects only the pattern for the United Kingdom. Nonethe-
less, there are some discrepancies for the other countries.
Indeed, it underrepresents (resp. overrepresents) Vietnam
(resp. China and India). For instance, PADI-web overrepre-
sents the events occurring in China, because particularly since
2020, with the rise of Covid-19 cases, media sources make
much news about China and coronavirus. For instance, one of
the news titles is ‘‘Chinese authorities say viral pneumonia
outbreak is not SARS, MERS or bird flu’’.9 Overall, the
average evaluation scores for PADI-web and ProMED based
on the seasonal full periodic frequent patterns are 0.49 and

9www.reuters.com/article/us-china-pneumonia-idUSKBN1Z40G3
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FIGURE 6. Evolution of epidemiological events for China, South Korea and Vietnam from 2019 to 2021 with fine-grained temporal scale. The columns
represent distinct epidemiological events provided by PADI-web (in pink), ProMED (in gray) and Empres-i (in yellow). The rows correspond to the
bi-weeks of 2019, 2020 and 2021. Each cell of the matrix indicates the absence or presence of at least one event for a given time period and country. Only
the cells in red indicate the presence of events. Finally, the columns (i.e. the events) are regrouped by country, as indicated on the top part of the plot.

TABLE 12. Full and partial seasonal (or yearly) periodic patterns for PADI-web, ProMED and Empres-i. For the sake of comparison, we only show them
only for five countries: China, South Korea, Vietnam, India, United Kingdom and France. The Empres-i patterns detected by both PADI-web and ProMED
are colored in orange, and it is colored in blue (resp. red) when only ProMED (resp. PADI-web) finds them.

0.17, respectively (see Section III-C-II in the Appendix for
the calculation details).

Second, we see many more seasonal patterns for partial
periodicity. This indicates that a country witnesses an event
during two consecutive years from 2019 to 2021. On the
one hand, ProMED is interestingly able to capture almost
accurately the patterns for China, South Korea, India, United
Kingdom and France. But, it largely underrepresents the
patterns for Vietnam. On the other hand, PADI-web captures
two seasonal patterns for Vietnam, but it still underrepresents
it. Moreover, it also overrepresents the seasonal patterns for
the United Kingdom, China and India. Overall, the average
evaluation scores for PADI-web and ProMED based on the
partial periodic seasonal frequent patterns are 0.51 and 0.85,
respectively. When we consider the partial and full periodic

frequent seasonal patterns together, we obtain the average
scores of 0.50 and 0.51 for PADI-web and ProMED, respec-
tively.

Next, we pass to continuous periodic patterns, i.e. the
epidemiological events occurring consistently throughout the
year, by applying the ST method with ι = 2, ϱ = 0.1 and
α = 1000km. Some of our results are shown in Table 13
and Figure 6. Table 13 shows the most 10 frequent partial
weekly and monthly periodic continuous patterns at country
scale for each EBS/IBS system from 2019 to 2021.We expect
an EBS system to provide a similar ranking as in Empres-i.
In Table 13, the Empres-i partial continuous patterns detected
by both PADI-web and ProMED are in orange, and it is col-
ored in blue (resp. red) when only PADI-web (resp. ProMED)
finds them.
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Overall, we observe some differences across the results,
and we interpret them in two parts. We first analyze the
monthly partial periodic continuous patterns. On the one
hand, we see that the ranking of ProMED at monthly scale
is much more in line with Empres-i compared to PADI-web,
as it captures seven monthly Empres-i patterns (out of 10).
On the other hand, PADI-web detects only few partial con-
tinuous patterns. Furthermore, both PADI-web and ProMED
are able to detect the same three monthly Empres-i patterns,
related to the recurrent events occurring in Germany, Nether-
lands and France. Finally, only PADI-web (resp. ProMED) is
able to detect the patterns for Taiwan (resp. Russia, Vietnam,
Sweden and Denmark). Overall, when we consider the whole
ranking results, we obtain the evaluation scores of 0.86 and
0.91 for PADI-web and ProMED, respectively.

Now, we pass to the weekly partial periodic continuous
patterns. The identification of these patterns is harder com-
pared to the monthly patterns, because this amounts to seek
the events occurring at least once every two weeks. Indeed,
PADI-web (resp. ProMED) can only find six (resp. seven)
partial weekly periodic patterns in total. Moreover, we see
that the obtained patterns are slightly different compared to
the monthly patterns, hence they give another temporal vision
of the EBS systems. For instance, South Korea is not that
frequent at monthly scale in the Empres-i data, but it is one
of the most 10 frequent weekly partial periodic patterns (see
also Figure 6). Of the detected patterns by PADI-web and
ProMED, four of them are also found in Empres-i’s result.
This shows that both systems have a comparable performance
at weekly scale. Overall, when we consider the weekly and
monthly partial patterns together, we obtain the average eval-
uation scores of 0.69 and 0.75 for PADI-web and ProMED,
respectively (see Section III-C-II in the Appendix for the
calculation details).

To conclude this part, identifying the full and partial
weekly, monthly and seasonal periodic patterns gives a dif-
ferent analysis perspective to assess the performances of the
EBS systems. Overall, both PADI-web and ProMED have
comparable results. Nevertheless, there are some substantial
differences between them. When it comes to the seasonal
patterns presented in Table 12, on the one hand, ProMED
finds less partial periodic seasonal patterns compared to
PADI-web, but most of them are found in the Empres-i’s
result. On the other hand, PADI-web finds more seasonal
patterns, bu they are not as accurate as the patterns pro-
vided by ProMED. This is probably because several of them
might be either false alerts, i.e. suspected cases being not
confirmed by the national authorities, or directly erroneous
due to the automatic processing framework of PADI-web.
Consequently, it overrepresents some countries. When it
comes to the weekly and monthly continuous patterns pre-
sented in Table 13, the obtained results are barely in line
with the Empres-i’s results. Nonetheless, ProMED performs
slightly better, since it correctly finds more monthly partial
patterns. Overall, we obtain the final periodicity scores of
0.59 and 0.63 by combining both continuous and seasonal

periodicity aspects for PADI-web and ProMED, respectively.
Finally, our results are also partially confirmed by the previ-
ous works [39]. In [39], the authors measure the correlation
between the weekly event time series derived from ProMED,
HealthMap10 and an official source WHO data using Pear-
son’s correlation coefficient. They find out that the results
derived from ProMED and HealthMap are moderately corre-
lated with the ones reported by World Health Organization
(WHO) on West African Ebola, and that there exist some
substantial differences between them, particularly at the peak
of the epidemics.

C. THEMATIC DIMENSION
In this section, we study how detailed EBS systems provide
the thematic information encoded in their data. We want
to know how similar the frequent multidimensional patterns
across EBS systems are. We compare the results based on
the Empres-i dataset to see to what extent PADI-web and
ProMED can capture similar patterns. To ease our discussion,
we also visualize the relations between spatial and thematic
entities with a chord diagram, which is found in Figure 4 of
the Appendix for space matters.

Table 14 shows the most 13 frequent static and tempo-
ral multidimensional patterns for PADI-web, ProMED and
Empres-i. We obtain these patterns with the parameters ι ∈

{10, 30, ∞} and ϱ = 1 (in count). Note that the use of ∞

represents a very large value for eliminating the periodicity
aspect from the method ST. This amounts to obtain the static
version of frequent multidimensional patterns, without any
temporal aspect. We describe Table 14 generically here, for
matters of convenience. Given a specific spatial scale, each
row corresponds to a spatial entity and these entities are
regrouped by a specific system. The columns represent the
existing host entities in a specific hierarchical level, and they
are regrouped by the existing disease entities in a specific
hierarchical level. For instance, in Table 14 we stick to the
second level of hierarchy for spatial, disease and host entities
(see Table 1 in the Appendix for thematic taxonomy). Each
cell can encode four different information. First, we display
a dash character, when a specific multidimensional pattern,
be static or temporal, is not frequent. Second, the statistics of
a given multidimensional pattern is expressed in the format
x|y. The first value x corresponds to the static condition, and
represents its frequency number (i.e. support) without con-
sidering the partial periodicity constraint. The second value
corresponds to the temporal condition, and represents its
periodic support with respect to the parameters ι and ϱ. Third,
we also highlight with different gray scales to what degree a
multidimensional pattern is partially periodic in the data at
hand. For instance, in Table 14, we consider two different ι

values, which are 10 and 30 days. The results for the former
(resp. latter) are indicated in dark (resp. light) gray. Finally,
we show the Empres-i multidimensional patterns detected by
both PADI-web and ProMED in orange, and they are colored

10similar to PADI-web, as they both are automated systems.
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TABLE 13. Most 10 frequent partial weekly and monthly periodic patterns for PADI-web, ProMED and Empres-i. The periodic support values for these
patterns are indicated in parenthesis. These results are produced with the parameter values ι = 2, ϱ = 0.1 and α = 1000km. N/A indicates that there is no
available entry. The Empres-i patterns detected by both PADI-web and ProMED are colored in orange, and it is colored in blue (resp. red) when only
ProMED (resp. PADI-web) finds them.

in blue (resp. red) when only PADI-web (resp. ProMED)
finds them.

We can summarize Table 14 in five points. First,
as expected, Empres-i provides only fine-grained disease
information. Interestingly, the data collected by ProMED
is also fine-grained, whereas PADI-web provides mostly
coarse-grained disease information (see also Figure 4 in
the Appendix). Second, the overwhelming majority of the
frequent multidimensional patterns provided by PADI-web,
ProMED and Empres-i concern the HPAI cases. This fact
highlights how national and international authorities priori-
tize the surveillance of HPAI cases, since it is highly conta-
gious among birds, and can be deadly, especially for domestic
poultry. Third, apart the unknown bird category, most of the
frequent multidimensional patterns of Empres-i (resp. PADI-
web and ProMED) concerns wild (resp. domestic) birds.
On this point, we can say that the distribution of host cat-
egories are not very balanced, with a slight dominance for
unknown bird category. Fourth, the overwhelmingmajority of
the frequent static multidimensional patterns for all systems
are strongly partial periodic, with ι = 10 days. Finally, when
we compare the frequent multidimensional patterns across
EBS systems, we observe that both PADI-web and ProMED
detect few Empres-i patterns (four and two patterns for
ProMED and PADI-web, respectively). This fact shows how
the thematic data collected by PADI-web and ProMED can
be different with respect to Empres-i. Interestingly, although
PADI-web is currently collaborating with the French Plat-
form for Animal Health Surveillance (see Section IV-A),
France is not in the first 13 frequent patterns for PADI-web.
Overall, whenwe consider all the static and temporal frequent
multidimensional patterns together, we obtain the ranking
scores of 0.64 and 0.63 for PADI-web and ProMED, respec-
tively (see Section III-D in the Appendix for the calculation
details).

D. SOURCE DIMENSION
Finally, we assess how important and timely the news out-
lets involved in EBS systems for information dissemination.
Next, we rank them in terms of these two objectives and see
if PADI-web and ProMED obtain similar results. Overall,
it is worth noticing that PADI-web (resp. ProMED) includes
480 (resp. 189) distinct news outlets. Only 63 of them are

in common between PADI-web and ProMED. On top of the
news outlets, ProMED also mostly relies on official reports
fromWOAH (472 events out of 786). For this reason, we also
include WOAH in our analysis for ProMED. Nevertheless,
we solely discuss the performances of the news outlets for a
fair comparison.

First, we compare PADI-web and ProMED in terms of
their important news outlets for information dissemination,
obtained with the PageRank algorithm. Table 15 shows the
first 10 (resp. 9) news outlets having the largest PageRank
scores for PADI-web (resp. ProMED) based on the events
occurring in Asia, Europe and in the whole world, respec-
tively. We can summarize the results in two points. First,
overall, the results show that the most important news outlets
for both sources are almost completely different. PADI-web
relies mostly on the Indian news outlets for the events in Asia
and French and British/Scottish ones for Europe, whereas
spatially more diverse news outlets are in ProMED’s results,
with a slight prevalence for the Russian (and nearby countries
such as Ukraine and Kazakhstan) and British/Scottish news
outlets. Consequently, PADI-web and ProMED have only
three news outlets in common. Finally, on top of national
news outlets, several international ones, such as Reuters and
Outbreak News Today, can also take an important role for
information dissemination for PADI-web and ProMED. Nev-
ertheless, their rankings can be very different. For instance,
Reuters is the first news outlets for the world-wide events,
whereas it is at 10th place for ProMED. This also confirms us
how different the news collection strategies of PADI-web and
ProMED are.

Next, we pass to the results of timely news outlets involved
in PADI-web and ProMED, obtained with the method CELF
by limiting the output size to the first 30 news outlets.
Similar to the previous results, Table 16 shows only the
first 10 (resp. 9) timely news outlets for PADI-web (resp.
ProMED) based on the events occurring in Asia, Europe
and in the whole world, respectively. Compared to the pre-
vious results in Table 15, we see here that PADI-web and
ProMED share more common news outlets in terms of timely
detection. Furthermore, we observe that the most important
news outlets in terms of PageRank score are not necessarily
timely in event detection. In other words, we observe some
inconsistency issues in the results obtained by the methods
PageRank and CELF for PADI-web and ProMED. Recall that
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TABLE 14. Most 13 frequent static and temporal multidimensional patterns. To ease our discussion, these patterns are only at country and solely concern
the events occurring in 2020. When a multidimensional pattern is static, it is shown in white. When it is partial periodic with 10 days (resp. 30 days), it is
shown in dark (resp. light) gray. The Empres-i patterns detected by both PADI-web and ProMED are colored in orange, and it is colored in blue (resp. red)
when only ProMED (resp. PADI-web) finds them.

TABLE 15. PageRank centrality results for PADI-web, ProMED and Empres-i. The first (resp. second) part of the table corresponds to the results based on
the events occurring only in Asia (resp. Europe). In the last part, the results are produced from the whole dataset.

TABLE 16. Timely detection results for PADI-web, ProMED and Empres-i. The first (resp. second) part of the table corresponds to the results based on the
events occurring only in Asia (resp. Europe). In the last part, the results are produced from the whole dataset.

this consistency assessment allows us verifying whether news
outlets playing a key role in epidemiological information

dissemination are also timely in event detection. For instance,
regarding the events occurring in Europe for PADI-web, the
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TABLE 17. Summary of findings regarding all evaluation results between PADI-web and ProMED.

FIGURE 7. Radar chart summarizing all quantitative evaluation results
between PADI-web and ProMED.

French news outlets France Bleu and 20 Minutes appear only
in Table 16, whereas we observe two other French news
outlets in Table 15. Nevertheless, this kind of inconsistencies
seems not to appear much in the whole data, i.e. world scale.
Indeed, the rank evaluation scores also confirm this last point,
as we obtain the ranking scores of 0.96 and 0.89 for PADI-
web and ProMED, respectively (see Section III-E in the
Appendix for the calculation details).

To conclude this part, we show that PADI-web and
ProMED rely mostly on different important and timely

FIGURE 8. Radar chart summarizing all quantitative evaluation results
between PADI-web and ProMED, when we discard the ProMED data
provided by official data sources (i.e. WOAH reports).

news outlets. This is mostly because the Indian, French and
British/Scottish news outlets take an important role for PADI-
web, whereas these are mostly the Russian (and nearby coun-
tries such as Ukraine and Kazakhstan) and British/Scottish
news outlets for ProMED. Moreover, both EBS systems also
rely on the same international news outlets (e.g. Reuters),
nevertheless these news outlets do not contribute to both EBS
systems in the same manner. All these results suggest for
these EBS systems to include more spatially more diverse
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news outlets for a greater geographic coverage (e.g. Baidu
for Chinese news). Finally, we present a summary of findings
in Table 17 and Figure 7 based on all obtained evaluation
results from this section and the previous ones. We see that
PADI-web and ProMED seem to be complementary. PADI-
web (resp. ProMED) performs slightly better for the time-
liness and source (resp. spatial and periodicity) dimensions,
and they have a comparable performance for the thematic
dimension. For the sake of completeness, we also compare
in Figure 8 these EBS systems in terms of the presented
five dimensions by discarding the ProMED data provided by
official data sources (i.e. WOAH reports).

VI. CONCLUSION
In this article, we have presented a new evaluation framework
to identify the strengths and drawbacks of EBS systems
in terms of epidemic surveillance. This evaluation is very
valuable from the epidemiological standpoint, since it allows
end-users to select the most appropriate EBS system(s) for
an effective surveillance of a particular situation. We want
not only to compare EBS systems, but also to produce results
that the end user can easily interpret. For this purpose, we pro-
posed a two-step framework based on our review of the
literature. It first transforms the raw input event data into a
set of normalized distinct events, then conducts a descriptive
retrospective analysis of these events with four objectives:
spatial, temporal, thematic and source analysis.We illustrated
its relevance by applying it to an Avian Influenza dataset
collected by PADI-web, ProMED and Empres-i. We showed
that our framework allows identifying the strengths and draw-
backs of the considered EBS systems. For some of our
evaluation aspects, our results confirm the findings already
published in the literature. For others, the systematic nature of
our approach uncovers new findings for the considered EBS
systems.

Our work could be extended in several ways. First, our
method can be applied systematically to other EBS systems
and other animal diseases, for the sake of completeness.
This would give a better overview of the capabilities of the
existing systems. Second, the source dimension can be better
evaluated in Section III-F, if we can obtain an appropriate
gold standard dataset. This would imply to conduct an exten-
sive work like in [66], but tailored to Epidemic Intelligence.
Third, our evaluation framework focuses only on a descriptive
retrospective analysis. Nevertheless, it would be also valuable
to extend this work with a predictive analysis to see to what
extent the existing EBS data can give an insight on the short or
long term future using past event information, accompanied
by domain-specific data (e.g. animal mobility models, envi-
ronmental data). Some examples are risk mapping [15], [67],
[68], [69] and epidemic forecasting with sparse data [70].
Finally, due to the generic nature of our evaluation frame-
work, it can be also applied to other spatio-temporal systems
with similar properties (e.g. natural disaster surveillance sys-
tems), so this could constitute another perspective.
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