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Abstract: The chemical composition of dark chocolate has a significant impact on its complex flavor
profile. This study aims to investigate the relationship between the volatile chemical composition and
perceived flavor of 54 dark chocolate samples made from Trinitario cocoa beans from the Dominican
Republic. The samples were evaluated by a trained panel and analyzed using gas chromatography-
mass spectrometry (GC-MS) to identify and quantify the volatile compounds. Predictive models
based on a partial least squares regression (PLS) allowed the identification of key compounds for
predicting individual sensory attributes. The models were most successful in classifying samples
based on the intensity of bitterness and astringency, even though these attributes are mostly linked
to non-volatile compounds. Acetaldehyde, dimethyl sulfide, and 2,3-butanediol were found to be
key predictors for various sensory attributes, while propylene glycol diacetate was identified as a
possible marker for red fruit aroma. The study highlights the potential of using volatile compounds
to accurately predict chocolate flavor potential.

Keywords: cocoa; chocolate; flavor perception; volatile compounds; flavor predictive models; PLS

1. Introduction

Chocolate is highly consumed in developed markets and is increasingly penetrating
new markets, mainly in Asia and Latin America. In 2021, the global chocolate market was
worth USD 46.6 billion and is expected to grow at a compound annual growth rate of 4.98%
from 2022 to 2028, expecting to be valued at USD 65.49 billion by the end of this forecast
period [1].

While 90% of the world’s total “fine” cocoa exports come from Latin America, the
Dominican Republic is one of the three biggest exporting countries, along with Ecuador
and Peru. In broad terms, fine “cocoa” is mostly produced from the Criollo or Trinitario
varieties and is distinguished from “bulk” cocoa because of flavor alone. Fine cocoa often
exhibits fruity, floral, herbal, woody nutty, and caramel-like notes [2].

Cocoa products from Dominican Republic beans are known to display multiple domi-
nant flavor profiles, ranging from low cocoa and bitter, to winey, earthy, and spicy notes [3].
Furthermore, Trinitario cocoa has been traditionally known as fine-grade cocoa [4], and
has been associated to varied sensory attributes, including a marked chocolate flavor and
distinctive wine-like notes [5].

Flavor is one of the most significant consumer acceptance parameters. It is hence
one of the main quality indicators for cocoa products. Cocoa flavor is highly complex
as many diverse components may be linked to its resulting sensory perception. Both
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non-volatile and volatile compounds contribute to the overall flavor profile of cocoa and
cocoa-derived products. Over 600 odor compounds have been reported to be found in
cocoa and chocolate [6].

The aroma composition of cocoa products is tightly related to the unique postharvest
processing conditions, as well as to the variety and the origin of the cocoa itself [7].

Among the non-volatile compounds in cocoa, alkaloids and polyphenols have ar-
guably the highest impact on flavor perception, as they are both linked to bitterness.
Additionally, polyphenols are associated to astringent sensations and contribute to green
and fruity flavors [8]. Moreover, proteins and carbohydrates are non-volatile compounds
that play an important role in the formation of volatile aroma compounds during the
drying, roasting and conching processes by means of Strecker Degradation and a Maillard
reaction [6].

On the other hand, volatile aroma compounds found in cocoa products include esters,
alcohols, acids, and phenols, which are mostly derived from the fermentation and drying
processes. These compounds tend to be linked to sweet, sour, fruity, and floral notes,
with the exception of phenols, which may convey smoky and other generally undesirable
hints [9]. Pyrazines, aldehydes, and ketones products resulting from Maillard reactions are
other volatile compounds of interest. Some ketones and aldehydes are known to bestow
floral notes to cocoa, but pyrazines are usually associated to the expression of nutty, earthy,
roasted, and green notes [10].

The use of gas chromatography-mass spectrometry (GC-MS) for the characterization
of the volatile composition of chocolate and other cocoa products is a well-established
technique [1,5].

In recent years, multiple studies have been conducted in an attempt to better un-
derstand the impact of different variables, such as the plant genetic origin or process-
ing conditions, on the volatile composition and on the flavor perception of cocoa and
chocolate [11–20]. However, these studies did not always look for the relationship ex-
isting between the volatile composition and sensory perception in chocolate. Many of
them have tried to identify compounds that could be used as markers for certain flavor
attributes [21–25]. While some have looked into the single compound’s presumed impact
on the actual perceived taste of chocolate itself [26–29], most have focused solely on the
individual compound’s reported sensory descriptor, independent to the food matrix itself.
Additionally, some studies have either contradicted or have not been able to corroborate
previously reported results when trying to establish the individual contribution of single
compounds to the overall perceived flavor profile in final products, as has for instance been
the case of linalool’s impact on floral notes [30]. A rather limited number of studies have
indeed attempted to describe and predict the perceived intensity of sensory attributes based
solely on the volatile composition of the cocoa products [31–33]. Some others have classi-
fied samples into differentiated sensory groups based on their overall volatile composition
and sensory profile, but without distinguishing between unique sensory attributes [34]. A
2022 study claimed to be the first to show how distinct differences in the flavor profiles of
dark chocolates are reflected in their molecular compositions, while also factoring in the
compounds’ odor activity values (OAC) and dose over threshold factors (DoT) [30].

In spite of the growing interest in researching both volatile composition and flavor
in cocoa and chocolate, identifying the linkage between the two remains particularly
challenging because of the established high chemical complexity of the product. Moreover,
the differences among chocolates produced from beans of the same variety and origin are
bound to be more nuanced compared to those found in chocolates derived from cocoa that
have more obviously differentiated backgrounds. Furthermore, the ability to differentiate
chocolates in terms of their flavor profile in a fast, repeatable, and reliable way is of major
interest for the industry, notably in the case of highly-sought-after attributes, such as fruity
or floral.

The focus of this study is to identify key volatile aroma compounds that may enable
differentiation within a selection of dark chocolate samples derived from Trinitario beans
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grown in the Dominican Republic, as well as to ultimately develop sufficiently accurate
predictive models that would allow the discrimination of samples with regard to their
flavor potential. This characterization will be based on the perceived sensory profile of each
of the samples, blind to their processing conditions, with the aim of understanding to what
extent subtle differences in taste could be described by differences in volatile composition.

2. Results
2.1. Sensory Characterization of Dark Chocolate Samples

A clustered heatmap (Figure 1) allows for a summarized visualization of the raw
(not pretreated data, as in not centered nor scaled) mean sensory scores of all 54 chocolate
samples evaluated in this study, along with insights into the correlations that exist among
the different attributes that were evaluated (sweetness, bitterness, acidity, astringency,
cocoa, yellow fruits, red fruits, citrus, dried fruits, nutty, winey, black olives, green, earthy,
floral, woody, spicy, and roasted). In Appendix A, Table A1, additional information on the
overall sensory results obtained from the chocolate dataset is presented.
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Figure 1. Clustered heatmap of all samples (rows) in relation to their mean sensory scores per
attribute (columns). The score scale ranges from 1 to 10; the highest granted mean sensory score
was 6.

It can be seen that cocoa, acidity, bitterness, and astringency are attributes highly
correlated with each other. Moreover, cocoa is the attribute that displays the highest overall
mean sensory scores, which would indicate that the majority of the chocolate samples display
a flavor profile that has strong cocoa notes.
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All of the fruity sub-attributes (red fruits, yellow fruits, citrus, and dried fruits),
together with the floral attribute, also present a high degree of correlation based on their
mean sensory scores. These fruity mean sensory scores show their highest values mostly
whenever the values for nutty, roasted, and spicy attributes are the lowest.

The earthy, woody, winey, and black olives attributes present the lowest mean sensory
scores among all attributes. The flavor profiles of the set of chocolate samples evaluated
are thus characterized for weakly expressing these attributes. Furthermore, earthy, woody,
winey, and black olives seem to show their highest mean sensory score values whenever the
values for bitterness and astringent are also high.

A principal component analysis (PCA) was performed on the mean sensory scores of
all sensory attributes obtained for all samples. This was performed to characterize how
the differences in the reported mean sensory scores were driving sample differentiation with
regards to their sensory profiles. The two main components, F1 and F2, were able to explain
51.86% of the variance among samples.

In Figure 2, the PCA biplot showing the distribution of all chocolate samples in the
space of F1 and F2 is presented, together with the loadings, corresponding to all sensory
attributes (variables). The scree plot pertaining to this analysis is shown in Appendix A,
Figure A1. It indicates that the first two components are responsible for a substantial
amount of the variability in the data, while the third component explains a relatively small
amount of variance.

Molecules 2023, 28, x FOR PEER REVIEW 4 of 23 
 

 

It can be seen that cocoa, acidity, bitterness, and astringency are attributes highly 
correlated with each other. Moreover, cocoa is the attribute that displays the highest over-
all mean sensory scores, which would indicate that the majority of the chocolate samples 
display a flavor profile that has strong cocoa notes. 

All of the fruity sub-attributes (red fruits, yellow fruits, citrus, and dried fruits), to-
gether with the floral attribute, also present a high degree of correlation based on their 
mean sensory scores. These fruity mean sensory scores show their highest values mostly 
whenever the values for nutty, roasted, and spicy attributes are the lowest. 

The earthy, woody, winey, and black olives attributes present the lowest mean sensory 
scores among all attributes. The flavor profiles of the set of chocolate samples evaluated 
are thus characterized for weakly expressing these attributes. Furthermore, earthy, 
woody, winey, and black olives seem to show their highest mean sensory score values 
whenever the values for bitterness and astringent are also high. 

A principal component analysis (PCA) was performed on the mean sensory scores of 
all sensory attributes obtained for all samples. This was performed to characterize how 
the differences in the reported mean sensory scores were driving sample differentiation with 
regards to their sensory profiles. The two main components, F1 and F2, were able to ex-
plain 51.86% of the variance among samples. 

In Figure 2, the PCA biplot showing the distribution of all chocolate samples in the 
space of F1 and F2 is presented, together with the loadings, corresponding to all sensory 
attributes (variables). The scree plot pertaining to this analysis is shown in Appendix A, 
Figure A1. It indicates that the first two components are responsible for a substantial 
amount of the variability in the data, while the third component explains a relatively small 
amount of variance. 

The samples seem to be well scattered along both axes. The distribution along the F2 
axis is presumably defined by the direction of cocoa and winey attributes. Furthermore, 
groups of samples can be observed in the whole F1-F2 plane, which could be potentially 
described in terms of the membership to each of the different quarters. 

The samples exhibiting high roasted and nutty mean sensory scores are opposed to 
samples with high mean sensory scores for acid, floral, and citrus attributes. Similarly, sam-
ples whose mean sensory scores are high for sweetness, yellow fruits, and dried fruits, are 
opposed to samples high in woody, spicy, earthy, black olives, green, bitter, and astrin-
gent mean sensory scores. 

 
Figure 2. F1−F2 biplot of PCA on mean sensory scores showing distribution of samples (observa-
tions, in blue), and of sensory attributes (variables, in red). 
Figure 2. F1−F2 biplot of PCA on mean sensory scores showing distribution of samples (observations,
in blue), and of sensory attributes (variables, in red).

The samples seem to be well scattered along both axes. The distribution along the F2
axis is presumably defined by the direction of cocoa and winey attributes. Furthermore,
groups of samples can be observed in the whole F1-F2 plane, which could be potentially
described in terms of the membership to each of the different quarters.

The samples exhibiting high roasted and nutty mean sensory scores are opposed to
samples with high mean sensory scores for acid, floral, and citrus attributes. Similarly,
samples whose mean sensory scores are high for sweetness, yellow fruits, and dried fruits, are
opposed to samples high in woody, spicy, earthy, black olives, green, bitter, and astringent
mean sensory scores.

2.2. Identification and Quantification of Volatile Aroma Compounds Present in the Dark Chocolate
Samples

Volatile compounds present in the 54 dark chocolate samples were determined by
GC-MS; 34 known compounds were identified to be present from well-defined peaks
shown in the retrieved spectra. An unidentified 35th compound was found in several of
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the samples, but it could not be associated to any of the spectra already in the NIST Mass
Spectral Library. All identified volatiles, together with the odor descriptors commonly
associated individually to each, are listed in Table 1.

Table 1. Volatile compounds identified in the 54 dark chocolate samples, along with their associated
flavor descriptors.

Compound Group Compound Name Odor/Flavor Attributes

Aldehydes

2-methylbutanal Chocolate [35]
2-methylpropanal Chocolate [35]
2-phenylacetaldehyde Berry, geranium, honey [36]
3-methylbutanal Chocolate [35]
Acetaldehyde Tart (acidic), pungent fruity [36]
Benzaldehyde Nutty, almond [35]

Esters

1,3-diacetoxypropane Acetic, fruit [37]
Diethyl butanedioate Cotton, fabric, floral, fruit [36]
Ethyl acetate Pineapple [14]
Isoamyl acetate Fruity, banana [36]
Propylene glycol diacetate Fruit [36]

Alcohols and Phenols

3-methylbutan-1-ol Pungent, repulsive taste [36]
2,3-butanediol (isomere A) Sweet [36]
2,3-butanediol (isomere B) Sweet [36]
2-methylpropan-1-ol Sweet, whiskey [36]
2-phenylethanol Rose, lilac, flowery, caramel [28]
Acetoin Buttery [36]
Ethanol -
Furfuryl alcohol Bitter [36]
Pentan-2-ol Fuel oil, green [36]

Ketones

Acetoin acetate Fruit [36]
Acetol Pungent, sweet, caramel-like [36]
Acetophenone Must, flower, almond, sweet [38]
Butane-2,3-dione Buttery [36]

Pyrazines
2,3,5,6-tetramethylpyrazine Milk-coffee, roasted, chocolate [35]
2,3,5-trimethylpyrazine Cocoa, roasted, cooked [35]
2,3-dimethylpyrazine Cooked, nutty [35]

Other

2,2,4,6,6-pentamethylheptane Unspecified

2-acetylpyrrole Bread, cocoa, hazelnut, licorice,
walnut [36]

Acetic acid Sour, astringent, vinegar [35]
Butyrolactone Sweet, caramel-like [36]
Decane Gasoline-like [36]
Dimethyl sulfide Unpleasant, cabbage-like [36]
Toluene Fuel-like [36]
Unidentified compound Unspecified

In Appendix A, Table A2, additional information is presented on the relative con-
centrations obtained for each of the identified volatile compounds among the chocolate
sample dataset.

A PCA was performed on the relative concentrations of the identified volatile com-
pounds. While the two main components (F1 and F2) were able to explain 54.74% of the
variance among the samples, the contribution of the third component to the explanation
of the variance of the dataset is also worth discussing. This is because the third compo-
nent appears to explain a sufficiently large amount of variance (as seen in the scree plot
pertaining to this PCA, shown in Appendix A, Figure A2). Together, F1 and F3 are capable
of explaining up to 53.18% of the dataset variance. In Figure 3, the PCA biplot showing the
distribution of the chocolate samples in the space of F1 and F2, as well as in the space of
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F1 and F3, is presented, together with the variable loadings, corresponding to all volatile
compounds.

Molecules 2023, 28, x FOR PEER REVIEW 7 of 23 
 

 

 
Figure 3. Biplots of the PCA on the relative concentration of the identified volatile compounds, 
showing distribution of samples (observations), and of volatile compounds (variables): (a) F1−F2 
biplot; (b) F1−F3 biplot. 

In relation to the biplot on the F1 and F3 components, it must be noted that the di-
mension of the third component appears to be mostly represented by one single chocolate 
sample (contributing to 25.13% of the building of the component), which would indicate 
this sample is an atypical individual. This atypical sample seems to be characterized by 

Figure 3. Biplots of the PCA on the relative concentration of the identified volatile compounds,
showing distribution of samples (observations), and of volatile compounds (variables): (a) F1−F2
biplot; (b) F1−F3 biplot.



Molecules 2023, 28, 3805 7 of 22

Within the space of the first two components, the samples are well scattered. A
segregation of the samples is predominantly observed in a gradient along the F1 axis,
pointing towards a somewhat well-defined formation of two distinct groups. F1 sample
differentiation appears to be mainly driven by the relative concentrations of pentan-2-ol
(whose contribution to the building of the component is of 3.46%), ethanol (3.36%), ethyl
acetate (3.32%), 3-methylbutan-1-ol (3.09%), and dimethyl sulfide (2.83%) on one side.
While on the opposite extreme of the F1 axis, the most contributing volatile compounds
leading the differentiation of the samples are acetic acid (contributing to the component at
5.79%), 2,3,5,6-tetramethylpyrazine (5.70%), 2,3,5-trimethylpyrazine (5.60%), benzaldehyde
(5.45%), 2,3-dimethylpyrazine (5.15%), and 2,3-butanediol (isomere A; 4.93%).

Differentiation of the samples along the F2 axis is less pronounced, compared to what
was seen along the F1 axis. No evident grouping of samples is seen here and the gradient
segregation is not as widely dispersed. Nonetheless, the volatile compounds contributing
the most to this second component may be clearly identified as diethyl butanedioate
(12.54%), 1,3-diacetoxypropane (9.10%), and the “unidentified compound” (7.81%) on one
side. The following compounds may be found towards the opposite direction, along the
components: axis butane-2,3-dione (11.13%), 2-methylbutanal (7.10%), 3-methylbutanal
(5.63%), acetoin acetate (5.50%), and 2-methylpropanal (5.31%).

It may then be assumed that differences in the relative concentrations of the above-
listed compounds for both F1 and F2 are contributing the most to the differentiation of
samples, in relation to their overall volatile composition.

Furthermore, it has been observed that sample segregation is not necessarily associated
with differences in the relative concentrations of entire chemical families, but rather appears
to be linked to specific, unique compounds that are independent of their chemical family
affiliation. This observation suggests that the sensory attributes of samples may be more
closely associated with individual compounds, rather than the chemical families to which
they belong.

In relation to the biplot on the F1 and F3 components, it must be noted that the
dimension of the third component appears to be mostly represented by one single chocolate
sample (contributing to 25.13% of the building of the component), which would indicate
this sample is an atypical individual. This atypical sample seems to be characterized
by compounds such as 3-methylbutan-1-ol (which is contributing to 10.55% of the third
component), 2-methylpropan-1-ol (10.18%), isoamyl acetate (9.73%), ethyl acetate (8.88%),
pentan-2-ol (8.75%), and ethanol (6.27%). It is only when looking at the third dimension
that these compounds are visually separated along its axis from dimethyl sulfide. Other
compounds whose distribution in relation to the other compounds changes markedly along
the axis of the third component are 1,3-diacetoxypropane and the unidentified compound,
both of which are also important contributors to the building of these components, and
which now seem to be clearly distanced from diethyl butanedioate, for instance.

2.3. Identification of Key Aroma Compounds Based on Their Impact on the Sensory Perception of
Dark Chocolate Samples

A partial least squares (PLS) regression was performed in an attempt to obtain a global
view of the whole dataset. This allows the principal relationships existing between groups
of volatile compounds (explanatory variables) whose concentrations may be able to predict
mean sensory scores (response variables) to be summarized. The variables were centered and
reduced. The quality of the PLS model obtained is explained using a bar plot presented
in Appendix A, Figure A3; it shows that while the first two components summarize the
correlations between explanatory and dependent variables well, the third component may
still provide additional information. The obtained bi-dimensional correlation plot on axes
t1 and t2 is presented below, in Figure 4.
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variables, and response variables, along the t1 and t2 axes, with the chocolate samples superimposed.

This overview of the PLS regression showed a number of similarities with the two
PCAs that had been already performed on both mean sensory scores and on the relative
concentration of the volatile compounds. Taken as a whole, this PLS regression confirmed
that the samples are broadly differentiated in two groups. One of these groups could be
described as highly aromatic for being linked to large concentrations of plenty of different
volatile compounds, which at the same time seem to describe higher fruity, floral, and
sweet mean sensory scores. On the other hand, a group of samples seems to be characterized
by lower concentrations of most of the identified volatiles and by exhibiting higher mean
sensory scores for astringent and bitter attributes, among others.

The PLS regression demonstrated that all fruity attributes remain seemingly very
highly linked, just as it was seen with the PCA. Not only is the link between the different
fruity attributes maintained, but the relationship existing between them and the acid, sweet,
and floral attributes appears to be further tightened. Moreover, these attributes seem to be
very tightly correlated to the differences in the relative concentration of numerous volatile
compounds, including but not limited to acetic acid, 2,3-butanediol, propylene glycol
diacetate, and 2,3-dimethylpyrazine.

Being located closer to the center of the plot, attributes such as spicy, winey, and nutty
appear to be amongst the most difficult to predict. This could indicate that differences in
their mean sensory scores are not well described by differences in the relative concentrations
of the volatile compounds. Noticeably for spicy, nonetheless, it was already seen in the
PCA that its contribution to the first two principal components was moderate and was thus
not driving sample segregation as much as the other attributes were. This might suggest
that the mean sensory scores for spicy, winey, and nutty are overall too low and similar for
them to drive sample differentiation altogether (or that they could be better represented in
the other PCA components).

The attributes of cocoa and roasted remain closely linked, as seen in the PCA, and
also appear to be largely described by lower relative concentrations of most of the volatile
compounds.
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Similarly, the PLS regression suggests that the attributes green, earthy, black olives,
woody, bitterness, and astringency are as related as initially observed in the PCA. It would
also seem that they may all be well characterized by higher relative concentrations of
ethanol, ethyl acetate, pental-2-ol, dimethyl sulfide, and 3-methylbutan-1-ol.

Lastly, there is a subgroup of samples that exhibit high relative concentrations of
compounds, including but not restricted to 2,3-dimethylpyrazine, 3-methylbutanal, 2-
methylpropanal, and 2-methylbutanal, but which are seemingly not well characterized by
any single sensory attribute.

The bidimensional correlation plot on axes t1 and t3 is also presented as complemen-
tary information (Appendix A, Figure A4). It shows how compounds such as acetaldehyde
and butane-2,3-dione are closely grouped together and relatively separated from the rest
along the t3 axis, being now more closely related to sensory attributes such as acidity and
sweetness. This might be giving hints at these compounds’ potential ambivalent character,
being linked to multiple sensory attributes at once.

2.4. PLS Predictive Models for Individual Sensory Attributes

It would be of interest to gain an in-depth understanding of the specific compounds
contributing to predicting each attribute. For this purpose, PLS predictive models were built.
Given the results of the prior global PLS regression analysis, which already established
some key relationships between the explanatory and response variables, it is not expected
that a substantial difference will be observed.

For each attribute, the samples were classified in two groups relative to their mean
sensory scores: samples above the median and samples below the median. This classification
would enable samples to be broadly differentiated in terms of their flavor potential per
attribute, delimited by the current sample set.

As described in Section 4. Materials and Methods, training models were built and
optimized by cross-validation. Predictive models were then built for the best fitted training
models. The model performance metrics for each of the obtained models are presented in
Table 2.

Table 2. Training (estimated by cross-validation) and validation (tested in-loop, with the whole data
set) test results of the best fitted models obtained for predicting samples classified as “above median”.

Training Dataset Metrics Validated Model Performance for Prediction

Attribute
Model

Number of
Components ROC Sensitivity Specificity Accuracy 95% CI Sensitivity Specificity

Bitterness 4 0.8508 0.8117 0.7300 0.7963 (0.6647,
0.8937) 0.7714 0.8421

Astringency 3 0.9263 0.8083 0.8608 0.7963 (0.6647,
0.8937) 0.8214 0.7692

Citrus 1 0.8146 0.6600 0.7283 0.7222 (0.5836,
0.8354) 0.7692 0.6786

Acidity 3 0.7621 0.6817 0.7008 0.7037 (0.5639,
0.8202) 0.7500 0.6667

Red fruits 3 0.8579 0.7058 0.7867 0.7037 (0.5639,
0.8202) 0.7407 0.6667

Dried fruits 2 0.7846 0.6283 0.8250 0.6852 (0.5445,
0.8048) 0.7273 0.6562

Green 2 0.8192 0.8225 0.6792 0.6852 (0.5445,
0.8048) 0.7143 0.6316

Black olives 1 0.6538 0.7342 0.5933 0.6667 (0.5253,
0.7891) 0.6562 0.6818

Woody 4 0.8038 0.7550 0.7500 0.6667 (0.5253,
0.7891) 0.6071 0.7308

Sweetness 3 0.7767 0.7042 0.7550 0.6667 (0.5253,
0.7891) 0.6667 0.6667

The five volatile compounds that had the largest impact in the building of each model
(most important variables) were retrieved for reporting. A Pearson correlation analysis was
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performed on the raw data in order to understand the nature of the correlations existing be-
tween the explanatory (volatile compounds) and the response variables (sensory attributes).
Both the most important compounds per predictive model and their corresponding Pearson
correlation coefficients (obtained from the raw data) are presented in Table 3.

Table 3. Compilation of the five variables with the highest relative importance in building the
above-median-models, together with their variable importance in projection (VIP) and Pearson
correlation coefficient.

Attribute
Model Variable VIP Corr.

Coeff. Attribute Model Variable VIP Corr.
Coeff.

Bitterness

Acetaldehyde 100.00 −0.782

Dried fruits

Ethyl Acetate 100.00 −0.554
Dimethyl sulfide 64.98 0.594 3-methylbutan-1-ol 96.36 −0.566
2,3-butanediol (isomere A) 49.53 −0.694 Ethanol 91.13 −0.439
3-methylbutan-1-ol 41.43 0.598 Acetaldehyde 89.82 0.505
Acetic acid 37.21 −0.636 Pentan-2-ol 87.1 −0.553

Astringency

Acetaldehyde 100.00 −0.749

Green

Acetaldehyde 100.00 −0.571
3-methylbutanal 79.16 −0.632 Diethyl butanedioate 86.36 0.344
2,3-butanediol (isomere A) 75.10 −0.622 Dimethyl sulfide 82.36 0.529
2-methylpropanal 72.22 −0.487 3-methylbutanal 77.51 −0.589
Dimethyl sulfide 59.42 0.531 Butane-2,3-dione 60.84 −0.411

Citrus

2,3-butanediol (isomere B) 100.00 0.596

Black olives

Dimethyl sulfide 100.00 0.530
Acetic acid 96.23 0.596 2,3-butanediol (isomere A) 92.87 −0.591
3-methylbutan-1-ol 91.39 −0.564 Acetic acid 88.45 −0.486
Ethyl Acetate 88.51 −0.503 Pentan-2-ol 75.66 0.310
Pentan-2-ol 87.34 −0.532 2,3-butanediol (isomere B) 71.44 −0.340

Acidity

Acetaldehyde 100.00 0.603

Woody

3-acetyloxypropyl acetate 100.00 0.151
Butyrolactone 73.30 0.451 Unknown compound 98.14 0.248
Isoamyl acetate 65.34 0.179 Acetaldehyde 91.19 −0.561
2,3-butanediol (isomere A) 64.38 0.557 2,3-butanediol (isomere A) 84.28 −0.626
2,3-butanediol (isomere B) 64.24 0.567 Butyrolactone 78.3 −0.257

Red fruits

Acetaldehyde 100.00 0.628

Sweetness

Acetaldehyde 100.00 0.605
Propylene glycol diacetate 83.08 0.665 Acetol 89.51 −0.042
2,3-butanediol (isomere A) 57.04 0.607 Dimethyl sulfide 73.49 −0.557
Dimethyl sulfide 51.26 −0.506 2,3-butanediol (isomere A) 67.46 0.582
2,3-butanediol (isomere B) 47.27 0.534 3-methylbutanal 59.84 0.512

Acetaldehyde seems to be a key compound in predicting multiple distinct models, and
it is either positively or negatively related to an increase in the attribute’s intensity. Other
compounds whose importance is prevalent in the building of several models are the two
isomeres of 2,3-butanediol, as well as dimethyl sulfide, followed by 3-methylbutan-1-ol,
acetic acid, 3-methylbutanal, pentan-2-ol, ethyl acetate, and butyrolactone. The rest of
the listed compounds seem to be more attribute-dependent, as they present the highest
importance in describing single unique attributes.

A different and more restrictive classification of the samples was then performed. The
samples were classified as “high” based on their mean sensory scores, with the highest
quartile of the scores being considered for the classification. Subsequently, the models were
developed as previously described based on this newly established classification of the
samples. ROC was again used as the metric. If was found that the accuracy, specificity,
and sensibility of most models decreased considerably, except for those of bitterness and
astringency. The best models obtained for both bitterness and astringency are presented in
Table 4.

There is only one compound whose importance markedly differs when attempting
to predict whether a sample is highly bitter as opposed to merely above the median, and
this is 2,3-butanediol (isomere B), which is now listed among the top five most important
variables. This would suggest that these compounds have a stronger differentiating power
than the rest when attempting to discriminate the samples that express a higher intensity
of bitterness.
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Table 4. Validation test results of the models obtained for predicting “high” sensory scores for
bitterness and astringency, along with the five most important variables, their VIP, and Pearson
correlation coefficients.

Looped Tested Model Performance

Attribute Model Accuracy 95% CI Sensitivity Specificity Variable VIP Corr. Coeff.

Bitterness

0.7963 (0.6647, 0.8937) 0.8919 0.5882 Acetaldehyde 100.00 −0.782
2,3-butanediol (isomere A) 67.29 −0.694
3-methylbutan-1-ol 65.25 0.598
2,3-butanediol (isomere B) 62.41 −0.548
Dimethyl sulfide 57.28 0.594

Astringency

0.8148 (0.6857, 0.9075) 0.8974 0.6000 2,3-butanediol (isomere A) 100.00 −0.622
Acetaldehyde 98.52 −0.749
Acetic acid 97.44 −0.519
2,3-butanediol (isomere B) 88.46 −0.378
3-methylbutan-1-ol 86.76 0.397

While for astringency, on the other hand, there is a more pronounced rearrangement
of the importance of the variables responsible for predicting if a sample will be classified as
highly astringent, as acetic acid, 2,3-butanediol (isomere B) and 3-methylbutan-1-ol now
acquire much more importance.

3. Discussion

Given that the set of chocolate samples evaluated in the context of this study were
produced from cocoa of the same variety and region, their flavor profiles were not expected
to be as different as if chocolates produced from different regions and genotypes had been
included. Nonetheless, while most samples displayed a dominant cocoa profile, important
differences were found in the expression of most other attributes. These differences trans-
lated into certain samples displaying markedly differentiated fruity notes as opposed to
others exhibiting more of a bitter/astringent/spicy/winey profile, covering a wide flavor
range within the varietal limitations of the cocoa in this region.

The grouping of the samples based on their sensory profiles (Figure 2) showed certain
parallels to what has been reported in similar studies conducted on the organoleptic
properties of cocoa products, where PCA plots have also grouped together attributes
such as astringent, bitter, and green, opposed to fruity, floral acid, or cocoa notes, for
instance [39].

All of the identified compounds had been previously reported in the literature as
present either in dry fermented cocoa beans, roasted beans, liquor, or dark chocolate from
different varieties and regions, processed under unique conditions [14,17,18,20,32,38–46].
Hence, none of the 35 identified compounds point to being unique markers that could be
potentially used for differentiating the Dominican Republic chocolates that make up the
sample dataset of this study in relation to other cocoa products.

The predictive models obtained from the PLS regression are limited in their predictive
capacity due to the reduced number of samples used, resulting in a data-dependent model.
Despite this limitation, the models still display a relatively good level of predictive accuracy.
It is important to be cautious when interpreting the results of the analyses aimed at identify-
ing the key compounds that could predict the perceived intensity of the evaluated sensory
attributes. There are several confounding factors that must be taken into consideration,
such as variable exchangeability and causality [47].

Simply identifying a compound as having an important relation with a particular
attribute does not necessarily imply causality. To establish causality, it would be necessary
to consider other factors that may be contributing to the expression of the sensory attribute
and to compare with previously reported findings. Variable exchangeability refers to the
presence of highly correlated variables, both explanatory and response variables, which
can lead to misleading conclusions about the importance of a particular compound in
predicting sensory attributes.



Molecules 2023, 28, 3805 12 of 22

Both variable exchangeability and causality will now be further discussed in relation
to the results obtained in an attempt to determine whether causality may be assumed. By
carefully considering both of these factors, a deeper understanding of the mechanisms
of sensory perception may be gained and more accurate predictions about the impact of
individual compounds on the perception of sensory attributes may then be conducted.

When attempting to identify the most important compounds responsible for contribut-
ing to the perception of each individual sensory attribute, it was seen that the existing
underlying correlation was often negative. This could indicate that the presence of cer-
tain volatiles was detrimental to the perception of the given attribute, or in other words,
that low concentrations of said compounds were needed to maximize the intensity of the
described attributes.

The above statement seems particularly true for bitterness and astringency. It is worth
noting that most of the compounds identified as important for predicting both bitterness
and astringency hold a negative correlation with the intensity of both attributes, which
would mean that the presence of these compounds in low concentrations would be needed
for a sample to be highly bitter and astringent.

Bitterness (classified as one of the four primary tastes, along with sweet, sour, and
salty) and astringency (a trigeminal sensation) have both been strongly linked in cocoa prod-
ucts to mostly non-volatile compounds [48]. Theobromine and caffeine, for instance, are
alkaloids that contribute to the typical bitter taste of cocoa [6]. Polyphenols and flavonoids
such as tannins, flavan-3-ols [(+)-catechin, (-)-epicatechin and (-)-epigallocatechin], and
anthocyanins have also been associated with an astringent and bitter taste [49].

Nonetheless, it would appear that the perception of both bitterness and astringency
increases whenever the concentration of compounds known to be linked to unpleasant
notes is relatively high, as it happens with dimethyl sulfide and 3-methylbutan-1-ol, while
the perceived intensity seems to decrease whenever the sample contains higher concen-
trations of compounds linked to pleasant notes, such as the sweetness associated with
2,3-butanediol, the chocolate taste linked to 3-methylbutanal and 2-methylpropanal, the
acidity of the acetic acid, and the fruity-like odor of the acetaldehyde. This could suggest
that these desirable compounds may have a particularly important masking effect over the
non-volatile-associated bitterness and astringency, as well as over the high concentrations
of volatile compounds responsible for the unpleasant notes that may be reminiscent to the
bitter taste and the astringent sensation.

In order to better understand the real impact of these compounds’ potential “masking
effect” on the reduced perception of bitterness and astringency in chocolate, further analysis
would be needed to also take into account the concentration of non-volatile bitter and
astringent compounds and to look deeper into the existing correlations.

It is noteworthy that bitterness and astringency exhibit a relatively high degree of
correlation, with a Pearson correlation coefficient of 0.732. This correlation is reflected in the
shared compounds that were selected as important for predicting both sensory attributes
(acetaldehyde, dimethyl sulfide, and 2,3-butanediol (isomere A)). This could also potentially
mean that the volatile compounds identified as important in describing bitterness are also
likely to be important in describing astringency. This suggests that compounds such as
2-methylpropanal and 3-methylbutanal, which are related to a chocolate-like flavor, may
be important when describing bitterness, as well as compounds such as 3-methylbutan-
1-ol, which has a pungent taste, in describing astringency. This highlights the potential
for overlapping contributions of certain volatile compounds in both attributes, further
emphasizing the interconnection of bitterness and astringency in the flavor profile of
dark chocolate.

The acidity, which is another taste that was accurately described and predicted by the
set of identified and quantified volatiles in this study’s samples, was unsurprisingly largely
influenced by high concentrations of acetaldehyde, which has an acidic taste. Surprisingly,
on the other hand, the differences in the concentration of acetic acid appeared not to have
an important effect on the increased perception of acidity, which would have been expected.
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Other volatiles found to be seemingly important in describing the acid taste were not
necessarily acidic in nature (butyrolactone, isoamyl acetate, and 2,3-butanediol), leaning
more towards sweet and fruity notes. This could suggest that such compounds may have
a potential enhancing effect on the perception of the volatile acidity brought in by acidic
volatile compounds such as acetaldehyde and acetic acid, as well as by the non-volatile
acidity, for which phosphoric and lactic acids are mostly responsible, together with oxalic,
malic, succinic, and citric acids [50].

Nonetheless, another possible explanation would be that some of these non-acidic
compounds are actually statistically exchangeable with the acetic acid or other volatile
compounds with an acid-like taste. When looking into the existing correlations between
the relative concentrations of volatile compounds, it may be seen that the acetic acid is very
highly correlated with most of the compounds here identified as important in describing
acidity: 2,3-butanediol (isomere A; Pearson correlation coefficient of 0.673), 2,3-butanediol
(isomere B; 0.850), acetaldehyde (0.673), and butyrolactone (0.595). This could then imply
that some of these compounds were selected as important variables in the PLS regression
because they were providing similar information compared to that of the acetic acid. This
redundancy would make it difficult to determine which variable is the most important
predictor and could not allow us to discard acetic acid as a likely important contributor in
the expression of acidity.

Derived from alanine, acetaldehyde is one of the most abundant Strecker aldehydes
linked to chocolate notes [51], and it is one of the most abundant carbonyl compounds
found in many fermented foods [52]. Acetaldehyde was found to be of high importance
in describing and predicting most of the sensory attributes discussed in this study. This
compound is mostly formed during alcoholic fermentation, by the decarboxylation of
pyruvate, after which it may subsequently be transformed into ethanol by alcohol dehy-
drogenase enzymes [53]. Acetaldehyde is also an intermediate in the synthesis of acetic
acid and acetoin, which may later be reduced to 2,3-butanediol [51]. While acetaldehyde’s
associated flavor is commonly described as “oxidized”, studies conducted into its impact
on the flavor perception of wines have shown that, at different concentrations, it may
be linked to markedly differentiated sensory notes, ranging from fresh fruit aromas at
low concentrations, to nutty, cocoa, ripe fruit, and even rotten-like off-flavors at higher
concentrations [53].

The numerous aroma descriptors that have been associated to different concentrations
of acetaldehyde could help to explain why it has also been identified as a key compound
when attempting to explain different chocolate descriptors in this present study. Addi-
tionally, it must also be considered that interactions of acetaldehyde with other molecules
may not only affect its flavor perception in chocolate, but may also alter the perception
threshold of free acetaldehyde [53].

In addition, it has been noted that during cocoa fermentation, acetaldehyde reacts with
epicatechin and procyanidin B2 to form ethyl-linked flavan-3-ol trimers [54]. This could
be the reason behind the observed negative correlation between the relative concentration
of acetaldehyde and the bitterness mean sensory scores, as it would suggest that a greater
amount of the available acetaldehyde was involved in the formation of non-volatile bitter
compounds through condensation reactions.

The statements above provide a reasonable explanation for the causal relationship
between the increased acetaldehyde content and the heightened perception of certain at-
tributes such as fruitiness, as well as the reduced perception of bitterness and astringency.
Furthermore, these deduced causal relationships are reinforced by the lack of strong corre-
lation between the relative concentration of acetaldehyde and that of any other compound,
which reduces the likelihood of mistakenly interpreting the impact of this compound as it
would not be easily exchangeable.

Similarly, while dimethyl sulfide (a sulfur compound widely present in food products)
on its own has been described as exhibiting green and unpleasant cabbage-like aromas [55],
studies about its impact on other aroma descriptors in wine as a matrix have been published.
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It has been suggested that dimethyl sulfide may play a role as a fruity flavor enhancer,
especially in the case of blackberry and blackcurrant aromas [55]. Furthermore, the presence
of dimethyl sulfide has also been linked to a decrease of the olfactory threshold of fruity
notes and to an increase in overall flavor intensity. At higher concentrations, on the other
hand, it has been reported as displaying notes more resembling black olives and truffles [55].
The results obtained seem to point to a similar direction in chocolate. Based on the retrieved
Pearson correlation coefficients, it would seem that higher concentrations of this compound
are presumably responsible for enhancing the expression of bitterness and astringency, as
well as the perceived green and black olive aromas. It would also seem that its presence in
low concentrations could indeed play an important role in enhancing a red fruit aroma and
sweet taste in the dark chocolate samples evaluated.

Dimethyl sulfide seems to exhibit no strong correlation with any other compound,
indicating that no other volatile compound is providing similar information as dimethyl
sulfide. This suggests that the conclusions drawn about it are likely valid.

Another compound whose importance seems to be prevalent in describing and pre-
dicting several of the studied sensory attributes is 2,3-butanediol. The present study’s
results show that higher concentrations of this compound appear to be related to a higher
overall flavor intensity, particularly in the case of desirable notes such as citrus, red fruits,
and sweetness; whereas lower concentrations seem to be linked to more intense bitter-
ness and astringency, which are attributes that tend to be associated with lower quality
chocolate. The obtained results would then be in agreement with previously reported
propositions that suggest that the presence of this compound is desirable for high quality
cocoa products [56].

As expected, the two identified isomers of 2,3-butanediol show a strong correlation
with each other, suggesting that the information they are each providing is redundant when
predicting any of the given attributes. Due to this exchangeability, the correlation they
have with other compounds is also quite similar, as is the case with their correlation with
acetic acid.

The identification of propylene glycol diacetate as a key predictor is noteworthy.
This volatile compound has been described as having a fruity aroma [43] and it has now
been found to be an important variable when determining the potential intensity of a red
fruit aroma in chocolate samples. Its high correlation with the red fruit sensory attribute
and its unique importance in predicting the expression of red fruits make it a valuable
marker in this regard. It is the second most important predictor of red fruit expression
after acetaldehyde, suggesting that there may be a combined effect on this particular
fruity attribute. Additionally, propylene glycol diacetate does not appear to be strongly
correlated to any compound other than 2,3,5,6-tetramethylpyrazine and acetophenone,
having Pearson correlation coefficients of 0.739 and 0.733, respectively. Since neither of
these two compounds are linked to expressing red fruit-related aromas, it may then be
assumed that the information provided by them is not similar and that propylene glycol
diacetate might indeed be responsible for the expression and perception of a red fruit aroma
in the chocolate samples evaluated.

4. Materials and Methods

Dark Chocolate Samples—Barry Callebaut AG provided 54 different dark chocolate
samples, which were produced following internal and non-disclosed processing parameters.
All chocolates were produced from cocoa beans issued from a fermentation campaign of
Trinitario beans carried out by Barry Callebaut AG in the Dominican Republic, in April
2020. The recipe of the chocolates was described as containing: 60% cocoa liquor, 30% sugar,
and 10% deodorized cocoa butter; no lecithin was added. The tempered chocolates were
molded in plastic molds into individual chocolate square-shaped pieces (3.5 cm × 3.5 cm),
each weighing approximately 5 g. The molded chocolates were vacuum sealed and allowed
to stabilize for a month at room temperature. The vacuum-sealed chocolates were then
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stored inside a freezing chamber at −20 ◦C. Prior to tasting, the chocolates were allowed to
defreeze at room temperature for two days.

Sensory Analysis—All tasting sessions were carried out at CIRAD’s (Montpellier,
France) sensory analysis laboratory, in individual boxes and under a red light. Blind
sensory analysis was performed on 54 dark chocolate samples by a panel composed of
13 trained tasters, 6 of which were female and 7 were male, aged between 21 and 60 years
(all members of CIRAD’s internal sensory panel).

The 13 panelists, who were already familiar with dark chocolate sensory evaluation,
were trained throughout six training sessions for the purpose of this analysis. Six different
dark chocolates were used for this training, each exhibiting distinctive and intense attributes
in particular (e.g., cocoa, bitter, yellow fruits, etc.). The chocolates used for the training
were either provided by Barry Callebaut AG and CIRAD, or they were bought from local
chocolatiers in France. During the first two training sessions, open discussions were held
on the perceived attributes of each of the chocolates, In the course of the next four sessions,
the chocolates were then blindly tasted, repeatedly. The performance of the panelists was
validated based on their repeatability and agreement with the rest of the panel.

Eight sessions distributed over six weeks were needed for the tasting and evaluation
of the 54 chocolates. In each session, six chocolates were evaluated, one of which was
a replicate sample taken randomly within that session’s set of samples. The sensory
attributes (sweetness, bitterness, acidity, astringency, cocoa, fruity-yellow fruits, fruity-
red fruits, fruity-citrus, fruity-dried fruits, nutty, winey, black olives, green, earthy, floral,
woody, spicy, and roasted) were evaluated using a score that ranged from 0 to 10. For each
attribute, the mean sensory score was calculated from the scores given by the eight most
discriminant panelists. The most discriminant panelists were those who gave a wider range
of scores to each attribute among different samples, effectively demonstrating their ability
to best differentiate the subtleties between chocolate samples.

Volatile Analysis—Dark chocolate samples were frozen in liquid nitrogen before
being milled using a conventional coffee mill. The retrieved powder was then sieved
and stored in a freezer at −20 ◦C. Volatile compounds were extracted from 2 g of sieved
sample powder by means of headspace solid-phase micro extraction (SPME-HS), using
a 50/30-µm divinylbenzene/carboxene/polydimethylsiloxane (DVB/CAR/PDMS) fiber
(Supelco Analytical Products—Sigma Aldrich, Merck, Darmstadt, Germany). The extracted
volatile compounds were analyzed using an Agilent 6890 N gas chromatography–mass
spectrometer (GC–MS) equipped with a capillary column DBWAX, 60 m length × 0.25 mm
internal diameter × 0.25 µm film thickness (Agilent, Santa Clara, California, USA). The full
procedure for volatile compound extraction and identification was previously described by
Assi-Clair et. al. [57]. The relative concentration of each compound was calculated based
on the exact weight of the sample and on the known concentration of the compound that
was added as an internal standard (butan-1-ol). Each sample was analyzed in triplicate and
the mean of the three obtained concentrations per sample was recovered for reporting (in
µg/g of fresh matter) and for the subsequent statistical analysis.

Statistical Data Analysis—Statistical analysis, including chemometric analysis based
on the principal component analysis (PCA) and on partial least squares (PLS) regression,
was performed with XLSTAT STUDENT (Addinsoft, Paris, France).

PLS descriptive and predictive models were built in R, using the ‘caret’ package.
All variables were centered and scaled. The dataset was split into training and testing
sub-datasets. PLS training models were built, using the ‘trainControl()’ function. The
training models were optimized by cross-validation following the “repeatedcv” method,
by repeatedly partitioning the data into a fixed number of equally sized groups (20 folds
were used) and then training and testing the model using each group as the validation set.
This process was then repeated 30 times. The metric used in the cross-validation with the
training data subset was the receiver operating characteristic (ROC).

The best models obtained from the training data subset were then validated using the
testing data subsets. This operation was repeated in a loop in order to cover the entirety
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of the dataset, iteratively training and testing the PLS models on different subsets of the
data. The ‘predict()’ function was used to obtain predictions for the test set based on the
trained models for each attribute. In order to determine the best fitted predictive model per
attribute, the following performance indicators were taken into consideration: accuracy,
confidence interval, sensitivity, and specificity.

5. Conclusions

The results of this study provide new insights into the link between the volatile com-
position and the perceived flavor of dark chocolates processed from cocoa beans sourced
from the Dominican Republic. This study helped identify certain volatile compounds
that are important in predicting the intensity of the sensory attributes of interest in dark
chocolate samples. Acetaldehyde, dimethyl sulfide, and 2,3-butanediol were found to be
key predictors in identifying the intensity at which multiple sensory attributes may be
perceived, including bitterness, astringency, citrus, acidity, red fruits, dried fruits, green,
black olives, woody, and sweetness. While the relative concentrations of these compounds
seem to be key in describing and predicting the flavor intensity of multiple attributes,
propylene glycol diacetate was identified as a unique key compound in describing and
predicting a single attribute (red fruit aroma).

This study has also demonstrated the potential to differentiate chocolates with relative
accuracy based on their flavor profiles, using predictive models based solely on the volatile
composition of the analyzed chocolates. The efficacy of these models could be improved by
incorporating more samples, leading to more accurate flavor profile predictions. Further-
more, these models could potentially be used by industry players as a reliable, repeatable,
and inexpensive tool, which would spare them the costs of using human sensory panels for
the classification and evaluation of chocolate and other cocoa products. As such, the results
of this study open up new avenues for the cocoa and chocolate industries to evaluate and
optimize their flavor quality.
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Appendix A

Table A1. Average, standard deviation, minimum, and maximum values of the mean sensory scores
of all samples per sensory attribute evaluated. The scores ranged from 0 to 10.

Sensory Attribute MEAN STDEV MAX MIN

Sweetness 4.245 0.535 5.125 3.125
Bitterness 4.108 0.991 6.750 2.750
Acidity 3.997 0.686 6.000 2.375
Astringency 4.038 0.762 5.375 2.250
Cocoa 5.447 0.529 6.563 4.000
Yellow fruits 2.598 0.983 4.750 0.750
Red fruits 2.703 1.033 5.125 0.500
Citrus 2.288 0.866 4.250 0.375
Dried fruits 2.089 0.710 3.625 0.500
Nutty 2.082 0.585 3.625 1.000
Winey 1.258 0.492 2.375 0.250
Black olives 1.050 0.506 2.500 0.125
Green 1.274 0.629 2.875 0.375
Earthy 1.627 0.625 3.375 0.625
Floral 2.232 0.739 4.000 0.625
Woody 1.525 0.525 2.750 0.625
Spicy 2.729 0.635 4.375 1.500
Roasted 2.533 0.519 3.750 1.625

Table A2. Average, standard deviation, minimum, and maximum values of the relative concentrations
of all identified volatile compounds in the entire sample dataset. The relative concentration was
reported in µg/g of fresh matter.

Volatile Compound MEAN STDEV MAX MIN

Acetaldehyde 0.341 0.099 0.550 0.146
Dimethyl sulfide 0.092 0.024 0.145 0.048
2-methylpropanal 0.319 0.074 0.489 0.166
Ethyl acetate 29.288 19.128 82.080 6.820
2-methylbutanal 0.467 0.136 0.838 0.255
3-methylbutanal 1.454 0.369 2.437 0.927
Ethanol 3.032 1.940 9.798 0.499
2,2,4,6,6-pentamethylheptane 20.881 7.421 41.752 7.318
Butane-2,3-dione 5.061 1.038 7.746 3.044
Decane 0.229 0.140 0.602 0.017
Toluene 0.794 0.763 2.900 0.030
Isoamyl acetate 1.325 0.825 6.224 0.558
2-methylpropan-1-ol 1.304 0.824 6.300 0.605
Pentan-2-ol 2.081 1.098 5.184 0.805
3-methylbutan-1-ol 0.745 0.394 1.872 0.213
Acetoin 15.747 3.984 25.335 8.412
Acetol 7.988 2.160 13.707 4.305
2,3-dimethylpyrazine 0.687 0.356 1.797 0.178
Acetoin acetate 2.830 1.063 5.550 1.183
2,3,5-trimethylpyrazine 2.688 1.229 5.724 0.857
Acetic acid 297.584 67.181 416.201 177.745
2,3,5,6-tetramethylpyrazine 27.517 17.194 92.471 5.735
Benzaldehyde 1.767 0.797 3.913 0.595
Propylene glycol diacetate 1.309 0.950 4.243 0.192
2,3-butanediol (isomere A) 37.814 10.784 55.346 17.717
2,3-butanediol (isomere B) 12.679 4.402 21.477 5.786
Butyrolactone 1.456 0.214 2.112 1.115
2-phenylacetaldehyde 0.568 0.357 1.909 0.145
Acetophenone 0.500 0.242 1.292 0.155
1,3-Diacetoxypropane 4.828 7.718 34.468 0.098
Furfuryl alcohol 0.166 0.038 0.248 0.108
Diethyl butanedioate 0.156 0.153 0.714 0.004
Unidentified Compound 10.470 15.051 64.091 0.331
2-phenylethanol 4.958 2.097 10.207 1.677
2-Acetylpyrrole 0.451 0.209 1.033 0.165
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