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1  |  INTRODUC TION

Analysis of animal microbiota is a fundamental issue in ecology and 
evolution since it can help understand how animal species cope 
with challenges associated with environmental and evolutionary 
changes (e.g. Groussin et al., 2017; Lindsay et al., 2020). Since 

microbial symbionts have a mutually beneficial relationship with 
their host and play important roles in the immune and physiological 
systems, they likely affect their ecology and evolution (i.e. nutri-
tional ecology and host range, life history, behaviour). Furthermore, 
the complex microbial communities associated with animals play 
a significant role in human and animal health and in agriculture, 
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Abstract
Gaining meaningful insights into bacterial communities associated with animal hosts 
requires the provision of high- quality nucleic acids. Although many studies have com-
pared DNA extraction methods for samples with low bacterial biomass (e.g. water) or 
specific PCR inhibitors (e.g. plants), DNA extraction bias in samples without inherent 
technical constraint (e.g. animal samples) has received little attention. Furthermore, 
there is an urgent need to identify a DNA extraction methods in a high- throughput 
format that decreases the cost and time for processing large numbers of samples. We 
here evaluated five DNA extraction protocols, using silica membrane- based spin col-
umns and a 96- well microplate format and based on either mechanical or enzymatic 
lysis or a combination of both, using three bacterial mock communities and Illumina 
sequencing of the V4 region of the 16SrRNA gene. Our results showed that none 
of the DNA extraction methods fully eliminated bias associated with unequal lysis 
efficiencies. However, we identified a DNA extraction method with a lower bias for 
each mock community standard. Of these methods, those including an enzymatic lysis 
showed biases specific to some bacteria. Altogether, these results again demonstrate 
the importance of DNA extraction standardization to be able to compare the microbi-
ome results of different samples. In this attempt, we advise for the use of the 96- well 
DNeasy Blood and Tissue kit (Qiagen) with a zirconia bead- beating procedure, which 
optimizes altogether the cost, handling time and bacteria- specific effects associated 
with enzymatic lysis.
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and their analysis could be useful to discover unexplored patho-
gens (Galan et al., 2016) and develop future research on biologi-
cal control innovation (Zhang et al., 2018). Microbial studies can 
also help shape conservation initiatives in the face of global change 
(Littleford- Colquhoun et al., 2022). Yet, beyond model systems, 
current knowledge of microbial communities associated with ani-
mals remains limited (Frago et al., 2020; Weinroth et al., 2022). This 
limited knowledge is partly because recognizing cryptic, diverse 
and numerous microorganisms hosted by animals is a difficult task. 
Nevertheless, the design of standard taxonomic barcodes for poly-
merase chain reaction (PCR) amplification (e.g. 16S ribosomal RNA 
(rRNA) gene for bacteria identification) and the latest advances in 
high- throughput sequencing have recently increased the sensitiv-
ity and accuracy of microbial communities profiling. Consequently, 
gene sequencing studies of animal host- associated microbial pop-
ulations have increased in the past 10 years (Frago et al., 2020; 
Weinroth et al., 2022).

The potential of microbial metabarcoding is limited by biases 
introduced by essential processing steps that can modify composi-
tional and abundance data sets (Pollock et al., 2018). The efficiency 
of the cell lysis step in the DNA extraction protocol is known to 
have among the largest impact on the apparent abundance of taxa 
in bacterial communities (Brooks et al., 2015; Sinha et al., 2017). 
Indeed, bacteria have different structures of cell walls, which en-
close their cytoplasm and genomic contents, more or less hard to 
lyse. Notably, some classes of bacteria carry thick layers of pepti-
doglycan, like gram- positive bacteria and spore- forming bacteria. 
Harsh sample treatment could affect DNA quality, particularly for 
the gram- negative (thin- walled) bacteria, while mild process may 
cause partial lysis, particularly for gram- positive (thick- walled) 
bacteria (Bag et al., 2016). Both cocktail of lytic enzymes (Yuan 
et al., 2012) and bead beating using either silica, ceramic or zirconia 
beads (de Boer et al., 2010; Javal et al., 2022; Sohrabi et al., 2016) 
have been shown to improve DNA isolation from gram- positive and 
spore- forming bacteria (reviewed in Pollock et al., 2018). Based on 
this observation, many distinct DNA extraction protocols that in-
corporate mechanical or chemical lysis or a combination of both, 
including commercial kits dedicated to microbiome applications, are 
now available. Beyond the type of lysis, other sources of variability 
between DNA extraction methods are reagent microbial contami-
nation that is ubiquitous and falsely inflates specific richness within 
samples (Salter et al., 2014) and either low-  or high- throughput for-
mat that dictates different constraints on manual processing of indi-
vidual samples, elution volume and cross- contamination. As a result, 
biases potentially specific to DNA extraction protocols can produce 
variations in bacterial diversity for the same sample (reviewed in 
Pollock et al., 2018).

Biases in 16S rRNA studies due to DNA extraction have re-
ceived much attention over the past decade, but the literature has 
predominantly focused on protocols for samples that combine the 
issue of lysing a diverse array of microbes to additional challenges 
specific to the sample type. Notably, samples from soil (Dopheide 
et al., 2019; Tiago et al., 2015), plants (Giangacomo et al., 2021) and 

faeces (Gryp et al., 2020; Hart et al., 2015; Kennedy et al., 2014; 
Knudsen et al., 2016; Salonen et al., 2010; Wu et al., 2010) are 
complex environments that contain chemical inhibitors that reduce 
DNA purity and PCR efficiency (e.g. debris and calcium ions in envi-
ronmental samples and organic matter such as humic acid, bile salts 
and polysaccharides in biological samples). Additionally, water sam-
ples (Deiner et al., 2015; Djurhuus et al., 2017; Liu et al., 2019; Shi 
et al., 2020; Wang et al., 2020) and noninvasive tissue samples used 
in health and disease study or clinical diagnosis (e.g. cuticular, nasal 
or saliva swabs; Abusleme et al., 2014; Birer et al., 2017; Bjerre 
et al., 2019; Mattei et al., 2019; Teng et al., 2018; Vesty et al., 2017; 
Zhou et al., 2019) may contain small quantities of bacterial biomass, 
that could result in a high risk of contamination from exogenous 
sources and a low bacterial DNA yield, which can complicate down-
stream processes.

By contrast, the selection of a suitable procedure for bacterial 
DNA extraction from samples without inherent technical constraint 
or potential bias, that is, containing a mid or high bacterial biomass 
and without specific PCR inhibitors, has not received the same at-
tention. Yet, studies of animal microbiome often focus on the gut 
where resides the most diverse and abundant microbial assemblage 
(with the exception of mammals and birds, for which the faeces are 
often studied instead; but see Čížková et al., 2021) in order to study 
symbiotic associations (e.g. Javal et al., 2022) or interactions be-
tween microbiome and parasites (e.g. Guiver et al., 2022). A major 
advantage of samples without inherent constraint is that bias in com-
positional and abundance data of the DNA extraction methods can 
be assessed based on the analysis of mock community standards of 
known composition. Indeed, while previous studies proposed some 
standard DNA extraction methods for a given sample type (e.g. the 
DNeasy PowerSoil Kit is utilized for buccal and faecal samples in the 
standardized DNA extraction protocol established by the Human 
Microbiome Project; https://www.hmpda cc.org), their validation of 
a bacterial DNA extraction method was limited by the need to rely 
on real samples of unknown bacterial composition in order to take 
into account the complexity of the environmental or biological ma-
trix (Greathouse et al., 2019). Although these existing studies com-
pared DNA extraction methods based on DNA yield, total number 
of passing- filter reads or specific richness within samples, none of 
these criteria are expected to inform on the accuracy of the micro-
bial community diversity.

Furthermore, previous bacterial DNA bias studies have pre-
dominantly focused on DNA extraction based on microfuge tubes 
rather than on 96- well microplates. While efforts to increase 
the throughput of bacterial DNA extraction have recently been 
reported, they mainly concern human microbiomes in the con-
text of clinical studies where samples are time- sensitive (Marotz 
et al., 2018; Shaffer et al., 2021, 2022). Yet, there is also a need 
for high- throughput (HTP) sample processing for analyses of 
large sample sizes in the context of animal studies, in order to 
decrease both the time and cost of processing, which can be 
prohibitive for most laboratories studying ecology and evolu-
tion (e.g. Abbate et al., 2020). In this attempt, methods based on 

https://www.hmpdacc.org
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silica adsorption membrane are promising since they are known 
to produce DNA of high quality (e.g. Schiebelhut et al., 2017) and 
do not require the substantial equipment startup costs of other 
modern solid- phase methods using magnetic fields beads (such as 
the ThermoScientific® KingFisher or Maxwell® automated ma-
chines). Although some studies have explored the microbial com-
munities' biases due to DNA extraction based on silica membrane 
spin- columns using microcentrifuge tubes (Gryp et al., 2020; 
Hart et al., 2015; Kennedy et al., 2014; Tiago et al., 2015; Wu 
et al., 2010), to our knowledge, none have looked at these biases 
using a HTP 96- well microplate format.

In this study, we aimed to identify a high- throughput format DNA 
extraction method that yields, at a reasonable price, fast results with 
no loss of bacterial taxonomic representation and the least bias in 
abundance data. We evaluated the performance of five different ex-
traction protocols based on a 96- well microplate format and three 
different commercial kits using silica adsorption membranes and 
commonly used to extract bacterial DNA from animal tissues. We 
chose two relatively expensive commercial kits designed for micro-
biome or metagenome applications and a cheaper kit dedicated to 
DNA extraction for animal tissues. We included two homemade pro-
cedures based on the former commercial kit, adding a preliminary 
additional cell lysis procedure, either a bead beating using zirconia 
beads or an enzymatic lysis. These five HTP 96 DNA extraction pro-
tocols were evaluated based on bacterial taxonomic composition 
and abundance inferred from Illumina amplicon sequencing of the 
V4 region of bacterial 16SrRNA gene. To this aim, we used three 
available commercial mock community standards for bacteria whole 
cells that were contrasted by including either phylogenetically dis-
tant or close bacterial strains, which are distributed in either even 
or log proportions.

2  |  MATERIAL S AND METHODS

Figure 1 provides a schematic view of our methodological workflow, 
which is detailed below.

2.1  |  Bacterial mock community samples

We used three commercial bacterial mock community standards 
prepared as a mixture of whole cells of multiple bacteria spe-
cies fully sequenced, characterized and authenticated. The 20 
Strain Even Mix Whole Cell Material standard (ATCC MSA- 2002; 
American Type Culture Collection) contained equal numbers of cells 
of twenty bacteria species and the Microbial Community Standard 
I (ZymoBIOMICS D6300) and Standard II (ZymoBIOMICS D6310) 
contained eight other bacteria species, respectively, in equal or 
logarithmic numbers of cells (hereafter named ATCC, ZBI and ZBII, 
respectively; see Table 1 for detailed taxonomic composition). The 
logarithmic community standard increased dominance of one spe-
cies (95.9%) and secondary species are in a proportion below 2.8%. 

Since the 16S rRNA gene varies in the number of copies within a 
genome (from 2 to 14), the number of 16S rRNA gene copies in each 
mock community standard does not reflect the number of cells (or 
genome copies) of bacteria species. We obtained this expected 
value by correcting the cell proportions provided by the supplier by 
the number of 16S rRNA gene copies of each bacterial genome (see 
Table 1 for detailed genomic composition and expectations in gene 
copies for each cell community standard, hereafter referred as to 
EXP). In order to evaluate PCR and sequencing bias independently of 
the DNA extraction step, we included genomic- DNA mass- balanced 
standards (hereafter referred as to DNA Standard) of same bacteria 
for each mock community standard: 20 Strain Even Mix Genomic 
Material (ATCC MSA- 1002), Microbial Community DNA Standard 
I (ZymoBIOMICS D6305) and DNA Standard II (ZymoBIOMICS 
D6311).

2.2  |  HTP 96 DNA extraction methods

High- throughput DNA extractions were performed according 
to five different protocols, based on three different commercial 
kits: the DNeasy PowerSoil HTP 96 DNA Kit (Qiagen; MoBio 
PowerSoil Kit Cat#: 12955- 4) and the ZymoBIOMICS 96 DNA Kit 
(ZymoResearch Cat#: D4303), both designed for purifying bac-
terial DNA from a variety of sample inputs, and, the DNeasy 96 
Blood and Tissue kit (Qiagen Cat#: 69582) dedicated to DNA ex-
traction for animal tissues and sometimes also used for microbial 
community analyses from these hosts (e.g. Abbate et al., 2020; 
Rombaut et al., 2017; Rynkiewicz et al., 2015). Three methods, 
called PS, ZB and BT, are based on the use of the respective com-
mercial kit following the manufacturer's recommendations with 
a preliminary step of overnight proteinase K lysis. We also in-
cluded two homemade modified versions of the BT method. In the 
method called BTB (for ‘Blood & Tissue kit + Beads’), a mechanic 
cell lysis procedure was added after the proteinase K lysis: the 
lysate was bead- beaten for 5 min with 500 mg of 0.45/0.55 mm zir-
conia beads Zirmil® Y (Saint- Gobain), in a TissueLyser II (Qiagen) 
at the maximum speed setting (30 Hz) during 5 min. The beads 
were removed after centrifugation at 6000 g for 30 s and by pipet-
ing the supernatant in new collection microtubes. In the method 
called BTE (for ‘Blood & Tissue kit + Enzymes’), an enzymatic cell 
lysis procedure was added as a preliminary step to the proteinase 
K lysis: cells were suspended in 180 μL ATL buffer of the DNeasy 
Blood and Tissue kit (Qiagen) with 20 μL lysozyme (10 mg/mL, 
Sigma- Aldrich), 5 μL mutanolysin (10 KU/mL, A&A Biotechnology) 
and 0.2 μL lysostaphin (10 mg/mL, Sigma- Aldrich) and incubated 
for 30 min at 37°C, then 20 min at 50°C. After this additional step, 
20 μL of proteinase K was added for overnight lysis at 56°C. The 
cost of the five methods was calculated per sample using the list 
price for necessary supplies, reagents and kits as of November 
2018 (standard laboratory equipment was excluded). Total time 
for handling 2 × 96 samples for each DNA extraction method 
was calculated for each method by counting the minutes spent 
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performing each step of the protocol during laboratory manipu-
lation. DNA extractions were performed in three technical repli-
cates for each method and bacterial cell community standard. The 
final elution was 200 μL for all methods. The final DNA yield (ng) 
was assessed using the Qubit® dsDNA HS Assay kit with a Qubit® 
2.0 fluorometer.

2.3  |  16S rRNA gene sequencing

We used universal primers to amplify a 251- bp portion of the 
hypervariable V4 region of the bacterial 16S rRNA gene (16S- 
V4F:587 GTGCC AGC MGC CGC GGTAA; 16S- V4R: GGACT ACH 
VGG GTW TCT AATCC) and a dual- index method to multiplex the 

F I G U R E  1  Schematic representation of our workflow for the evaluation of five HTP 96 DNA extraction methods, using three mock 
community standards of bacterial cells. NCEXT, negative controls for DNA extraction; NCPCR, negative controls for PCR; PK, proteinase K.
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PCR products in an Illumina MiSeq sequencing run (see Galan 
et al., 2016; protocol derived from Kozich et al., 2013). All pre- PCR 
laboratory manipulations were conducted with filter tips under a 
sterile hood in a DNA- free room, that is, a room dedicated to the 
preparation of PCR mix and equipped with hoods that are kept 
free of DNA by UV irradiation and bleach treatment. DNA am-
plification was performed in 5 μL of Multiplex PCR kit (Qiagen) 
master mix, with 4 μL of combined i5 and i7 primers (2.5 μM each) 
and 2 μL of genomic DNA. The PCR began with an initial denatura-
tion at 95°C for 15 min; followed by 35 cycles of denaturation at 
95°C for 20 s, annealing at 55°C for 15 s and extension at 72°C for 
5 min; followed by a final extension step at 72°C for 10 min. PCR 
products (3 μL) were verified by electrophoresis in a 1.5% agarose 
gel. The putative presence of contamination was checked along 
the whole laboratory procedure using different negative controls 
(five negative controls for DNA extraction, that is, one for each 
protocol, and three negative controls for PCR). A total of 45 DNA 
samples and eight negative controls were amplified and indexed in 
three independent PCR reactions using different dual- index com-
binations and then sequenced on the MiSeq Illumina platform. We 
performed a run of 2 × 251 bp paired- end sequencing shared with 
samples of another project.

2.4  |  Data denoising and filtering

Bioinformatics steps were performed with the FROGS pipeline 
(Escudié et al., 2018) available at https://github.com/geral dinep 
ascal/ FROGS.git. An exception was the preparation of Illumina reads 
since the preprocessing step of FROGS fails for data produced fol-
lowing the dual- index method of Kozich et al. (2013). Instead, we used 
a homemade Shell script (see the section ‘Data availability’) to trim 
primers with cutadapt v. 1.9.1 (Martin, 2011) and merge paired- end 
reads into contigs with FLASH v. 1.2.11 (Magoc & Salzberg, 2011). 
We then used the FROGS pipeline to sort reads by length (expected 
value of 251b ± 10b) cluster reads in fine- scale molecular opera-
tional taxonomic units (fine- scale OTUs) with SWARM v2 and a local 
clustering threshold using a d- value of 3 (Mahé et al., 2014, 2015), 
dereplicate reads, remove chimeras using VSEARCH (Rognes et al., 
2016) and affiliate a taxonomy for each fine- scale OTU using NCBI 
Blast+ on the Silva SSU version 132 database including only the ref-
erence reads with a pintail quality score of 100. Finally, since the 
remaining chimera were visually detected in the abundance table 
(sequences formed by two more abundant sequences of the same 
sample), we used the isBimeraDeNovo function from the dada2 pack-
age (Callahan et al., 2019) to detect and remove the residual chime-
ras. Our two- step approach to remove chimeras, which combines 
first a conservative algorithm (e.g. a cross- sample validation and the 
absence of parameters for tuning sensitivity) and second a more 
sensitive algorithm, is likely to be effective while limiting the risk of 
removing sequences falsely detected as chimeric.

We filtered for false positives generated by other processes than 
the DNA extraction step, that is, arising from PCR library preparation St

an
da

rd
 ID

AT
CC

 ID
G

en
ba

nk
 ID

Sp
ec

ie
s

G
ra

m
 s

ta
tu

s
G

en
om

e 
si

ze
 

(M
b)

G
en

e 
co

py
 

nu
m

be
r

Su
pp

lie
r p

ro
po

rt
io

n 
(%

)
EX

P 
(%

)

ZB
II

AT
CC

 1
91

17
N

A
Li

st
er

ia
 m

on
oc

yt
og

en
es

Po
si

tiv
e

2.
97

5–
 6

89
.1

95
.9

ZB
II

AT
CC

 1
54

42
N

A
Ps

eu
do

m
on

as
 a

er
ug

in
os

a
N

eg
at

iv
e

6.
51

4
8.

9
2.

8

ZB
II

N
A

N
A

Sa
lm

on
el

la
 e

nt
er

ic
a

N
eg

at
iv

e
4.

86
5–

 7
0.

08
9

0.
07

ZB
II

N
A

N
A

St
ap

hy
lo

co
cc

us
 a

ur
eu

s
Po

si
tiv

e
2.

74
5

0.
00

00
89

0.
00

01

N
ot

e:
 T

he
 e

ig
ht

 b
ac

te
ria

l g
en

om
es

 fr
om

 Z
ym

oB
IO

M
IC

S 
st

an
da

rd
s 

ca
n 

be
 d

ow
nl

oa
de

d 
at

 h
tt

ps
://

s3
.a

m
az

o n
aw

s.
co

m
/z

ym
o-

 fil
es

/ B
io

Po
 ol

/Z
ym

oB
 IO

M
IC

S.
ST

D
.re

fs
eq

.v
2.

zi
p.

 G
en

om
e 

si
ze

 a
nd

 1
6S

 rR
N

A
 

ge
ne

 c
op

y 
nu

m
be

r p
er

 g
en

om
e 

fo
r e

ac
h 

ba
ct

er
ia

l s
pe

ci
es

 a
re

 p
ro

vi
de

d 
by

 th
e 

su
pp

lie
r. 

Th
e 

co
lu

m
n 

‘S
up

pl
ie

r p
ro

po
rt

io
n’

 re
fe

rs
 to

 re
la

tiv
e 

pr
op

or
tio

ns
 in

 g
en

om
e 

co
pi

es
 fo

r A
TC

C 
st

an
da

rd
s 

w
he

re
as

 it
 

re
fe

rs
 to

 re
la

tiv
e 

pr
op

or
tio

ns
 in

 to
ta

l D
N

A
 a

m
ou

nt
 fo

r Z
ym

oB
IO

M
IC

S.
 E

XP
 re

fe
rs

 to
 re

la
tiv

e 
pr

op
or

tio
ns

 in
 1

6S
 rR

N
A

 g
en

e 
co

pi
es

 a
nd

 w
as

 c
om

pu
te

d 
co

ns
id

er
in

g 
va

ria
tio

n 
am

on
g 

ba
ct

er
ia

 in
 g

en
om

e 
si

ze
s 

an
d/

or
 in

 n
um

be
rs

 o
f 1

6S
 rR

N
A

 g
en

e 
co

pi
es

 if
 a

pp
lic

ab
le

. W
he

n 
th

e 
ge

no
m

e 
si

ze
 is

 v
ar

ia
bl

e 
w

ith
in

 th
e 

ba
ct

er
ia

l s
pe

ci
es

, w
e 

co
ns

id
er

ed
 a

 m
ed

ia
n 

va
lu

e 
(i.

e.
 fo

r E
sc

he
ric

hi
a 

co
li,

 L
ist

er
ia

 m
on

oc
yt

og
en

es
 a

nd
 

Sa
lm

on
el

la
 e

nt
er

ic
a)

.
Ab

br
ev

ia
tio

ns
: A

TC
C

, s
ta

nd
ar

d 
fr

om
 th

e 
A

m
er

ic
an

 T
yp

e 
C

ul
tu

re
 C

ol
le

ct
io

n;
 Z

BI
, s

ta
nd

ar
d 

fr
om

 Z
ym

oB
IO

M
IC

S 
w

ith
 b

ac
te

ria
 in

 e
qu

al
 n

um
be

rs
; Z

BI
I, 

st
an

da
rd

 fr
om

 Z
ym

oB
IO

M
IC

S 
w

ith
 b

ac
te

ria
 in

 
lo

ga
rit

hm
ic

 n
um

be
rs

.

TA
B

LE
 1

 
(C

on
tin

ue
d)

https://github.com/geraldinepascal/FROGS.git
https://github.com/geraldinepascal/FROGS.git
https://s3.amazonaws.com/zymo-files/BioPool/ZymoBIOMICS.STD.refseq.v2.zip


    |  7CHAPUIS et al.

or index switching during sequencing. Note that we did not filter for 
false positives generated by the DNA extraction step in order to evalu-
ate bacterial contaminants that arose from reagents in DNA extraction 
kits (see below). Filtering was inspired by the strategy proposed by 
Galan et al. (2016) and automated with homemade R scripts (see the 
section ‘Data Availability’). First, we discarded positive results associ-
ated with putative incorrect assignments of reads due to the gener-
ation of false index- pairing generated during the Illumina sequencing 
(Kircher et al., 2012), using a maximum false index- pairing rate for each 
PCR product of 0.02%, based on estimates from Galan et al. (2016). 
Then, a given bacterial OTU was considered positive only if the 
three PCR library replicates were positive (Alberdi et al., 2018; Galan 
et al., 2016; Robasky et al., 2014). This step allowed us to remove in-
consistent OTUs and control for random contamination that may occur 
during the preparation of PCR 96- well microplates. At this stage, the 
reads of the replicated PCRs of each bacterial OTU were summed for 
each of the 53 samples. Finally, we discarded positive results associ-
ated with read counts below a bacterial OTU- specific threshold that 
control for PCR reagent contamination using PCR negative controls.

2.5  |  Evaluation of DNA extraction methods

In order to evaluate the HTP 96 DNA extraction methods, we fo-
cused on the accuracy of representation of bacterial species, in both 
composition (i.e. true and false positives) and evenness (i.e. relative 
abundances). All statistical analyses were performed with the R 
software v. 4.2.1 and appropriate packages (R Development Core 
Team, 2022), and data visualization was performed with ggplot2 
(Wickham, 2016).

For each of the five HTP 96 DNA extraction methods (PS, ZB, 
BT, BTE, BTB), we first counted the bacterial OTUs of the mock 
community standards that were recovered from Illumina amplicon 
sequencing of the V4 region of bacterial 16SrRNA gene (true posi-
tives). We then identified the bacterial OTUs that were not expected 
in the samples (false positives) and tested for the effect of the HTP 
96 DNA extraction protocol on their number. To this aim, we per-
formed negative binomial generalized linear models (GLMs) for 
each of the three bacterial mock community standard (ATCC, ZBI, 
ZBII), using the function glm.nb from the MASS package (Venables 
et al., 2002), and tested the factor significance with an analysis of 
variance (type III), using the Anova functions from the car package 
(Fox & Weisberg, 2019). When significant, we used the emmeans 
package (Lenth, 2023) for pairwise comparisons between extraction 
methods' marginal mean estimates using a Tukey's HSD procedure 
for multiple testing correction. Furthermore, in an attempt to dis-
entangle bacteria that arose from reagents in DNA extraction kits 
(i.e. kitome) or from random contamination (i.e. well- to- well, aero-
sol or investigators contamination) during the DNA extraction step, 
we used negative samples that control for DNA extraction reagent 
contamination.

For each mock community standard (ATCC, ZBI, ZBII), we mea-
sured the dissimilarity between the observed and the expected 

relative abundances in 16S rRNA gene copies of bacteria, using the 
Bray– Curtis dissimilarity, using the function vegdist from the vegan 
package (Dixon, 2003). This metric is commonly used in microbi-
ome analyses and is easy to interpret, with 0% indicating that two 
samples share the exact same relative abundance of each OTU and 
100% indicating that two samples share none of the OTUs. Since the 
Bray– Curtis dissimilarity assumes that the total numbers of reads 
are equal across samples (Bray & Curtis, 1957), the metric values 
were computed on rarefied data using the minimum sample size, 
using the function rrarefy from the vegan package (Dixon, 2003). 
While rarefaction guarantees an absence of effect of differences 
in sample sizes, this procedure is expected to decrease the sta-
tistical power for sample comparisons, as a result of omitted read 
counts and added noise from the random sampling (McMurdie & 
Holmes, 2014). Thus, preliminary we verified that our sample sizes 
were large enough to withstand the loss of data and power (see the 
Results section).

Based on these dissimilarity values, we first represented DNA 
purification method differences in a reduced dimensional space 
with a nonmetric multidimensional scaling (NMDS) plot, using the 
function metaMDS from the vegan package (Dixon, 2003). We then 
used nonparametric permutational MANOVA (PERMANOVA) with 
1000 permutations to assess for a potential effect of the HTP 96 
DNA extraction method, using the function adonis from the vegan 
package (Dixon, 2003). When significant, we used post- hoc pairwise 
comparisons between purification methods using the pairwiseAdonis 
package (Arbizu, 2017). Given a sample size of three DNA extraction 
replicates only, the statistical power of these pairwise tests is ex-
pected to be very low, even for a large size effect (e.g. estimates of 
20% and 34% at a threshold of 0.05 and 0.1, respectively, for a size 
effect of 0.6, using the pwr.anova.test function of the pwr package; 
Champely, 2020). Thus, p- values near the standard threshold of sta-
tistical significance were also considered to interpret the trends (i.e. 
p- values ≤.1). In order to evaluate the contribution of the PCR bias 
in these dissimilarity values to expectation, we also computed the 
dissimilarity value to expectation of the abundance table observed 
from the corresponding manufacturer's DNA standard (DNA). Note 
that our experimental design actually did not allow us to distin-
guish the PCR bias from the bias related to the sequencing process. 
However, it is likely that Illumina sequencing plays a limited role in 
amplicon read abundance bias relative to PCR, as shown for several 
artificial communities sequenced at an amplicon of the Cytochrome 
c oxidase I (COI) (see tables 1 and S1 in Galan et al. (2018)).

3  |  RESULTS

The total cost and handling time of the five different DNA extrac-
tion methods ranged in a similar order (Figure 1), with higher values 
for the methods based on commercial kits dedicated to bacteriome 
applications (see details on min counts for each step of the meth-
ods' protocol in the Table S1 and details on costs for supplies, rea-
gents and kits of each method in the Table S2). The total handling 
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time is closely related to the number of steps needed to carry out 
each method (see Table S1, e.g. BT: 13 steps, 69 min vs. PS: 36 steps, 
283 min).

The 53 PCR products, including mock community standard sam-
ples and negative controls, in three PCR replicates, generated a total 
of 646,166 reads and 312 bacterial fine- scale OTUs. After the first 
filtering step controlling for false index- pairing during sequencing, 
we kept 645,762 reads representing 258 bacterial OTUs. After the 
second filtering step considering only OTUs positive in all PCR tripli-
cates, we kept 641,854 reads representing 95 bacterial OTUs. After 
the third filtering step using PCR negative controls, we kept 638,209 
reads, still representing 95 OTUs. Because no OTU was removed, 
this step indicated the absence of OTUs specific to PCR reagent 
bacterial contaminants. All samples reached the rarefaction plateau, 
indicating saturation (see rarefaction curves in the Figure S1) and 
adequate sample size (i.e. a mean of 12,932 passing- filter 16S reads 
excluding DNA extraction negative controls). Yet, we detected a sig-
nificant effect of the HTP 96 DNA extraction protocol on sample 
sizes by using a negative binomial GLM (p- values < .001). Pairwise 
comparisons between extraction methods' estimated marginal 
means revealed only a few significant comparisons out of 30 (i.e. 
ZB vs. BTE and BT vs. BTE for ATCC standard and ZB vs. PS, BT and 
BTB for ZBI standard and ZB vs. PS and BTB vs. PS for ZBII), which 
nevertheless suggested that the ZB commercial kit produced slightly 
higher read numbers (Figure S2), justifying data rarefaction prior to 
dissimilarity computation (using the minimum sample size, i.e. 8314 
passing- filter 16S reads).

3.1  |  Bacterial community composition

Taxonomic composition of the DNA samples in Figure 2 showed 
that all HTP 96 DNA extraction methods recovered the expected 
bacterial OTUs from all mock community standards. However, we 
observed a few oddities largely independent of the HTP 96 DNA ex-
traction method (see also Figure S3). As for the ATCC standard of 20 
bacteria, the two Staphylococcus species (S. aureus and S. epidermis) 
share the same sequence of the V4 region of bacterial 16SrRNA gene, 
leading to 19 expected bacterial OTUs. Furthermore, although used 
primers perfectly match its sequence, the bacteria Cutibacterium 
acnes, expected to be found in a few hundred of reads with our se-
quencing coverage, was unexpectedly not found by any of the tested 
DNA extraction method, nor in the corresponding commercial DNA 
standard. Satisfactorily, log- distributed taxa of the ZBII standard 
were detected provided that our deep coverage (i.e. about 13,000 
passing- filter reads per sample) was sufficient to detect at least a 
few reads, with an order of prevalence preserved in most replicates. 
For example, although Escherichia coli and Salmonella enterica, were 
expected at a low proportion of 0.07%, corresponding to an expec-
tation of only 13 reads for our mean sample coverage (about 13,000 
passing- filter 16S reads), both bacteria were systematically found. 
The rare gram- positive bacteria Lactobacillus fermentum (expected 
at 0.012%) at the limit of the detection threshold (a single- read 

expectation) was detected systematically by the two DNA extrac-
tion commercial kits dedicated to bacteriome applications (PS and 
ZB), sporadically by the BTB method and in none of the replicates of 
the BT and BTE methods. Unexpectedly, the extremely rare gram- 
positive bacteria S. aureus (expected at 0.0001%) and Enterococcus 
faecalis (expected at 0.00067%) were detected at least in a triplicate 
by the PS and ZB methods, despite of a null expectation with our 
coverage. The BT commercial kit and its derivatives did not recover 
the presence of these bacteria below our detection threshold, with 
the exception of the BTB method that detected E. faecalis once.

Figures 2 and S3 also showed that DNA samples recovered a 
total of 50 OTUs that were not expected in any of the mock com-
munity standards (false positives), with an average of four bacterial 
contaminants per DNA sample. As for the ATCC mock community 
standard, we detected a higher false- positive rate for the PS com-
mercial kit (negative binomial GLM; p- value = .003 and significant 
p- values for PS vs. BTE and BTB pairwise comparisons). For the ZBI 
mock community standard with bacteria evenly mixed, no signifi-
cant difference in the number of bacterial contaminants was found 
among HTP 96 DNA extraction methods (negative binomial GLM; 
p- value = .09). As for the ZBII mock community standard with log- 
distributed bacteria, the ZB commercial kit dedicated to microbiome 
applications showed a higher number of false positives than all other 
methods (negative binomial GLM; p- value = .008), with only the pair-
wise comparison with PS being significant (p- value = .015). Despite 
their high number, false- positive OTUs generated by the DNA ex-
traction step represented an overall low read proportion, with an 
average of 1.7%, 0.1% and 1.0% for the ATCC, ZBI and ZBII mock 
community standards, respectively. Note that such relative abun-
dances will not affect much the Bray– Curtis dissimilarity values, 
which are not sensitive to differences in the relative abundance for 
the rarest OTUs.

In addition, 30 foreign bacterial OTUs were detected in the DNA 
extraction negative controls, including 25 in the single ZB method 
(see their taxonomy and abundance in Table 2). Other HTP 96 DNA 
extraction methods led to none, a single or two bacterial OTUs in 
their DNA extraction negative controls. Out of these 30 reagent con-
taminants, ten were also found in our DNA samples, with a sequence 
that either was similar to that of a bacteria expected in commercial 
community standards (i.e. Acinetobacter baumannii, Enterococcus 
faecalis, Salmonella enterica of the ZBII mock community standard) 
or that corresponds to one of the 50 false positives found in our 
DNA samples (Table 2). Out of these 10 bacterial OTUs observed 
both in our DNA samples and in the DNA extraction negative con-
trols, six (all in ZB negative controls) would have been removed from 
the abundance table using the filtering- specific threshold of Galan 
et al. (2016).

3.2  |  Bacterial community evenness

Bray– Curtis dissimilarity values to cell standard expectations (EXP) 
computed on rarefied data ranged from 17% to 52% and were close 
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to each other for the different commercial community standards 
(i.e. means after PCR bias correction of 40%, 37% and 41%, for the 
ATCC, ZBI and ZBII standards, respectively; Figure 3). Since we were 
primarily interested in the bias due to DNA extraction, we estimated 
PCR bias contribution to Bray– Curtis dissimilarity values to cell 
standard expectations, using a DNA standard from the correspond-
ing manufacturer (DNA). Dissimilarity values of the DNA standard 
were 18%, 11% and 15% for ATCC, ZBI and ZBII bacterial mock 
communities, respectively. Thus, the PCR bias expectedly increased 
with the number of bacterial taxa present (e.g. higher in the ATCC 
standard with 20 taxa) and the unevenness of proportions (e.g. 
higher in the ZBII standard with log- distributed taxa). Overall, the 
PCR bias accounted for a large third of the dissimilarity to cell stand-
ard expectation, which after correction averaged 25% (Figure 3). 

Graphical representations of relative abundance data (Figure 2) for 
the two mock community standards with bacteria in equal num-
bers showed that this mean level of dissimilarity was partly related 
to a systematic under- representation of gram- positive bacteria 
relative to gram- negative bacteria. For the ATCC cell standard, the 
relative abundances of the gram- positive bacteria Actinomyces od-
ontolyticus, Bifidobacterium adolescentis, Clostridium beijerinckii and 
Staphylococcus aureus and epidermis, were systematically under- 
estimated while relative abundances of the gram- negative bac-
teria Escherichia coli, Pseudomonas aeruginosa and Rhodobacter 
sphaeroides were systematically over- estimated (Figure 2a). For the 
ZBI cell standard, the relative abundance of the gram- positive bacte-
ria Bacillus subtilis was systematically under- estimated while relative 
abundances of the gram- negative bacteria E. coli, P. aeruginosa and 

F I G U R E  2  Taxonomic composition of the DNA samples obtained from the five HTP 96 DNA extraction methods compared in this study. 
The relative abundances of expected bacterial OTUs (true positives) are represented by different colours and those of false positives are 
represented in a grey scale. EXP refers to the expected relative proportions in 16S rRNA gene copies of each bacteria (see Table 1 for further 
details) and DNA to the manufacturer's DNA standard of the corresponding mock community standards. ATCC, standard from the American 
Type Culture Collection; BTB, DNeasy Blood and Tissue (Qiagen) + mechanic cell lysis procedure; BT, DNeasy Blood and Tissue (Qiagen); 
BTE, DNeasy Blood and Tissue (Qiagen) + enzymatic cell lysis procedure; PS, DNeasy PowerSoil HTP 96 DNA (Qiagen); ZBII, standard from 
ZymoBIOMICS with bacteria in logarithmic numbers; ZBI, standard from ZymoBIOMICS with bacteria in equal numbers; ZB, ZymoBIOMICS 
HTP 96 DNA (ZymoResearch).

(a)

(b)

(c)
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TA B L E  2  Read numbers for the 30 bacterial OTUs detected in the DNA extraction negative controls of the five HTP 96 methods used in 
this study.

Frogs Cluster ID Silva taxonomy NC.EXT.PS NC.EXT.ZB NC.EXT.BT NC.EXT.BTE NC.EXT.BTB

OTU_5a Proteobacteria; Gammaproteobacteria; 
Enterobacteriales; Enterobacteriaceae; 
NA; NA

499 0 0 0 0

OTU_7a Proteobacteria; Gammaproteobacteria; 
Pseudomonadales; Moraxellaceae; 
Acinetobacter; NA

0 96 0 0 0

OTU_13a Firmicutes; Bacilli; Lactobacillales; 
Enterococcaceae; Enterococcus; NA

0 0 0 0 193

OTU_20b Proteobacteria; Gammaproteobacteria; 
Pseudomonadales; Moraxellaceae; 
Acinetobacter; NA

0 2634 0 0 0

OTU_22b Proteobacteria; Gammaproteobacteria; 
Betaproteobacteriales; 
Burkholderiaceae; NA; NA

0 2432 0 0 0

OTU_36b Proteobacteria; Gammaproteobacteria; 
Betaproteobacteriales; 
Burkholderiaceae; Ralstonia; NA

0 878 0 0 0

OTU_37b Proteobacteria; Gammaproteobacteria; 
Pseudomonadales; Moraxellaceae; 
Acinetobacter; NA

0 12 0 0 0

OTU_40 Firmicutes; Bacilli; Bacillales; 
Paenibacillaceae; Paenibacillus; NA

0 0 0 0 704

OTU_41b Proteobacteria; Gammaproteobacteria; 
Pseudomonadales; Moraxellaceae; 
Acinetobacter; NA

0 605 0 0 0

OTU_43 Proteobacteria; Gammaproteobacteria; 
Pseudomonadales; Moraxellaceae; 
Enhydrobacter; NA

0 0 448 0 0

OTU_64 Proteobacteria; Alphaproteobacteria; 
Rhizobiales; Rhizobiaceae; 
Allorhizobium- Neorhizobium- 
Pararhizobium- Rhizobium; NA

0 253 0 0 0

OTU_77 Actinobacteria; Actinobacteria; NA; NA; 
NA; NA

0 0 117 0 0

OTU_79 Proteobacteria; Alphaproteobacteria; 
Rhizobiales; Xanthobacteraceae; NA; 
NA

0 175 0 0 0

OTU_86b Proteobacteria; Gammaproteobacteria; 
Betaproteobacteriales; 
Burkholderiaceae; NA; NA

0 150 0 0 0

OTU_127 Proteobacteria; Gammaproteobacteria; 
Betaproteobacteriales; 
Burkholderiaceae; Aquabacterium; NA

0 89 0 0 0

OTU_133 Proteobacteria; Alphaproteobacteria; 
Rhizobiales; Rhizobiaceae; 
Allorhizobium- Neorhizobium- 
Pararhizobium- Rhizobium; NA

0 72 0 0 0

OTU_143b Proteobacteria; Gammaproteobacteria; 
Betaproteobacteriales; 
Burkholderiaceae; Aquabacterium; NA

0 142 0 0 0

OTU_147 Proteobacteria; Gammaproteobacteria; 
Betaproteobacteriales; 
Burkholderiaceae; NA; NA

0 64 0 0 0
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Salmonella enterica were systematically over- estimated (Figure 2b). 
Yet, there were also counter- examples with over- estimation of the 
relative abundance of some gram- positive bacteria with all HTP 96 
DNA purification methods, such as B. cereus and Acinetobacter bau-
mannii (in the ATCC standard) and Lactobacillus fermentum (in the 
ZBI standard).

Furthermore, the relative bacterial abundances varied sig-
nificantly depending on the HTP 96 DNA extraction method 
used (p- values ≤ .003; PERMANOVAs). Overall, across commer-
cial community standards, Bray– Curtis dissimilarity values to cell 
standard expectation averaged 31% for PS, 35% for BTB, 40% 
for BTE and 45% for BT and ZB (Figure 3). However, p- values for 

post- hoc pairwise comparisons (Figure 3) and projections along 
the NMDS biplot (Figure 4) showed that the performance of DNA 
extraction methods differed across mock community standards. 
For the ATCC standard, BTE outperformed other methods with a 
10% decrease in dissimilarity values or more, followed by BTB that 
showed a difference of a single or a few percents (Figure 3; barely 
significant p- values of  .1). Accordingly, there was a clear grouping 
of the BTE triplicates on one side of the biplot and triplicates of all 
other methods on the other side (Figure 4). Nevertheless, though 
closer in distance to the theoretical composition of the cell stan-
dard and to the observed composition of the DNA standard along 
the MDS1 axis, BTE was the furthest from the standards on the 

Frogs Cluster ID Silva taxonomy NC.EXT.PS NC.EXT.ZB NC.EXT.BT NC.EXT.BTE NC.EXT.BTB

OTU_173 Proteobacteria; Alphaproteobacteria; 
Azospirillales; Azospirillaceae; NA; NA

0 42 0 0 0

OTU_192 Proteobacteria; Gammaproteobacteria; 
Betaproteobacteriales; 
Burkholderiaceae; Aquabacterium; NA

0 37 0 0 0

OTU_202 Proteobacteria; Alphaproteobacteria; 
Caulobacterales; Caulobacteraceae; 
NA; NA

0 33 0 0 0

OTU_209 Proteobacteria; Alphaproteobacteria; 
Rhizobiales; Pleomorphomonadaceae; 
Chthonobacter; NA

0 29 0 0 0

OTU_227 Actinobacteria; Actinobacteria; 
Propionibacteriales; Nocardioidaceae; 
Nocardioides; NA

0 32 0 0 0

OTU_231 Proteobacteria; Gammaproteobacteria; 
NA; NA; NA; NA

0 20 0 0 0

OTU_244 Proteobacteria; Alphaproteobacteria; 
Rhizobiales; Devosiaceae; Devosia; NA

0 21 0 0 0

OTU_247 Proteobacteria; Gammaproteobacteria; 
Betaproteobacteriales; 
Burkholderiaceae; Noviherbaspirillum; 
NA

0 19 0 0 0

OTU_264 Proteobacteria; Alphaproteobacteria; 
Azospirillales; Azospirillaceae; 
Azospirillum; NA

0 17 0 0 0

OTU_291 Proteobacteria; Alphaproteobacteria; 
Caulobacterales; Caulobacteraceae; 
Brevundimonas; NA

0 14 0 0 0

OTU_344 Proteobacteria; Gammaproteobacteria; 
Betaproteobacteriales; 
Burkholderiaceae; Hydrogenophaga; 
NA

0 19 0 0 0

OTU_436 Proteobacteria; Alphaproteobacteria; 
Rhizobiales; Stappiaceae; 
Pannonibacter; NA

0 8 0 0 0

Abbreviations: NC.EXT.BT, DNA extraction negative control for the DNeasy Blood and Tissue (Qiagen); NC.EXT.BTB, DNA extraction negative 
control for the DNeasy Blood and Tissue (Qiagen) + mechanic cell lysis procedure; NC.EXT.BTE, DNA extraction negative control for the DNeasy 
Blood and Tissue (Qiagen) + enzymatic cell lysis procedure; NC.EXT.PS, DNA extraction negative control for the DNeasy PowerSoil HTP 96 DNA 
(Qiagen); NC.EXT.ZB, DNA extraction negative control for the ZymoBIOMICS HTP 96 DNA (ZymoResearch).
aOTU present in commercial community standards.
bForeign OTU found in our DNA samples.

TA B L E  2  (Continued)
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MDS2 axis. The BTE profile (Figure 2) differed from other DNA 
extraction methods, with the negative (positive) bias in the rela-
tive abundance of several gram- positive (gram- negative) bacteria 
partly or mostly corrected (e.g. Staphylococcus aureus and epider-
mis, Enterococcus faecalis, Streptococcus agalactiae, Acinetobacter 
baumannii, Helicobacter pylori and Neisseria meningitidis). Yet, 
this was at the expense of a few other bacteria for which the 
overall bias was increased (e.g. Bacillus cereus and Deinococcus 
radiodurans).

For the two ZB mock community standards with 8 bacteria either 
in equal (ZBI) or logarithm (ZBII) numbers, PS and BTB outperformed 
other methods (i.e. p- values of .1 approaching the standard signif-
icant threshold). More precisely, for the ZBI standard, PS showed 
dissimilarity to expectation 15% lower than BTB that in turn showed 
dissimilarity to expectation 15% lower than the three other meth-
ods (Figure 3). Accordingly, PS triplicates, closely followed by BTB 
triplicates, were closer to the standards than other methods along 
the first axis of the NMDS biplot (Figure 4). For the ZBII standard, 
BTB and PS both showed a mean drop of 15% in dissimilarity values 
relative to other methods (Figure 3; marginally significant p- values 
of .1). Their triplicates were close to each other and closer to the 
standards than other methods on the MDS1 axis (Figure 4). Figure 2 
also showed that these two DNA extraction methods systematically 
represented more accurately the gram- positive bacteria Listeria 
monocytogenes and the gram- negative bacteria Pseudomonas aerugi-
nosa, the two most abundant bacteria of the ZBII standard with log-
arithm distribution (i.e. 95.9% and 2.8%). For the ZBI standard with 
even distribution, the three other under- represented gram- positive 
bacteria (i.e. Bacillus subtilis, Enterococcus faecalis, Staphylococcus 
aureus) were also better recovered than with other DNA extraction 
methods.

4  |  DISCUSSION

In this study, we compared five different DNA extraction methods 
commonly used to purify bacterial total DNA from samples without 
technical constraints beyond those associated with microbiota. All 
five methods are based on 96 microplate extraction kits using silica 
adsorption membranes that allow for decreasing both the cost and 
time of processing while increasing the throughput (up to 192 sam-
ples at the same time), which is of high relevance when large sample 
sizes are required. Using cell community standards with known spe-
cies composition and abundances, we were able to evaluate each 
DNA extraction method on the accuracy of the bacterial community 
complexity (using compositional and abundance data).

Using Illumina amplicon sequencing of the V4 region of bacterial 
16SrRNA gene, we showed a satisfactory recovery of bacteria for 
all HTP 96 DNA extraction methods. For the mock community stan-
dard with a log distribution, we observed that only the two commer-
cial kits dedicated to microbiome applications (PS and ZB) recovered 
systematically the bacteria Lactobacillus fermentum at the very limit 
of the detection threshold (i.e. about 0.01%) and sporadically the 
bacteria Staphylococcus aureus and Enterococcus faecalis far below 
the detection threshold (i.e. ≤ 0.001%). The commercial kit dedicated 
to animal tissues (BT) and its version with an additional enzymatic 
lytic step (BTE) never recovered these rarest bacteria at counts 
within the statistical background, while the version with an additional 
mechanical lytic step (BTB) recovered two of them in a single DNA 
extraction replicate. This result can partly be explained by bias in 
estimation, since, in the same mock community of bacteria with even 
distribution, L. fermentum was consistently represented in higher rel-
ative abundance than expected for all methods and E. faecalis was 
found in higher relative abundance for the PS method. Nevertheless, 

F I G U R E  3  Bray– Curtis dissimilarity to expectation from three community standards of bacterial cells, for the five HTP 96 DNA 
extraction methods compared in this study. The hatched light red colour shows the PCR bias contribution to dissimilarity values to cell 
standard. It was computed as the Bray– Curtis dissimilarity value to the expectation of the commercial DNA standard of the corresponding 
community standard. See the legend of Figure 2 for details on acronyms of the five DNA extraction methods studied and the three mock 
community standards of bacterial cells. Letters show methods' difference based on p- value ≤ .1 in the post- hoc pairwise comparisons (see 
Materials and Methods for justification of this threshold).
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it is significant that all HTP 96 DNA extraction methods recovered 
all bacterial OTUs whose relative abundance was above the detec-
tion limit given our coverage (i.e. about 13,000 passing- filter reads 
per sample), even if this relative abundance was very low (i.e. 0.07%). 
This is even truer that we applied a conservative approach (i.e. pos-
itivity of three PCR replicates) that can precisely remove rare OTUs 
with a very low abundance (Alberdi et al., 2018).

Fifty false positives were recovered despite our data filtering pro-
cess for false positives generated by other processes than the DNA 
extraction step, that is, index switching during sequencing or arising 
from PCR library preparation. Assuming the purity of commercial 

mock community standards and the efficiency of our filtering strat-
egy for false positives generated during PCR and sequencing steps, 
this large number of foreign OTUs could only have been introduced 
during the DNA extraction step. Such a high level of bacterial con-
taminants would strongly affect richness estimation and stress the 
importance of data filtering. Random contamination during the DNA 
extraction step was suggested by the weak and inconsistent effect 
of HTP 96 DNA extraction method in numbers of bacterial con-
taminants, as well as the low repeatability across DNA extraction 
replicates. Yet, the majority of these exogenous OTUs (i.e. 30) were 
detected in the negative samples that control for DNA extraction 
reagent contaminants and were specific for each DNA extraction 
kit (see Table 2), including 25 in the single ZB method. Interestingly, 
out of these 30 reagent contaminants, only ten were also found in 
our DNA samples. This can easily be explained by the fact that con-
tamination disproportionately affects samples with a low biomass 
of endogenous bacterial DNA (Salter et al., 2014). Nevertheless, 
the large number of bacteria observed in the ZB kitome is import-
ant to consider since such contaminant bacteria introduced prior to 
PCR may affect the sample bacterial taxonomic composition even 
in high- biomass samples (Callahan et al., 2017; Minich et al., 2019; 
Salter et al., 2014). Such bacterial OTUs could be removed from the 
abundance table for statistical analyses, using for example negative 
controls for DNA extraction and the corresponding filtering- specific 
threshold of Galan et al. (2016). In our case, such a filtering step 
led to the removal of 60% of bacterial contaminants found in DNA 
samples. Yet, the removal of background contaminants in DNA sam-
ples can be unsatisfactory in cases where they genuinely exist in 
DNA samples. In addition, some of the detected bacteria in DNA 
extraction negative controls can still originate from random con-
tamination (i.e. well- to- well, aerosol or investigators' contamina-
tion) during the DNA extraction step (Davis et al., 2018; Karstens 
et al., 2019). Consequently, there is a risk that this approach removes 
a substantial proportion of bacteria that were biologically relevant 
(e.g. > 20% in Karstens et al., 2019). It is therefore recommended to 
use DNA extraction kits containing as little bacterial contaminant as 
possible, for example, BT or PS in this study.

Unsurprisingly, none of the five HTP 96 DNA extraction meth-
ods did recover the expected relative numbers of 16S rRNA gene 
copies. After correction for PCR bias contribution, we observed an 

F I G U R E  4  Nonmetric multidimensional scaling (NMDS) 
ordination based on Bray– Curtis dissimilarity of rarefied data for 
each commercial community standard, with convex hulls of HTP 
96 DNA purification methods. (a) Standard from the American 
Type Culture Collection (stress value = 0.0001). (b) Standard 
from ZymoBIOMICS with bacteria in equal numbers (stress 
value = 0.0148). (c) Standard from ZymoBIOMICS with bacteria 
in logarithmic numbers (stress value = 0.0076). Each symbol 
represents a sample and colours represented the projections of 
the expected relative proportions in 16S rRNA gene copies of each 
bacteria (EXP; see Table 1 for further details), the manufacturer's 
DNA standard of the corresponding community standard (DNA) 
and the five DNA purification methods (see the legend of Figure 2 
for details on their acronyms).
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overall moderate level of dissimilarity to expectation similar across 
mock community standards (about 25%). The cell wall architec-
ture was the greatest contributor to dissimilarity values, with a 
systematic under- representation of some gram- positive bacteria 
associated with the over- representation of gram- negative bac-
teria. This result suggests that none of these optimized HTP 96 
DNA extraction method, even those dedicated to bacteriome ap-
plications, lysed gram- positive bacteria with a similar efficiency 
to gram- negative bacteria. Furthermore, a major finding was that 
this overall level of dissimilarity in bacterial abundances differed 
across HTP 96 DNA extraction methods in a dependent manner 
with the bacterial taxonomic composition. BTE outperformed 
other methods in correcting for the lysis bias between gram- 
positive and gram- negative bacteria of the ATCC community stan-
dard (at least for 6 out of the 20 bacteria in presence) while PS 
and BTB outperformed other methods in correcting the lysis bias 
for the eight bacteria of the ZBI and ZBII community standards, 
which differed by the relative abundance distribution (either even 
or logarithmic). Finally, we observed variations unique to a HTP 
96 DNA extraction method, such as over- representation of some 
gram- positive bacteria, which tend to be associated with DNA ex-
traction methods including enzymatic lysis additional to the stan-
dard proteinase K (e.g. Bacillus cereus and Deinococcus radiodurans 
with BTE for the ATCC standard and Enterococcus faecalis with PS 
for the ZBI and ZBII standards).

Altogether, these results again demonstrate the importance of 
DNA extraction standardization in microbiome analyses. While the 
best practice remains to use an identical DNA extraction protocol 
for all samples in comparisons, it is difficult to advise on which 
DNA extraction protocol to choose, since our study did not iden-
tify a HTP 96 DNA extraction protocol with systematically lower 
measures of bias than others for the different tested cell mock 
community standards. However, of the methods that stand out in 
either bacterial community (BTB, BTE and PS), the BTB method 
seems to be the best compromise, since it avoids the enzymatic 
procedure that increases the risk of specific effects on some 
gram- positive bacteria but also had the lowest cost (i.e. 3.46€ 
per sample vs. 4.27€ and 7.54€, respectively) and handling time 
(91 min for 2 × 96 samples vs. 122 min and 283 min, respectively). 
Overall, our study confirmed that the vigorous beating with beads 
is helpful for sample homogenization and mechanical cell lysis of 
bacteria (reviewed in Pollock et al., 2018). This result is of broad 
applicability in animal ecological studies, at least when tissue sam-
ples contain a mid-  or high bacterial biomass and no PCR inhibitors 
but is all the more important for complex high diversity samples 
(e.g. gut samples of mammals) where there is a higher risk of miss-
ing gram- positive taxa due to bacterial lysis bias.
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