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Abstract

One of the main outcomes of quantitative genetics approaches to natural variation is to

reveal the genetic architecture underlying the phenotypic space. Complex genetic architec-

tures are described as including numerous loci (or alleles) with small-effect and/or low-fre-

quency in the populations, interactions with the genetic background, environment or age.

Linkage or association mapping strategies will be more or less sensitive to this complexity,

so that we still have an unclear picture of its extent. By combining high-throughput phenotyp-

ing under two environmental conditions with classical QTL mapping approaches in multiple

Arabidopsis thaliana segregating populations as well as advanced near isogenic lines con-

struction and survey, we have attempted to improve our understanding of quantitative phe-

notypic variation. Integrative traits such as those related to vegetative growth used in this

work (highlighting either cumulative growth, growth rate or morphology) all showed complex

and dynamic genetic architecture with respect to the segregating population and condition.

The more resolutive our mapping approach, the more complexity we uncover, with several

instances of QTLs visible in near isogenic lines but not detected with the initial QTL map-

ping, indicating that our phenotyping accuracy was less limiting than the mapping resolution

with respect to the underlying genetic architecture. In an ultimate approach to resolve this

complexity, we intensified our phenotyping effort to target specifically a 3Mb-region known

to segregate for a major quantitative trait gene, using a series of selected lines recombined

every 100kb. We discovered that at least 3 other independent QTLs had remained hidden in

this region, some with trait- or condition-specific effects, or opposite allelic effects. If we

were to extrapolate the figures obtained on this specific region in this particular cross to the
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L, Bazakos C, Gilbault E, et al. (2019) The complex

genetic architecture of shoot growth natural

variation in Arabidopsis thaliana. PLoS Genet 15

(4): e1007954. https://doi.org/10.1371/journal.

pgen.1007954

Editor: Juliette de Meaux, University of Cologne,

GERMANY

Received: July 16, 2018

Accepted: January 11, 2019

Published: April 22, 2019

Copyright: © 2019 Marchadier et al. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: Two datasets have

been submitted to INRA Dataverse repository:

Loudet O (2018) "Raw phenotypic data obtained on

the Arabidopsis RILs with the Phenoscope robots

(Marchadier, Hanemian, Tisné et al., 2018)",
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genome- and species-scale, we would predict hundreds of causative loci of detectable phe-

notypic effect controlling these growth-related phenotypes.

Author summary

The question of the complexity of the genetic variants underlying diversity in plant size

and shape is central in evolutionary biology to better understand the impacts of selection

and adaptation. In this work, we have combined the high resolution of a robotized plat-

form designed to grow Arabidopsis plants under strictly-controlled conditions and the

power of quantitative genetics approaches to map the individual genetic components (the

’QTLs’) controlling diverse phenotypes, and hence reveal the so-called ’genetic architec-

ture’ of these traits. We show that the more we increase our resolution to map QTLs, the

more complex of a genetic architecture we reveal. For instance, by focusing all of our map-

ping power on a small region representing 2.5% of the genome in an unprecedented phe-

notyping effort, we reveal that several independent QTLs had remained hidden in this

region beyond a major-effect QTL that is always clearly visible. If this region is representa-

tive of the genome, this means that our current understanding misses potentially hun-

dreds of variants finely controlling traits of evolutionary or agronomical interest.

Introduction

Fine-tuning plant growth throughout development and in response to environmental limita-

tions is a decisive process to optimize fitness and population survival in the wild. As a sessile

organism, plants have to cope with environmental fluctuations and evolved a wide range of

responses. This is well illustrated by their great phenotypic plasticity and their ability to colo-

nize very diverse habitats, through intraspecific genetic diversity as revealed in most pathways

[1]. Aerial and below-ground growth represent a balance between resource investment in the

structures and resource acquisition (respectively photosynthesis and water / nutrient uptake).

Thus, growth is a highly complex trait controlled by many genes with constitutive or more spe-

cific roles depending on developmental stage, tissue, timing, environment [2–7]. In this con-

text, plant growth can be considered as a model complex trait to increase our knowledge in the

genetics of evolution, as well as to improve plant performance.

Forward mutant analysis plays a central role in plant biology to blindly identify gene func-

tions associated with a phenotype [8], but sometimes remains limiting to reveal genes with

modest phenotypic effect, or when addressing genes from redundant families. With regard to

growth and stress tolerance, these limitations are likely to be relevant given the multigenic

nature of growth phenotypes, the low mean effect at each locus and/or epistatic interaction

they involve [9, 10]. Thus, the use of naturally-occurring variation through quantitative genetic

approaches designed to map quantitative trait loci (QTLs) is interesting notably to comple-

ment the search for alleles selected during evolution which may not be brought out with classi-

cal loss-of-function approaches. Linkage mapping and genome-wide association lead to the

identification of large amount of alleles involved in intraspecific phenotype variation from dif-

ferent plant species [1, 11].

With the drop of sequencing and genotyping costs, phenotyping clearly is the limiting fac-

tor for quantitative genetics approaches [12]. However, the complexity of the genetic architec-

ture of a given trait, which depends on the contribution and the number of loci controlling a
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trait and their interactions with the genetic background and the environment, has direct con-

sequences on how much phenotyping remains limiting. Highly heritable traits with a limited

number of contributing loci (in a given segregating material, or at the species scale) are more

likely to be well understood than more complex traits. For instance, a large part of the pheno-

typic variation for flowering time in Arabidopsis thalianamaps to a limited number of loci

[13–16], including FRIGIDA and FLC genes [17–19] and thus has a relatively simple genetic

architecture, although many more loci make smaller contributions -at least in some environ-

ments- and allelic heterogeneity also interferes [15, 16, 20, 21]. By contrast, traits like fitness or

growth can be expected to have a more complex basis as they integrate many upstream traits,

and consequently many genes, each prone to residual variation and heterogeneity. Smaller

contributions from individual loci means that, although one can still estimate total heritabili-

ties, the accuracy and throughput of phenotyping will be limiting to confirm individual QTLs’

contributions. Heritabilities for flowering time-related traits will often be above 80%, while

biomass accumulation or fitness’ heritabilities are essentially found in the range 20–60% [22–

27].

Another factor that will influence the genetic complexity of a trait is its response to the envi-

ronment through phenotypic plasticity [28]. Part of the environmental fluctuations may be

controlled in an experimental design, while another part may contribute to the residuals.

Whether the sensitivity of a pathway or trait to the environment depends on the number and

architecture of the contributing loci remains an open question, however the relationships

between higher plasticity and lower heritability are described [26]. Water availability is an

environmental factor that varies through space and time and shows great heterogeneity which

certainly constrains plant growth and shapes plant distribution in nature and in agricultural

systems. Prevalence of drought episode is expected to increase with global climate change mak-

ing the understanding of plant response to drought one of the major challenge of the next

decades [29, 30]; this includes deciphering the genetic basis for variation in mechanisms such

as drought escape, avoidance and tolerance [31]. Hence, this environmental parameter is defi-

nitely a good candidate to understand the genetic architecture of GxE. However, drought is

both difficult to control and hard to predict, because of interactions with almost all other fac-

tors in the environment (temperature, air flow, light) and interplay with other constraints

(especially nutrient-related or osmotic). The development of robotic phenotyping tools

throughout the community makes it now feasible to acquire traits on hundreds or thousands

of plants in precisely controlled and reproducible conditions [32–35], pushing a bit further

one of the main limitation for a better decomposition of the genetic architecture of these com-

plex traits.

Still, regarding plant growth variation in nature, mainly genomic regions with relatively

large effect were identified in Arabidopsis and were often related to development, immunity

or major hormones (for instance [36–43]). A limited number of non-theoretical studies seem

to confirm that many genes with smaller effect–potentially involving epistasis and linked loci–

would be responsible for part of the phenotypic variation of such complex traits (for instance

[44–46]).

Here, we undertook a precise analysis of plant growth genetic architecture under both opti-

mal watering condition and mild drought stress (as revealed under artificial conditions of

reduced and constant soil water content), using a classical linkage mapping approach on 4

biparental segregating populations [47]. As a dynamic trait, we chose to follow growth during

the vegetative phase using a high-throughput phenotyping robot (the Phenoscope [34]; https://

phenoscope.versailles.inra.fr/) to map major- to small- effect QTLs as well as their interaction

with drought stress. Zooming in on the loci, we use near-isogenic lines to validate these QTLs

and reveal in more detail the genetics behind a single QTL peak. We then focus more precisely
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on a region where a major Quantitative Trait Gene (QTG) is segregating (= CRY2, a known

polymorphic actor with major pleiotropic phenotypic consequences), and show that other loci

with additive or opposite effect are also present in its vicinity, illustrating the complexity of

growth genetic architecture.

Results

Characterization of shoot growth-related phenotypes

The four RIL sets used in this study (BurxCol, CvixCol, BlaxCol, YoxCol) were conducted

under well-watered (WW) and moderate water deficit (WD) conditions on our high-through-

put phenotyping platform. Ensuring that growth occurs in a highly controlled and homoge-

neous environment, the Phenoscope records a number of image-based quantitative traits

describing shoot development (Fig 1). Taking daily pictures gave access to cumulative (Pro-

jected Rosette Area, PRA) and dynamics (Relative Expansion Rate, RER) growth parameters

for individual plants (Fig 1C & 1D) as well as other descriptive or derived traits (rosette

Fig 1. Extracting phenotypic information from zenithal images. A: Pictures of plants on the Phenoscope at different selected days after sowing. B:

Representation of the rosette-encompassing convex hull (red shape) used to calculate the compactness (here illustrated at day 29). C: Growth kinetics obtained

by extracting the projected rosette area from the daily images. D: Relative Expansion Rate calculated between two dates (for instance RER16-29 was integrated

from day 16 to 29). C and D: Blue: ’WW’ = Well Watered (soil water content at 60%); Orange: ’WD’ = Water Deficit (soil water content at 30%).

https://doi.org/10.1371/journal.pgen.1007954.g001

Arabidopsis growth complex genetic architecture

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007954 April 22, 2019 4 / 27

https://doi.org/10.1371/journal.pgen.1007954.g001
https://doi.org/10.1371/journal.pgen.1007954


morphology and RGB colour components) [48]. A principal component analysis (PCA) was

performed using all picture-based phenotypes at the final day of the experiment, 29 Days After

Sowing (DAS; hence ’PRA29’ etc) and relative expansion rate calculated between 16 and 29

DAS (RER16-29; Fig 2). The first axis explained a major part of the total variance, essentially

through final rosette size (PRA29) and expansion rate (RER16-29). However, PRA29 and

RER16-29 variables were not perfectly correlated, with genotypes exhibiting moderate PRA29

despite high RER16-29. The red (Red29) and green (Green29) components colour phenotypes

mainly contributed to the second axis and were positively correlated, and both were negatively

correlated with rosette compactness at 29DAS (Compactness29) which was the main trait con-

tributing to the third axis. Individual projection showed that the first axis strongly structured

the individuals according to the watering treatment (WW versus WD) while the axes 2 and 3

represented cross (RIL set) effects, differentiating CvixCol and BurxCol (axis 2) and BlaxCol

(axis 3) from the other RIL sets. PRA29, RER16-29 and Compactness29 are complementary

growth phenotypes that were investigated further in this study to quantify different aspects of

shoot development variation: final projected rosette area is a cumulative proxy for biomass

and photosynthetically-active surface, rosette compactness is an informative parameter

describing the rosette morphology, and relative expansion rate highlights the dynamics of

growth.

Phenotypic distribution among the RILs compared to their parents (S1 Fig) revealed exten-

sive transgressive segregation for most of the traits and the crosses studied. As expected, mild

drought stress (WD) condition impacted the distribution of the RILs for PRA29 and RER16-

29 with generally reduced values for both traits. Interestingly, compactness distribution was

much more robust to stress, which indicated that overall the morphology of the rosette is less

Fig 2. Principal component analysis of phenotypic traits. A to C show the results of the PCA based on the 2D plane corresponding to the first 2 axes. D to F

show the results of the PCA based on the 2D plane corresponding to axes 1 and 3. A and D: circles of correlations with projected variables on the 2D plane. B and

E: individual lines (RILs) projected on the 2D planes, clustered and colored according to the watering conditions as indicated. C and F: individual lines (RILs)

projected on the 2D planes, clustered and colored according to the RIL set as indicated. B, C, E and F: Ellipses are centered on the gravity center of the individuals

and encompass 67% of the individuals.

https://doi.org/10.1371/journal.pgen.1007954.g002
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affected by mild drought. In order to estimate the part of phenotypic variation that is explained

by genetic factors for each traits, heritabilities were calculated (S1 Table) and were essentially

below 0.2 for RER (except in BurxCol where they were higher), essentially around 0.5 for

cumulative PRA and generally above 0.5 for Compactness (this trait is certainly less sensitive

to shifts in developmental stage that could be induced, for instance, by small changes in germi-

nation time). Overall, heritabilities were also lower in stress conditions than in control, as if

the stress was inducing noisier phenotypic variations.

According to ANOVA analyses (S2 Table), all traits and RIL sets showed significant varia-

tion according to both the watering condition (WD versus WW) and the genotype (within

each RIL set), except for Compactness29 response to stress in BlaxCol. There were also weaker

(compared to the genotype and watering condition effects) but still significant biological repli-

cates’ effects (i.e. independent Phenoscope experiments), but less genotype x experiment inter-

actions (with the exception of PRA and RER traits in BlaxCol for instance). PRA is more prone

to genotype x experiment interactions than other traits, especially in CvixCol and YoxCol.

Genotype x condition interactions are often milder than genotype or condition effects, and

overall compactness–or YoxCol–show much less genotype x condition interactions than other

traits/sets.

The phenotypic values of each RIL were then corrected for inter-experiment differences

(indicated by the significant biological replicates’ effect).

QTL mapping-based shoot growth genetic architecture

Our experimental design allowed the identification of many QTLs for all combinations of

traits, conditions and RIL sets, and also for the GxE interaction term using genotype x condi-

tion effects from the ANOVA model for each trait (Fig 3 and S3 Table). Globally 112 QTLs

were identified all along the genome when conditions are studied independently (62 under

WW + 50 under WD) likely corresponding to at least 18 independent loci (genetically distant-

enough from each other to be most likely considered as independent), yielding a median of 4

QTLs per modality of cross x trait x condition (ranging from 1 to 8 QTLs). QTL hotspots

across RIL sets and traits were identified for instance at the beginning of chromosome 1, at the

bottom of chromosome 2 and 5. These hotspots include very highly significant QTLs with

LOD scores above 10, and up to 32. Chromosome 3 appeared to show less significant QTLs in

all crosses, especially for PRA29 and RER16-29. Individual QTL contributions to phenotypic

variance (R2) ranged from 1 up to 30%, and showed a L-shaped distribution of effect (S2 Fig).

Using empirical significance boundaries according to the observed distribution of QTLs

effects, ~10% of the QTLs could be considered as showing major effects and significance

(R2>10% and/or LOD>15); ~25% of the QTLs could be considered as showing intermediate

effects and significance (5%<R2<10% and/or 7<LOD<15); the remaining 2/3rd of the QTLs

could be considered as showing minor effects and significance R2<5% and/or LOD<7). Many

more potential QTLs not listed here were only suggestive with LOD score peaks just below our

permutation-based threshold (<2.4 LOD).

Most of the QTL profiles are stable across the 2 watering conditions, especially for the

major-effect loci. However, QTLs specific for one condition were detected, e.g for RER16-29

under WD in YoxCol on chromosome 4, and at the top of chromosome 1 under WW. We also

mapped QTLs for the interaction term with the drought treatment, yielding 19 QTLs (Fig 3

and S3 Table). These essentially emphasize large effect QTLs showing a modulation of their

effect in response to stress (especially for PRA, see chromosome 1 and 5), with no new loci

revealed. For RER16-29 in YoxCol, this would confirm the interaction of the above-mentioned

locus on chromosome 4 (although its exact position is questionable), but not for the one at the

Arabidopsis growth complex genetic architecture
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top of chromosome 1. There may be some power issues when comparing across conditions

due to lower heritabilities of traits under WD.

Although derived from PRA29, Compactness29 showed an independent genetic basis, as

exemplified by the major peaks on the bottom of chromosome 4 in BurxCol or 5 in BlaxCol.

Although contributing to RER16-29, PRA29 does not always share the same contributing loci,

for instance on the top of chromosome 1 in CvixCol and BurxCol. Other more complex cross

x trait patterns are apparent, like at the bottom of chromosome 2 where a major QTL for Com-

pactness29 in three of the four RIL sets seems to colocalize with a significant PRA29 and

RER16-29 QTL (in the same direction), but only in one cross. It may be that these Compact-

ness29 QTLs are actually independent in each RIL set.

A two-dimensions search for epistatic interactions was performed across all traits, condi-

tions and RIL sets (S3 Fig). Overall, the BurxCol and CvixCol RIL sets showed more significant

epistasis compared to the two other sets. Interestingly, pairwise interactions controlling growth

phenotypes are overall quite different depending on RIL set and growth phenotypes. Shared

Fig 3. QTL mapping for 4 RIL sets, 3 traits and 2 conditions. QTL maps obtained from four RIL sets (BlaxCol in black; CvixCol in red; BurxCol in blue;

YoxCol in green) using three phenotypes (PRA29, RER16-29 and Compactness29), generated independently in two conditions (top panels: WW; middle

panels: WD) and from the genotype x environment interaction term in the model (bottom panels: Interaction term). LOD score values above (below) zero

indicate that the Col allele increases (decreases) trait value with respect to the other parental allele. Significance threshold (LOD = 2.4) is shown as dotted lines.

The x-axis indicates consensus markers along the genetic map (scale is shown for 20cM). The parameters of the significant QTLs detected are listed in S3

Table.

https://doi.org/10.1371/journal.pgen.1007954.g003
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epistasis effects are potentially detected in both watering conditions: they appear as symmetri-

cal across the diagonal on S3 Fig. One of the most significant epistatic interaction was observed

between 2 loci on the top and bottom of chromosome 4 in the BurxCol cross (S3 Fig; interac-

tion component highly significant for RER16-29 in WW: 5.1 LOD). Positions and directions

of effect match perfectly with the previously published SG3 x SG3i interaction known to segre-

gate in this cross [49]. Based on its significance, another relevant interaction (3.34 LOD in

WW and 3.12 LOD in WD) was observed for PRA29 in the BlaxCol cross between the bottom

of chromosomes 4 and 5 (Fig 4). The effect of the bottom of chromosome 5 QTL on PRA29 is

observed only when RILs carry Bla alleles at the bottom of chromosome 4. As a consequence

of this epistasis, these QTLs appear barely significant in single QTL scans (Fig 3).

We also performed dynamic QTL detection on daily-recorded traits (PRA and Compact-

ness) to reveal the evolution of QTL effect throughout the experiment on the Phenoscope:

these interactive QTL profiles can be accessed at http://www.inra.fr/vast/PhenoDynamic.htm

Most of the PRA QTLs observed after 29 days of growth correspond to locus that become

gradually significant across the experiment and are essentially not time-specific. These are

most likely contrasted allelic effect on growth that cumulate their effect over time. There are

only a few exceptions for PRA, like the bottom of chromosome 5 locus segregating in BlaxCol

which remains significant only until 13DAS and thereafter is canceled out. For Compactness,

the picture is rather different with numerous examples of QTLs that are essentially significant

around specific time-points, even sometimes in successive waves of significance (BlaxCol, bot-

tom of chromosome 5: QTL peaking at Days 11, 17 and 27 –providing that this is a unique

locus).

Fig 4. A significant epistatic interaction for PRA29 in BlaxCol. A significant epistatic effect on PRA29 between the bottom of chromosomes 4 and 5

segregating in the BlaxCol RIL set. Results shown in WW condition. Left panel: heatmaps representing the LOD score of the full model with additive and

interaction effects (triangle below diagonal; 0–8 LOD scale) and that of the interaction effects only (triangle above diagonal; 0–3 LOD scale) for PRA29 in

BlaxCol and WW condition. The LOD scales for significance are indicated on the right of the heatmaps. An arrow indicates the most significant interaction,

which phenotypic consequences are detailed on the right panel: the interaction plot represents the average RIL phenotype (PRA29 in cm2; +/-1 SE) for each

allelic combination (’AA’ = homozygous Col; ’BB’ = homozygous Bla) at the 2 closest markers.

https://doi.org/10.1371/journal.pgen.1007954.g004
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In order to take advantage of the different crosses to Col-0 in our experimental setup, QTL

mapping was performed on the whole dataset using MCQTL (Multi-Cross QTL) tool to com-

pare allelic effects in a multicross design and potentially reveal shared QTLs. The combined

QTL maps obtained (Fig 5 for PRA29, S4 Fig for RER16-29, S5 Fig for Compactness29) high-

light 10 independent loci, including at least 4 regions with contrasting allelic effect on PRA29:

for instance, the middle of chromosome 1 region shows contrasted phenotypic consequences

in different crosses, particularly when comparing Bur and Yo alleles (with respect to Col). At

this scale, it can be difficult to distinguish between different alleles at the same QTL and differ-

ent QTLs. Conversely, combining the information of multiple crosses sometimes allows to pre-

dict narrower QTL intervals than with the initial QTL mapping, enabling the detection of

distinct linked loci, for instance for PRA on the bottom half of chromosome 2; a location

where the dynamic QTL analysis for PRA in CvixCol was already showing signs of 2 different

segregating loci with slightly distinct dynamics over time. Another striking example is for

Compactness on chromosome 5, with neighbouring QTLs predicted to show opposite allelic

effects (e.g. BlaxCol).

Fig 5. Multi-cross QTL analysis for PRA29. The upper panel of the figure represents the LOD scores calculated by

the MCQTL method along the genetic map in WW (blue) and WD (orange) conditions. Each QTL is depicted by a

LOD score profile which peak is represented by colored boxes on the lower panel of the figure (WW conditions above

and WD conditions below). The color of the box indicates the deviation of the trait value for the Cvi, Bla, Bur or Yo

alleles relative to the Col allele as indicated. Chromosome 3 shows no significant combined QTLs for PRA29. This

figure shows results obtained for trait PRA29 only; other traits are in S4 and S5 Figs.

https://doi.org/10.1371/journal.pgen.1007954.g005
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Near isogenic lines-based shoot growth genetic architecture

To confirm and investigate further the complexity of the genetic architecture of these traits, we

used near-isogenic lines to mendelize QTLs and assess in more details the role of smaller chro-

mosomal regions. Using 81 independent Heterogeneous Inbred Families (HIFs) scattered

across the genome or chosen to decompose candidate regions in specific crosses [50], we tested

a total of 79 QTL effects from the 24 modalities of RIL set x trait x condition (Fig 6 for PRA29;

S6 Fig for RER16-29 and Compactness29). Globally, 60% of the HIFs with a segregating region

covering a candidate region previously identified showed significant effect with consistent

direction, thus validating the QTL. Larger effect QTL were more often validated in HIF, with

~75% of the tested major or intermediate effect QTLs confirmed, compared to ~50% of the

minor effect QTL. Specifically, for PRA29 trait in the two conditions studied (Fig 6), 28 QTLs

were assessed with at least one HIF, among which 17 (60%) were confirmed. Some (minor-

effect) QTL x condition interactions detected in the RIL set were also significantly confirmed

using HIF, such as the top of chromosome 5 locus in BurxCol which has significance (PRA29)

only under WW.

We are also interested in positive HIF results that do not match with the results of the initial

QTL mapping. This was particularly possible in regions with high HIF coverage and shows

that several LOD score peaks were explained by more than one underlying QTL, as also sug-

gested by the MCQTL analysis. A good example lies in the CvixCol cross, where the bottom

Fig 6. Near isogenic lines-based validation of QTLs for PRA29. QTL mapping results (same LOD score profiles as

Fig 3) are shown as LOD score heatmaps (see color scale on the right) for each RIL set, across long twin boxes

representing the 5 chromosomes (the upper frame is for WW, the lower frame is for WD conditions). Below each

chromosome are series of short twin boxes representing individual HIFs segregating region, used to test phenotypes

associated with specific regions (for each twin box the upper frame is for WW, the lower frame is for WD). The

significance and the direction of the difference between Col-fixed HIF lines and alternate parental allele-fixed HIF lines

are indicated by the p-value color scale as indicated. Details of each HIF used here are gathered in a deposited dataset

[50]. An arrow indicates the HIF exploited further in the ’microStairs’ approach. This figure shows results obtained for

trait PRA29 only; other traits are in S6 Fig.

https://doi.org/10.1371/journal.pgen.1007954.g006
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half of chromosome 4 seemed to control PRA29 as a single locus in the initial QTL analysis

(Fig 3) and is now subdivided in at least 2 independent loci with opposite allelic effects after

the HIF analysis (Fig 6). The 2 adjacent HIFs do not only show opposite allelic effect, but also

different allelic effect amplitude on PRA29 (-1.4cm2 versus +0.9cm2), potentially explaining

why only a Col-negative allelic effect was detected in the initial QTL mapping in this region,

since the effect in this direction is stronger. Another example segregates in YoxCol at the top

of chromosome 3 where 2 QTLs with opposite-effect on Compactness29 under WW condi-

tions seem to localize closely according to the HIFs (S6 Fig) but wasn’t detected at all in the

QTL mapping at 29DAS (Fig 3) and only remained significant at intermediate stages around

16DAS according to the dynamic analysis. Here, the 2 adjacent HIFs show very similar allelic

effect amplitude on Compactness29 (+0.0301 versus -0.0295), likely explaining why no QTL

was detected in this region for this trait. These could be examples of a lack of power of the RIL

design to detect complex patterns due to the confusing effect of linked loci; alternatively, the

confusing effect of epistasis could also interfere when comparing QTL mapping results from

RILs and HIFs, because of the specific genetic background of each HIF.

Finally, we can occasionally exploit the localization of the segregating region(s) of the tested

HIFs to narrow down the candidate QTL region, like for a PRA29 QTL in CvixCol at the bot-

tom of chromosome 2 which is narrowed down to the extremity of the chromosome and

shown to be distinct (= confirmed in non-overlapping HIFs) from another nearby QTL segre-

gating in the same cross (with allelic effect in the same direction), as predicted by the multi-

cross analysis above. Here again the dynamic analysis also helped to distinguish these loci

based on their effect through time. Still, the ’precision’ remains approximately at the Mb level

at this stage.

To tackle further the question of the complexity of the genetic architecture at a higher reso-

lution than with simple HIFs, we decided to systematically dissect a region of 3Mb at the very

beginning of chromosome 1 in CvixCol: in this region all previous approaches have predicted

a single QTL with intermediate to major effect significance on PRA29 (Fig 3), which was con-

firmed in an HIF (Fig 6). This HIF was used to zoom in on the region across 30 bins (stairs) of

~100kb, defined by successive recombination breakpoints (S4 Table) and phenotypically eval-

uated individually in the same conditions as above (an approach coined ’microStairs’). We

selected this interval to test if a region harbouring a large-effect growth QTL may typically also

include independent loci, maybe of smaller effect or hidden by the main QTL. A pairwise com-

parison of their growth phenotypes allows to test the impact of Cvi versus Col alleles over rela-

tively short physical intervals of expected average size 100kb, with a maximum ~200kb,

depending on recombination breakpoints location and marker interval. We either compared

only the 2 successive recombinants (’stair by stair’), or we took advantage of the support from

all pairwise comparisons (’staircase’) to increase our power to detect QTL (Fig 7 for PRA29

and S7 Fig for RER16-29 and Compactness29).

The strongest phenotypic effect for PRA29 in WW and WD (but also–to a lesser extent–for

RER16-29 in WD) was fine-mapped down to the stair between recombinants 111 and 112,

covering potentially a physical interval (bin) extending to the maximum between 1.070 and

1.291 Mb (an interval including 54 genes). In the middle of this region lies the obvious candi-

date gene CRYPTOCHROME 2 (AT1G04400; CRY2, a blue-light photoreceptor; S5 Table) that

is known to harbour a functional variant in Cvi (a single amino-acid change) and impact plant

photomorphogenic development especially in short days [51, 52]. This is a good test case of

our approach, as it is very likely that CRY2 is primarily responsible for the growth difference

overall observed in this HIF.

Still, on either side of this locus, a few other QTLs also affect growth, underlying a much

more complex genetic architecture than expected after the initial HIF results: in both watering
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conditions, a milder PRA29 QTL, with opposite allelic effect than CRY2, was detected in the

stair defined by recombinants 115 and 116 (1.495 to 1.703 Mb positions). Another PRA29

QTL was predicted in the bin 125/126 (2.509 to 2.710 Mb). For Compactness29 specifically

under WD treatment, CRY2 did not seem to be causal and the causative locus for the observed

HIF phenotype would most likely be in the bin 118/119 (1.801 to 2.027 Mb); this QTL was not

clear from the initial QTL analysis for this trait on Day 29 (S6 Fig), but appeared significant

earlier in the experiment (cf dynamic analyses for CvixCol around 14DAS and later). There

are probably even more loci, especially at the very beginning of the region for PRA29 (stairs

between recombinant 101 and 104 at least), but we reach the limits of our experimental design

and phenotyping precision to be able to conclude accurately, with either too complex genetic

architecture in this region or not enough recombinant lines to robustly support each intervals’

effect.

We then looked for high impact polymorphisms (premature stop codon, frameshift or non-

synonymous mutations) likely affecting gene function between Col-0 and Cvi-0 within the

most promising bins to identify candidate genes. Because of the numerous non-synonymous

changes between these accessions (S5 Table), we decided to arbitrarily filter the genes with the

criteria of at least 3 non-synonymous mutations to increase our chance to detect genes with

altered function or degenerated sequences after loss-of-function mutations. Here, we discuss

some of those polymorphic genes where previous publications have indicated a putative func-

tion or effect that could relate to our phenotypes.

Within the bin 115/116 lie at least 2 interesting candidates:

URIDINE DIPHOSPHATE GLYCOSYLTRANSFERASE 74E2 (AT1G05680; UGT74E2) is

an auxin glycosyltransferase whose overexpression was shown to modify plant morphology

and the size of the petioles, to delay flowering, and to increase drought tolerance [53]. The

Fig 7. Dissection of a genomic region in CvixCol for PRA29 (’microStairs’ approach). The upper panels’ are quartile boxplots indicating phenotypic values

observed for each of the 31 successive recombinant lines along the 3Mb region studied (details of each line used here are in S4 Table). Significant differences

between successive lines (stairs) are indicated along the X axis with ’�’ (p-value< 0.05), ’��’ (p-value< 0.01), ’���’ (p-value< 0.001) or ’-’ for no significant

difference. The lower panel shows a triangular matrix gathering the significance of all pairwise comparisons between lines (see the p-value color scale also

indicating the direction of the allelic effect). Blocks of significance (’staircase’) are interpreted and highlighted in black-framed boxes. This figure shows results

obtained for trait PRA29 only (in 2 conditions), PRA is expressed in cm2; other traits are in S7 Fig.

https://doi.org/10.1371/journal.pgen.1007954.g007
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gene is also known for ample natural variation in expression, including potentially cis-acting

variants [54]: http://www.bioinformatics.nl/AraQTL/multiplot/?query=AT1G05680.

GLUTAMATE RECEPTOR 3.4 (AT1G05200; GLR3.4) is a calcium-dependent abiotic sti-

muli-responsive gene [55] expressed throughout the plant and impacting at least lateral root

initiation [56]. It harbours several non-synonymous variants in Cvi-0 (compared to Col-0),

but also higher expression in Col-0 as shown by several local-eQTLs in different crosses

(http://www.bioinformatics.nl/AraQTL/multiplot/?query=AT1G05200) confirmed to be cis-

regulated through Allele-Specific Expression assay [57] (reported in S6 Table).

Within the bin 125/126 lie at least 2 interesting candidates:

AT1G08130 encodes DNA LIGASE 1 (LIG1), a ligase involved in DNA repair, which muta-

tion causes severe growth defects [58]. Its expression is also known to be controlled by a local-

eQTL (most likely cis-acting) in LerxCvi:

http://www.bioinformatics.nl/AraQTL/multiplot/?query=AT1G08130

AT1G08410 is DROUGHT INHIBITED GROWTH OF LATERAL ROOTS 6 (DIG6), encod-

ing a large 60S subunit nuclear export GTPase 1 that impacts several developmental processes

regulated by auxin, including growth [59].

Further work is required to prove any link between the observed phenotypic variation and

these candidate genes.

Discussion

Owing to its fine regulation throughout development and in interaction with the environment,

plant growth represents a highly complex trait potentially controlled by numerous factors and

interactions. Little is known on the actual genetic architecture of plant growth natural varia-

tion, with essentially a few genes of major effect being identified until now and only a few

exceptions of more complex genetics revealed [44]. Association genetics hold great promise to

dissect the underlying molecular bases of complex traits [12], however one can wonder if the

genetic architecture of highly integrative traits like growth or fitness is amenable to genome-

wide association studies (GWAS) at the species scale: GWAS especially lacks power to decom-

pose traits controlled by many loci of small effects when the underlying alleles have low fre-

quency in the mapping population. For instance when exploiting worldwide collections of

accessions, very little (if any) significant associations for growth parameters were found [60],

even when using very anti-conservative thresholds [2, 61] or using morphological parameters

with higher heritabilities [62]. Even with more targeted growth traits like root cell length, Mei-

jon et al. did not detect any significant signal above the threshold, although the first peak just

below the threshold identified a causal gene [63]. Overall, it is argued that linkage and GWA

studies are complementary in the loci that they are able to reveal, depending on the genetic

architecture of the trait in the population considered (e.g. [21, 64]). Here, by studying four dif-

ferent crosses to the reference Col-0, we find many cross-specific loci, especially of mild effects,

several of which might correspond to low frequency-alleles that would not likely be pictured in

GWAS (not enough power due to low frequency x effect size).

Whether linkage or association mapping, these approaches are both similarly phenotyping-

intensive and prone to interaction with uncontrolled environmental parameters (increasingly

so with the scale of the experiments). Using our high-throughput phenotyping robots to grow

individual plants under tightly controlled conditions, we intended to dissect the genetic basis

of plant growth under optimal and limiting watering conditions, to a level of accuracy rarely

reached so far. We focused on vegetative growth from days 8 to 29 (after sowing) and selected

three non-fully-correlated variables allowing to characterize plant growth dynamically: rosette

area (PRA), relative growth rate (RER) and compactness. PRA is a typical cumulative trait:
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what is observed on day n is not independent of what has occurred from day 1 to n-1. Com-

pactness, which basically represents a measure of PRA normalized by rosette width, is rather

independent of cumulative phenomenons and hence shows much more age-specific QTLs;

this is particularly striking when comparing the dynamic analyses for these traits. Finally, RER

integrates growth rates over a specific period of time, and is independent of plant size (= rela-

tive). Because estimated during the exponential phase of growth, RER is very much similar to

what is obtained by fitting exponential models to the PRA data and exploiting model parame-

ters [2].

Hence, growth-related phenotypes, depending on how they are exploited, will present dif-

ferent genetic architectures throughout age, with individual loci making different contribu-

tions to cumulative or age-specific traits. It has previously been shown that heritabilities for

growth-related traits change over time [6, 65]; one possible explanation is that QTLs are more

or less likely to act at specific time points. For instance, studying growth dynamics in maize

[66, 67] and root tip growth in Arabidopsis [68] allowed to identify marker-trait associations

that would not be detectable by considering the cumulative trait only at a single (final) time

point. At the other end of time-resolution for growth, going into much more details of the

dynamics (several images per day) may result in noisy raw data requiring further treatment

before exploiting, for example due to projected growth estimates interfering with circadian

leaf movements [65].

Our work has been performed under two environmental conditions, a control condition

and one that moderately limits growth due to water (but not nutrient) availability [34], i.e. a

mild drought treatment. The QTL profiles obtained at the genomic scale are very robust to

mild drought with most of the large effect QTL showing no clear signs of interaction with

water availability in our conditions. Some of them still change their level of significance with

conditions, but it is difficult to know if this is a real interaction with drought, a change in trait

variance under stress, or a change in the rest of the genetic architecture of the trait (which will

impact the significance of individual QTL). Condition-specific QTLs detected here always are

of small effect, which also raises the question of the power of these comparisons across differ-

ent conditions/experiments due to false negative in mapping QTL. Still, this result (a relatively

smaller part of the phenotypic variation is plastic rather than constitutive) is similar to what

was found previously for instance in linkage [69] and association mapping [61], showing an

overlap in the network of genes that regulate plant size under control and mild drought condi-

tions [60]. Drought stress might have pleiotropic effects on different tightly interrelated pheno-

typic traits and impose strong constraints on them, reducing trait variability [31]. Of course,

this may highly depend on the type of stress (intensity, stage of application, stability . . .) that is

applied. Here, we chose a mild stress intensity, to remain physiologically relevant and avoid

the squeezing of trait variation concomitant to strong stress levels. Also, our robot is compen-

sating (twice a day) the individual plant size effect on transpiration that may otherwise artifi-

cially increase stress intensity according to intrinsic plant size difference.

One advantage of using a star-like cross design, increasingly used in nested association

mapping (NAM) populations, is to combine the power of individual crosses and take advan-

tage of the comparison of multiple alleles, with respect to the reference allele in order to iden-

tify allelic variants more efficiently [70–73]. These could correspond to variants originating

from Col-0 or to shared allelic variants among the other parents (same direction of the allelic

effect in all crosses), or to allelic series (other parents could have divergent direction/intensity

of effect with respect to the reference parent). This multi-population study has confirmed the

effect of several loci across traits and environments, with particular power for compactness,

and in some instances already allows to predict that independent loci actually underlie major
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peaks. However, this approach is still limited by the mapping resolution which makes it diffi-

cult to distinguish shared variants from linked loci.

Considering the precision of our phenotyping (which has an impact on the part of pheno-

typic variation that is amenable to genetic dissection), the need for higher-resolution

approaches to better describe the trait’s genetic architecture is obvious here. If the architecture

of variation in our crosses is more complex than just a limited number of loci independently

segregating for intermediate or major effects, then the density of recombination observed in a

simple RIL set will not allow to decipher the full architecture [74, 75]. We first went deeper in

resolution by phenotyping numerous pairs of near-isogenic lines (actually, HIFs) that each

interrogate a specific portion of a chromosome (2-3Mb on average) in an otherwise fixed

genetic background. This nicely confirms a majority of loci but also shows some effects that

were unexpected after the initial QTL mapping results, already indicating more complex

genetic architecture than anticipated; this includes single peaks splitting up in independent

loci or complex patterns of linkage versus pleiotropy (when comparing different traits) and

linkage versus GxE (when comparing traits in different conditions). It seems that QTL coloca-

lization among crosses (linkage versus shared variants) is also often questioned, although this

requires to be able to compare multiple HIFs showing positive and/or negative results, which

can be difficult for several reasons. Indeed, many factors can explain that a QTL is not vali-

dated in an HIF: the QTL could be under epistatic interaction with another locus (thus, a spe-

cific HIF may not represent the adequate genetic background), the QTL could be mislocalised

by QTL mapping (thus, out of the HIF segregating region) or the HIF harbours a more com-

plex genotype than expected at the segregating region, such as a double recombined region

(thus, the HIF doesn’t actually allow to test the whole region). This makes the comparison

between HIFs difficult, even in the same cross, and negative HIF results should particularly be

interpreted carefully. In this context, the rate of QTL validation obtained here is rather satisfy-

ing. The difficulties to identify genes responsible for complex phenotypes also depends on

their involvement in epistatic interactions. HIFs are particularly sensitive to epistasis (com-

pared to traditional NILs) as they each harbour a different genetic background, which means

that they allow epistasis to be interrogated providing that one can test enough independent

HIFs, otherwise they have to be compared with care.

Epistatic interactions are detected in all crosses / traits (although not always with very high

significance) even when the trait heritability or variation is not so high in a cross, illustrating

another factor of the complex genetic architecture. Some interactions seem to be condition-

specific, but power issues are likely to be limiting in understanding these patterns of GxGxE.

Furthermore, HIF have an expected candidate segregating region of several Mb usually, so our

observations are likely just a glimpse at the real complexity of growth as it is known that link-

age and epistasis is also active at a very local scale [44].

Still, the sensitivity of our approach here is validated by the detection of QTL colocalizing

with several already-known QTG expected to segregate in our crosses, like CRY2 as discussed

above [52, 76],MPK12 which would explain nicely the bottom of chromosome 2 QTL in Cvix-

Col [77, 78], or SG3 detected here through its epistasis with SG3i in BurxCol [49, 79].

To avoid genome-wide epistasis and better reveal local-scale architecture, we have investi-

gated in further details a single HIF background for a specific 3Mb region containing a known

QTG of large and pleiotropic effect (CRY2) in an original approach. Our analysis reveals that

there are at least 3 other QTGs in this interval controlling one of the traits in at least one condi-

tion. For PRA29, the picture seems to be even more complex with traces of at least one more

locus; here, it seems that phenotyping accuracy becomes again limiting after all. Obviously

these loci with opposite allelic effects, different patterns of pleiotropy and interaction with the

environment, and just a few hundreds of kb from each other, remain cryptic in simple QTL
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mapping. This major result of local-scale independent complex genetic architecture for differ-

ent traits and conditions should lead us to a lot of caution when interpreting colocalizing

QTLs from different traits / conditions / age, as these may very well be independent loci rather

than a single pleiotropic locus, as shown here for PRA and Compactness. If we were to extrap-

olate the figures obtained on this specific region in this particular cross to the genome- and

species-scale, we would expect hundreds of causative loci of detectable phenotypic effect con-

trolling these growth-related phenotypes. One way to approach these individual loci would be

to decompose their independent signature based on different dynamics or underlying traits

(transcriptomics, metabolomics . . .) in a ’systems genetics’ strategy [54, 60, 80].

Complex genetic architecture as revealed in this study has consequences on quantitative

genetics experimental design and interpretation, arguing in favor of linkage mapping or

GWAS depending on the balance between genetic complexity due to linked loci (where associ-

ation is expected to behave better than linkage mapping) and genetic complexity due to small

effect/rare alleles (where association will behave poorly). Other intermediate experimental

designs like multiparental populations or nested-association mapping should bring more

power [12, 81]. Resolution is improved by pushing recombination densities to its limits and it

was shown to help resolve more complex genetic architecture in yeast [82]. In plants, using

’hyper-recombinant’ mutations to generate new segregating populations could also be a strat-

egy in the future [83].

Materials and methods

Genetic material. Recombinant Inbred Lines (RILs)

The 4 RIL sets used for this work were generated at the Versailles Arabidopsis Stock Center,

France (http://publiclines.versailles.inra.fr/) and were either described previously [47] or on

the Publiclines website where all relevant information (description and associated data) is

gathered. Versailles stock center ID are indicated as ’xxxAV’ and ’xxRV’ for Accessions and

RILs respectively). They are derived from crosses between the following pairs of accessions,

chosen to maximize genetic and phenotypic diversity [84]:

RIL set ’BlaxCol’ (ID = 2RV): Bla-1 (76AV) x Col-0 (186AV) / 259 RILs

RIL set ’CvixCol’ (ID = 8RV): Cvi-0 (166AV) x Col-0 / 358 RILs

RIL set ’BurxCol’ (ID = 20RV): Bur-0 (172AV) x Col-0 / 283 RILs

RIL set ’YoxCol’ (ID = 23RV): Yo-0 (250AV) x Col-0 / 358 RILs

Heterogeneous Inbred Families (HIFs)

HIFs have been selected in each RIL set to cover several regions of the genome, some of which

are expected to segregate for QTLs while others were chosen at random locations. As described

previously [85] they are derived from the progeny of one RIL which is heterozygous only at the

locus of interest. Hence, one HIF family is composed of 2 or 3 lines fixed for one parental allele

at the segregating region and 2 or 3 lines fixed for the alternate parental allele at the segregating

region, in an otherwise identical genetic background. Each HIF (ID = ’xxHVyyy’) is named

after the RIL ID (’xxRVyyy’) from which it has been generated (’xx’ is the ID of the RIL set,

’yyy’ is the ID of the RIL): for example, the family 2HV142 is fixed from the RIL 2RV142. The

tentative QTL validation is based on the phenotypic comparison of these fixed lines within the

HIF family. We have used 81 HIF families. The complete dataset gathering genotypic informa-

tion on the RILs used to generate HIFs has been submitted to INRA institutional data reposi-

tory (https://data.inra.fr) [50], with the genotypic conventions and ID from the Versailles

Arabidopsis Stock Center (http://publiclines.versailles.inra.fr/).
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microStairs

The progeny of CvixCol RIL 8RV294 (also used to generate HIF family 8HV294), segregating

for the first 3Mb of chromosome 1, has been screened to detect recombined individuals. 4000

individuals were genotyped with markers at the edge of the heterozygous region and then 29

evenly distributed recombinants were selected using markers spaced every ~100kb. These

recombinants were genotyped and fixed for the remaining segregating region in such a way

that they each differ genotypically from the next recombinant by a ~100kb bin on average (S4

Table). Similarly, as for the HIF, the descendance of 3 similarly-fixed lines are saved and phe-

notyped to account for possible maternal environmental effect. This is similar to the approach

taken by Koumproglou et al. [86], but at a much finer scale, hence the name ’microStairs’.

Phenotyping

Phenotyping was performed on the Phenoscope robots as previously described [34] (https://

phenoscope.versailles.inra.fr/). Every RIL set and their respective parental accessions have been

phenotyped in 2 independent Phenoscope experiments (= biological replicates), except for Cvix-

Col (3 biological replicates), with 1 individual (plant) per RIL per condition. In short, the peat-

moss plugs’ soil water content (SWC) is gradually adjusted for each plant individually as a

fraction of the initially-saturated plug weight. We worked at 2 watering conditions: 60% SWC for

non-limiting conditions (called ’WW’ for well-watered) and 30% SWC for mildly growth-limit-

ing watering conditions (called ’WD’ for water deficit). The growth room is set at a 8 hours short-

days photoperiod (230 μmol m-2 sec-1) with days at 21˚C/65%RH and nights at 17˚C/65%RH. A

picture of each individual plant is taken every day at the same day-time and a semi-automatic seg-

mentation process (with some manual corrections when required) is performed to extract leaf

pixels. From this we exploit different traits: Projected Rosette Area (PRA), circle radius, convex

hull area, average Red, Green and Blue components (leaf pixels, RGB colour scale), and derived

phenotypic traits are calculated, such as the compactness (ratio PRA / convex hull area) and the

Relative Expansion Rate (RER) over specific time windows (Fig 1), as previously described [34].

The complete raw phenotypic dataset has been submitted to INRA institutional data repository

(https://data.inra.fr) [48]. Principal component analysis (PCA) was performed using the ade4 R

package based on phenotypic data from all the RIL sets in WW and WD conditions.

Heritabilities were calculated based on the mean squares (MS) of the following ANOVA

model, used as estimators of genetic and residual variances:

Yij � mþ ai þ εij

where Yij is the phenotypic value, μ is the mean, αi is the Genotype factor and εij is the Residu-

als. The genetic variance VarG was estimated by (MSα - MSε)/n (where n is the number of rep-

licates). The residual variance VarR was estimated by MSε. h2 = VarG/(VarG+VarR).

Then, for QTL detection and further analyses, the phenotypic values were corrected for

experiment effects. Corrected phenotypic values were calculated using the intercept (μ), the

condition (α), genotype (γ), and genotype�condition (σ) effects of the following linear model:

Yijkl � mþ ai þ bj þ gk þ dij þ ljk þ sik þ εijkl

where Yijkl: phenotype; μ: mean; αi: effect of the condition; βj: effect of the experiment; γk:

effect of the genotype; δij: effect of the interaction condition�experiment; λjk: effect of the inter-

action experiment�genotype; σik: effect of the interaction condition�genotype; εijkl: residuals.

The interaction term (independently used for QTL mapping) refers to the condition�genotype

interaction component.
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Note that one of the replicates of the CvixCol phenotypic data was already analyzed for

QTL mapping -with a different statistical model- in Tisné et al. [34].

Similarly, the set of near isogenic lines (microStairs) were phenotyped and analyzed from 3

full biological replicates in independent Phenoscope experiments.

QTL MQM

QTL detections were performed using Multiple QTL Mapping algorithm (MQM) imple-

mented in the R/qtl package [87, 88] using a backward selection of cofactors. At first, genotype

missing data were augmented, then one marker every three markers were selected and used as

cofactors. Important markers were selected through backward elimination. Finally, a QTL was

moved along the genome using these pre-selected markers as cofactors, except for the markers

in the 25.0 cM window around the region of interest. QTL were identified based on the most

informative model through maximum likelihood. According to permutation results (com-

puted with the mqmpermutation() function in R/qtl), a general LOD threshold of 2.4 was cho-

sen for all QTL maps to ensure a FDR below 0.05 and remain conservative. Interactive QTL

maps for time-course series were generated using the R/qtl charts package [89]. All QTL posi-

tions were projected on the consensus genetic map of the 4 crosses built with R/qtl (this is the

map shown along the x axis on Figs 3, 5 and 6). A joint genotype dataset was constructed with

‘A’ alleles coding Col alleles (the common parent), ‘B’ alleles for non-Col alleles, and mono-

morphic markers in a cross coded as missing. The linkage groups were considered known

from the individual maps and the physical position of markers, and a first marker order was

calculated using orderMarkers() function. In case of conflicting marker order between individ-

ual, physical and consensus maps, the function switch.order() was used to retain the most

probable order (i.e with the lowest number of recombination). The consensus genetic map

markers’ identities and positions are available together with the HIF dataset in Dataverse [50].

Epistatic interactions

Epistatic interactions were identified using the scantwo() function of the R/qtl package. LOD

scores were calculated for additive, interaction and full models for all pairwise combination of

markers, except for adjacent markers and a general conservative LOD threshold (3 LOD) was

determined from permutations. Effect plots for the pairs of markers were drawn using the R/

qtl package.

QTL mapping in the multi-cross design

QTL mapping in the multi-cross design was performed with the MCQTL package [90]. The

model was described as additive (no dominance effect) and connected (Col-0 centered design)

and the following 3 steps process was applied. Step 1: thresholds were calculated by trait on the

whole genome using 1000 resampling replicates (PRA29_WW = 3.73; PRA29_WD = 3.84;

RER16-29_WW = 4.22; RER16-29_WD = 3.95; Compactness29_WW = 3.64 Compact-

ness29_WD = 3.30). Step 2: QTL detection was performed using iQTLm method with a gen-

eral and conservative threshold of 4 LOD. To perform this detection, cofactors were

automatically chosen by backward selection with a threshold of 2.8 LOD among a skeleton

with a minimal inter distance of 10cM. Search for QTL was not allowed within +/-10cM win-

dow surrounding the QTL to avoid linked genetic regions. Step 3: model estimations were per-

formed for each trait and condition using the shared QTL positions identified at step 2.
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Fine dissection of a genomic region ’microStairs’

The phenotypes of the recombined HIFs lines were modeled using the following linear equa-

tion:

Yij � mþ ai þ bj þ εij

where Yij is the value of the phenotype; μ is the mean of the phenotype; αi is the effect of the

stair (bin) i; βj is the effect of the line j (maternal replicate within each stair) and εij is the resid-

uals. An anova was performed with this model and the p-value of the stair effects were adjusted

by a Benjamini-Hochberg correction.

Polymorphic candidate genes (Cvi versus Col) were listed for each PRA29 ’microStairs’ sig-

nificant interval according to variants listed on the 1001Genomes website (http://

1001genomes.org/), through the Polymorph1001 tool. Differentially cis-regulated variants

were extracted from Cvi/Col Allele-Specific Expression (ASE) data [57] and from CvixCol

local-eQTLs data [91] across the whole region.

Datasets

Two datasets have been submitted to INRA Dataverse repository (https://data.inra.fr).

Raw phenotypic data obtained on the Arabidopsis RILs with the

Phenoscope robots [48]

This dataset gathers the main raw phenotypic data obtained and exploited in Marchadier,

Hanemian, Tisné et al. (2018). It contains data from 4 RIL sets across 9 Phenoscope

experiments.

For each Phenoscope experiment, Recombinant Inbred Line (RIL) and Condition (’WW’ =

Well Watered / ’WD’ = Water Deficit), the data set indicates the phenotypic value for 6 traits

at 21 successive time points. ’Trait.XX’ = Trait at XX days after sowing, with ’XX’ = 09 to 29

and ’Trait’ = PRA (Projected Rosette Area; in cm2), GreenMean / RedMean / BlueMean

(rosette pixels’ colour components; arbitrary unit), ConvexHullArea (area of the convex hull

encompassing the rosette; in cm2) and CircleRadius (radius of the smallest circle encompass-

ing the rosette; in cm). RIL set IDs and RIL IDs are according to Publiclines http://publiclines.

versailles.inra.fr/rils/index

Genotypic description of the near isogenic lines (HIFs) used for QTL

validation and significance of the observed segregating phenotypes [50]

Each row represents a single HIF and the genotype of the F7 RIL it originates from is indicated

along the chromosomes with RIL ID, markers and genotypic conventions from Publiclines

http://publiclines.versailles.inra.fr/rils/index (i.e. ’A’ = Col allele; ’B’ = alternate parental allele;

’C’ = heterozygous). The region highlighted in yellow is the segregating region that is tested in

the HIF family through several fixed lines for each parental allele. For each of the 3 growth

traits (Compactness29 = rosette compactness 29 days after sowing; PRA29 = Projected Rosette

Area 29 days after sowing; RER16-29 = Relative rosette Expansion Rate between days 16 and

29 after sowing) in 2 conditions (’WW’ = Well Watered / ’WD’ = Water Deficit), whenever sig-

nificant, the p-value of the comparison between allelic lines (’Pval’) and the direction of the

allelic effect (’sign’ calculated as [Col-Xxx] where Xxx is the alternate parental allele) are indi-

cated in the last columns of the table.

A specific webpage is associated with this work to display interactive graphes for dynamic

QTL analyses at http://www.inra.fr/vast/PhenoDynamic.htm
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Supporting information

S1 Fig. Distributions of the mean phenotypic values across RILs. Frequency histograms

showing the distributions of the PRA29, RER16-29 and Compactness29 traits within each of

the four RIL sets in well-watered (WW: blue) and water deficit (WD: orange) conditions. Phe-

notypic values for parental accessions from these specific experiments are indicated by blue

(WW) and red (WD) ticks (see inset for legend) just above the x axes.

(PDF)

S2 Fig. Distribution of QTL effects. Distribution of the QTL effects (R2%) in the four RILs

populations (CvixCol, BurxCol, BlaxCol, YoxCol), two conditions (WW and WD) and for the

3 traits considered in the analysis (PRA29, RER16-29, Compactness29).

(PDF)

S3 Fig. 2D scans for epistasis. Heatmaps representing the LOD score of the interaction effects

between all pairs of loci for 4 RIL sets, 3 traits, in 2 conditions. Each heatmap shows the pair-

wise interaction effects obtained in control condition WW (triangle above diagonal) and in

water deficit condition WD (triangle below diagonal). The color scale (LOD score values)

shared among all heatmaps is indicated on the right (note that it is different from the scale of

Fig 4). Diagonal values are canceled and enlarged to exclude pairs of adjacent markers from

the test.

(PDF)

S4 Fig. Multi-cross QTL analysis for RER16-29. Same legend as Fig 5. Chromosome 3 shows

no significant combined QTLs for RER16-29.

(PDF)

S5 Fig. Multi-cross QTL analysis for Compactness29. Same legend as Fig 5.

(PDF)

S6 Fig. Near isogenic lines-based validation of QTLs for RER16-29 and Compactness29.

Same legend as Fig 6.

(PDF)

S7 Fig. Dissection of a genomic region in CvixCol for RER16-29 and Compactness29

(’microStairs’ approach). Same legend as Fig 7.

(PDF)

S1 Table. Heritabilities of the observed phenotypes. Broad-sense heritabilities (h2) in the 4

RIL sets (BlaxCol, CvixCol, BurxCol and YoxCol) for PRA29, RER16-29 and Compactness29

in WW and WD conditions. H2> 0.4 are highlighted in bold. Broad-sense heritabilities were

calculated with the following equation h2 = Var(G)/Var(P) with Var(P) = Var(G)+Var(E)

(PDF)

S2 Table. Analyses of variance for genotype, experiment and condition factors, and their

interactions. For each RIL set, -log(p values) of main and interaction effects calculated by the

analysis of variance (ANOVA) from the following model:

Yijkl~μ+αi+βj+γk+δij+λjk+σik+εijkl.

where Yijkl: phenotype; μ: mean; αi: effect of the condition; βj: effect of the experiment; γk:

effect of the genotype; δij: effect of the interaction condition�experiment; λjk: effect of the

interaction experiment�genotype; σik: effect of the interaction condition�genotype; εijkl:

residuals.
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NS = Not Significant.

(PDF)

S3 Table. Mapped QTL parameters across RIL sets, traits and conditions. For each RIL set,

trait and condition (or GxE interaction term: ’inter’): every independent QTL peak is a row in

the table, indicating its localisation (chromosome and position on the genetic map), its signifi-

cance (maximum LOD score) and its effect (direction of the allelic effect: ’sign’ indicates the

sign of the allelic effect estimated as [Col–Xxx], where Xxx is the alternate parental allele;

R2%). Independent QTLs peaks are considered when the LOD score curve returns below

threshold between 2 peaks, to ensure the loci are not too genetically linked.

(PDF)

S4 Table. microStairs; genotypic description of recombinant lines. The genotypes of the 31

lines selected for the microStairs experiment are indicated along this 3Mb region of the top of

chromosome 1 with markers localized on the physical map (kb).

(PDF)

S5 Table. microStairs; polymorphisms segregating in different bins. This table lists all

known polymorphisms between Col-0 and Cvi-0 that can potentially affect gene function

(according to 1001Genomes data) within PRA29-significant bins only: in the selected physical

interval, genes with more than 3 non-synonymous SNP or a high-impact polymorphism are

highlighted in yellow and orange respectively. CRY2 candidate gene is highlighted in red.

(PDF)

S6 Table. microStairs; differentially expressed genes controlled in cis. List of Cvi/Col differ-

entially expressed genes in an allele-specific fashion ([log2]>0.8 in at least one condition; from

Cubillos et al., 2014) across the whole region.

(PDF)
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34. Tisné S, Serrand Y, Bach L, Gilbault E, Ben Ameur R, Balasse H, et al. Phenoscope: an automated

large-scale phenotyping platform offering high spatial homogeneity. Plant J. 2013; 74:534–44. Epub

2013/03/05. https://doi.org/10.1111/tpj.12131 PMID: 23452317.

Arabidopsis growth complex genetic architecture

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007954 April 22, 2019 23 / 27

https://doi.org/10.1111/pce.13189
http://www.ncbi.nlm.nih.gov/pubmed/29520809
http://www.ncbi.nlm.nih.gov/pubmed/11030654
http://www.ncbi.nlm.nih.gov/pubmed/10330478
https://doi.org/10.1104/pp.105.061309
http://www.ncbi.nlm.nih.gov/pubmed/15908596
https://doi.org/10.1038/nature08800
http://www.ncbi.nlm.nih.gov/pubmed/20336072
https://doi.org/10.1371/journal.pgen.1000940
http://www.ncbi.nlm.nih.gov/pubmed/20463887
https://doi.org/10.1104/pp.103.036822
http://www.ncbi.nlm.nih.gov/pubmed/15122039
https://doi.org/10.1007/s00122-001-0825-9
http://www.ncbi.nlm.nih.gov/pubmed/12582628
https://doi.org/10.1104/pp.102.010785
https://doi.org/10.1104/pp.102.010785
http://www.ncbi.nlm.nih.gov/pubmed/12529542
https://doi.org/10.1111/j.1365-3040.2010.02191.x
https://doi.org/10.1111/j.1365-3040.2010.02191.x
http://www.ncbi.nlm.nih.gov/pubmed/20545881
https://doi.org/10.1111/evo.12175
http://www.ncbi.nlm.nih.gov/pubmed/24094343
https://doi.org/10.1111/mec.12857
http://www.ncbi.nlm.nih.gov/pubmed/25039363
https://doi.org/10.1016/j.tplants.2014.01.001
http://www.ncbi.nlm.nih.gov/pubmed/24491827
https://doi.org/10.1016/j.plantsci.2015.02.012
http://www.ncbi.nlm.nih.gov/pubmed/25804818
https://doi.org/10.1038/s41559-017-0423-0
http://www.ncbi.nlm.nih.gov/pubmed/29255303
https://doi.org/10.1016/j.pbi.2013.02.001
http://www.ncbi.nlm.nih.gov/pubmed/23462639
https://doi.org/10.1111/j.1469-8137.2005.01609.x
http://www.ncbi.nlm.nih.gov/pubmed/16411964
https://doi.org/10.1038/nbt.1800
http://www.ncbi.nlm.nih.gov/pubmed/21390020
https://doi.org/10.1111/tpj.12131
http://www.ncbi.nlm.nih.gov/pubmed/23452317
https://doi.org/10.1371/journal.pgen.1007954


35. Walter A, Scharr H, Gilmer F, Zierer R, Nagel KA, Ernst M, et al. Dynamics of seedling growth acclima-

tion towards altered light conditions can be quantified via GROWSCREEN: a setup and procedure

designed for rapid optical phenotyping of different plant species. New Phytol. 2007; 174(2):447–55.

Epub 2007/03/29. https://doi.org/10.1111/j.1469-8137.2007.02002.x PMID: 17388907.

36. Barboza L, Effgen S, Alonso-Blanco C, Kooke R, Keurentjes JJ, Koornneef M, et al. Arabidopsis semi-

dwarfs evolved from independent mutations in GA20ox1, ortholog to green revolution dwarf alleles in

rice and barley. Proc Natl Acad Sci USA. 2013; 110(39):15818–23. Epub 2013/09/12. https://doi.org/

10.1073/pnas.1314979110 PMID: 24023067; PubMed Central PMCID: PMC3785751.

37. Bomblies K, Lempe J, Epple P, Warthmann N, Lanz C, Dangl JL, et al. Autoimmune response as a

mechanism for a Dobzhansky-Muller-type incompatibility syndrome in plants. PLoS Biol. 2007; 5(9):

e236. https://doi.org/10.1371/journal.pbio.0050236 PMID: 17803357

38. Loudet O, Michael TP, Burger BT, Le Mette C, Mockler TC, Weigel D, et al. A zinc knuckle protein that

negatively controls morning-specific growth in Arabidopsis thaliana. Proc Natl Acad Sci USA. 2008; 105

(44):17193–8. Epub 2008/10/31. https://doi.org/10.1073/pnas.0807264105 PMID: 18971337; PubMed

Central PMCID: PMC2579400.

39. Masle J, Gilmore SR, Farquhar GD. The ERECTA gene regulates plant transpiration efficiency in Arabi-

dopsis. Nature. 2005; 436(7052):866–70. Epub 2005/07/12. https://doi.org/10.1038/nature03835

PMID: 16007076.

40. Mouchel CF, Briggs GC, Hardtke CS. Natural genetic variation in Arabidopsis identifies BREVIS

RADIX, a novel regulator of cell proliferation and elongation in the root. Genes Dev. 2004; 18(6):700–

14. https://doi.org/10.1101/gad.1187704 PMID: 15031265

41. Sureshkumar S, Todesco M, Schneeberger K, Harilal R, Balasubramanian S, Weigel D. A genetic

defect caused by a triplet repeat expansion in Arabidopsis thaliana. Science. 2009; 323(5917):1060–3.

Epub 2009/01/20. 1164014 [pii] https://doi.org/10.1126/science.1164014 PMID: 19150812.

42. Todesco M, Balasubramanian S, Hu TT, Traw MB, Horton M, Epple P, et al. Natural allelic variation

underlying a major fitness trade-off in Arabidopsis thaliana. Nature. 2010; 465(7298):632–6. Epub

2010/06/04. https://doi.org/10.1038/nature09083 PMID: 20520716.

43. Trontin C, Kiani S, Corwin JA, Hematy K, Yansouni J, Kliebenstein DJ, et al. A pair of receptor-like

kinases is responsible for natural variation in shoot growth response to mannitol treatment in Arabidop-

sis thaliana. Plant J. 2014; 78(1):121–33. Epub 2014/02/01. https://doi.org/10.1111/tpj.12454 PMID:

24479634.

44. Kroymann J, Mitchell-Olds T. Epistasis and balanced polymorphism influencing complex trait variation.

Nature. 2005; 435(7038):95–8. https://doi.org/10.1038/nature03480 PMID: 15875023

45. Prinzenberg AE, Barbier H, Salt DE, Stich B, Reymond M. Relationships between growth, growth

response to nutrient supply, and ion content using a recombinant inbred line population in Arabidopsis.

Plant Physiol. 2010; 154(3):1361–71. Epub 2010/09/10. https://doi.org/10.1104/pp.110.161398 PMID:

20826703.

46. Lemmon ZH, Doebley JF. Genetic dissection of a genomic region with pleiotropic effects on domestica-

tion traits in maize reveals multiple linked QTL. Genetics. 2014; 198(1):345–53. Epub 2014/06/22.

https://doi.org/10.1534/genetics.114.165845 PMID: 24950893; PubMed Central PMCID:

PMC4174946.

47. Simon M, Loudet O, Durand S, Bérard A, Brunel D, Sennesal F-X, et al. QTL mapping in five new large

RIL populations of Arabidopsis thaliana genotyped with consensus SNP markers. Genetics. 2008;

178:2253–64. https://doi.org/10.1534/genetics.107.083899 PMID: 18430947

48. Loudet O. "Raw phenotypic data obtained on the Arabidopsis RILs with the Phenoscope robots
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