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Abstract

The epidemic of COVID-19 has shown different developments in Africa compared to the

other continents. Three different approaches were used in this study to analyze this situa-

tion. In the first part, basic statistics were performed to estimate the contribution of the

elderly people to the total numbers of cases and deaths in comparison to the other conti-

nents; Similarly, the health systems capacities were analysed to assess the level of underre-

porting. In the second part, differential equations were reconstructed from the

epidemiological time series of cases and deaths (from the John Hopkins University) to ana-

lyse the dynamics of COVID-19 in seventeen countries. In the third part, the time evolution

of the contact number was reconstructed since the beginning of the outbreak to investigate

the effectiveness of the mitigation strategies. Results were compared to the Oxford strin-

gency index and to the mobility indices of the Google Community Mobility Reports.

Compared to Europe, the analyses show that the lower proportion of elderly people in

Africa enables to explain the lower total numbers of cases and deaths by a factor of 5.1 on

average (from 1.9 to 7.8). It corresponds to a genuine effect. Nevertheless, COVID-19 num-

bers are effectively largely underestimated in Africa by a factor of 8.5 on average (from 1.7

to 20. and more) due to the weakness of the health systems at country level. Geographi-

cally, the models obtained for the dynamics of cases and deaths reveal very diversified

dynamics. The dynamics is chaotic in many contexts, including a situation of bistability rarely

observed in dynamical systems. Finally, the contact number directly deduced from the epi-

demiological observations reveals an effective role of the mitigation strategies on the short

term. On the long term, control measures have contributed to maintain the epidemic at a low

level although the progressive release of the stringency did not produce a clear increase of

the contact number. The arrival of the omicron variant is clearly detected and characterised

by a quick increase of interpeople contact, for most of the African countries considered in

the analysis.
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Author summary

In this study, we show (1) that two main factors can explain the lower numbers of cases

and deaths per inhabitants in Africa: an underestimation (by a factor 8.5) of the reported

cases and deaths which directly results from the under capacities of the health systems at

country level, but also a genuine effect by a factor 5.1 directly resulting from the smaller

fraction of elderly people. We demonstrate (2) that the dynamics of the epidemic can be

approximated deterministically by few variables only. Its time evolution is however highly

sensitive to the initial conditions which makes it unpredictable at long term. Moreover,

dynamics can largely vary from one country to another. For one country (Ghana), it is

shown that very different epidemiological evolution can occur under strictly identical san-

itary conditions. Finally, we reveal (3) that the impact of the control measures on the con-

tact number is effective at short term and enabled to maintain the epidemic at a relatively

low level, but it is more difficult to identify distinctly the long-term role of mitigation

strategy. The omicron variant is very clearly detected in the recent evolution of the

epidemic.

Introduction

Africa has been the subject of relatively less attention in comparison to the other continents

since the beginning of the pandemic of COVID-19. One reason for that is the apparent lower

magnitude of the epidemic in contrast to what was primarily expected and in comparison to

most of the other countries. At present, its specificities remain puzzling and numerous hypoth-

eses have been made to explain this slower propagation [1–5], among which, (1) the relatively

good preparation of the African countries after their notable experience of recent emerging

epidemics; (2) the demographic age structure characterised by a lower proportion of aged peo-

ple and a lower population density; (3) the climatic conditions which may foster or hinder the

propagation of the disease; (4) a possible pre-existing partial immunity related to the exposure

to other zoonotic coronaviruses or a reduced susceptibility to severe forms of the disease

together with a specific role of comorbidities [5, 6]; Finally (5) an underascertainment of

cases and deaths occurrences [5–8] due to insufficient diagnostic facilities, poorly adapted

serological tests to detect the asymptomatic cases (in Africa, these tests give higher seropreva-

lence than expected which may result from cross-reactions of the test with other viruses and

parasites in circulation on the African subcontinent), absence of registration and under-sam-

pling. Although all these factors may have played a significant role, their quantitative influence

remains unclear. In terms of total number of cases per inhabitant for instance, the difference

with countries of other continents, in particular with Europe, appears considerable (by a factor

around 10.9 on average for the cases and 8.4 for the deaths).

The questions about dynamics and dynamical complexity are important issues in epidemi-

ology. The dynamics of epidemics is rarely simple. On the contrary, it is often highly unpre-

dictable—sometimes even at very short term as it is the case for other diseases such as the

Ebola Virus Disease [9]—until the propagation of the disease can be completely contained.

Most of the epidemiological models can only produce very basic dynamical behaviours (often

a single oscillation before converging to a stable situation, or a succession of strictly periodic

oscillations) in comparison to the high complexity of the oscillations actually observed. This is

an important limitation for epidemiological modelling. For this reason, to detect chaotic

behaviours has been expected in epidemiology since the early 1980s. It was proven possible to

generate more complex simulations with theoretical epidemiological models by either applying
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a periodical forcing on models of Susceptible-Exposed-Infected structure [10–12] or by com-

bining predator-prey and Susceptible-Infected models [13, 14].

The possibility to extract chaotic models directly from epidemiological data is more recent

[9, 15–17]. To allow valuable analyses of poorly predictable systems, the modelling approach

should not use predefined model structure (e.g. models such as the SEIR models have a fixed

structure and cannot produce complex dynamics; therefore, they cannot be used to detect

chaos, neither to study the dynamics), and should make it possible to overcome the problem of

sensitivity to the initial conditions. Based on chaos theory [18, 19], the global modelling tech-

nique [20] was designed for this purpose. A chaotic dynamics is defined by two main proper-

ties: determinism and high sensitivity to the initial conditions. The initial conditions, here, do

not restrictively refer to the conditions at the very beginning of the outbreak. It refers to any

initial conditions, be it taken at the earlier origin with the patient zero, after several days or

weeks, or once the epidemic has reached its permanent dynamics. In a chaotic system, for a

small perturbation, this high sensitivity will result in the exponential divergence of the trajecto-

ries, whenever this perturbation will be applied. The problem of modelling (hypothetically)

chaotic dynamics can be stated as follows: If small changes in the initial conditions can give

rise to completely different time evolution, then the modelling approach should not only

enable to reproduce the single time evolution observed in practice, it should retrieve a set of

equations able to simulate any of the time evolution made possible by the dynamics. To do so,

the global modelling technique takes advantage of the state space (or phase space), an oriented

space able to represent—all—the possible states of a given deterministic system. For this rea-

son, this space is independent from the initial conditions. Moreover, as proven by the embed-

ding theorems [21, 22], this state can be reconstructed from observational time series,

establishing a powerful bridge between theory and applications.

Thanks to this bridge, the global modelling technique can be used to model chaotic dynam-

ics directly from observational time series [23]; It can also be used to detect directional cou-

plings under chaotic regimes [24] and to obtain interpretable sets of chaotic equations [15]

without strong hypotheses. For COVID-19 in China, the approach enabled to obtain a model

(M2) characterised by intermittency [17], revealing that, despite a control of high stringency

put in place to achieve the zero-COVID strategy, the equilibrium was unstable and restarts

were to be expected after an undetermined time. Facilitated by the emergence of the omicron

variant, such a situation was confirmed almost two years later by a restart that broke out by the

beginning of 2022. Such a restart appears fully expected now, but it was not at all at the time

this model was obtained (06 April 2020). Of course, the approach can also be applied under

non chaotic conditions.

Face to emerging or re-emerging diseases, in particular under a pandemic context, the

question of the efficacy of the mitigation strategy is of first importance. This question has been

investigated using different approaches. For the epidemic of COVID-19, most of the studies

on the impact of mitigation strategies have been prospective and based on scenarios. Scenarios

can help in determining the measures to be fostered. However, their ability to assess the genu-

ine impact of the intervention policies highly depends on the hypotheses the scenarios have

been built for (this limitation is not specific to epidemic scenarios [25]). Therefore, other

approaches should be preferred to make a diagnostic of their impact a posteriori.
Day-by-day estimates of the effective reproduction number (the average number of second-

ary cases contaminated at time t by an infectious individual) is commonly used to track the

evolution of epidemics. Various techniques were developed for this purpose [26]. However,

the main aim of this number is to determine if the epidemic is on either growing or decreasing

stage, but it cannot distinguish the effect of pharmaceutic versus non-pharmaceutic interven-

tions. Therefore, it is not adapted to estimate the impact of control measures.
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Some approaches have been developed to estimate the impact of non-pharmaceutical inter-

ventions, either by trying to separate the effect of less/more restrictive non-pharmaceutical

interventions according to the growth rate [27], or by analysing the reproduction number in

relation to the physical distancing and other control measures [28], or by reconstructing the

infection rate functions [29] in SEIR models.

The aim of the alternative approach introduced in the present work is to reconstruct β(t)
the time evolution of the average contact number directly from the daily evolution of newly

infected cases. Such a reconstruction can be of particular interest to understand the efficacy of

the mitigation strategy since one main role of the non-pharmaceutical strategies is precisely to

reduce the interindividual contacts.

The purpose of the present study is to provide an overall perspective on the epidemic of

COVID-19 in Africa since it broke out. Three main objectives are considered. The first one is

to understand the low numbers of cases and deaths due to COVID-19 in Africa in comparison

to the other continents, and their geographical variability at intracontinent scale. The second

objective is to investigate the dynamics of the epidemics in Africa at the country scale, to

explain its low predictability and to investigate its intercountry variability. The third objective

is to assess the impact of the mitigation strategies by the reconstruction of the average contact

number at the country scale from the earlier beginning of the outbreak.

Materials and methods

Databases

Six databases have been used in the analyses. (i) The United Nations [30] and (ii) the World
Bank [31] databases are used to investigate some possible factors to explain the huge differ-

ences observed between Africa and other countries in the worlds—in particular in Europe—

and among African countries in terms of cases and deaths of COVID-19. Two main variables

are considered in the study: the proportion of aged people (� 60 years old) and the number of

hospital beds per capita, the other variables (the poverty rate, the gross domestic product, the

population density, the number of health workers, and the average number of doctors per

inhabitant) having been rejected as factors of second order at continent scale.

Epidemiologic data are taken from (iii) the Center for System Science and Engineering of the

John Hopkins University [32]. Three variables are used for each country: the daily number of

new cases, the daily number of deaths and the daily number of recovering people. Note that

cases and deaths counts include confirmed but also probable ones (when reported). Analyses

are performed using the global modelling technique presented in the present section and dis-

cussed in the main manuscript section “Dynamical complexity and diversity”. A correction

factor was applied to the time series in order to account for the underestimation of the health

system. This factor, based on the number of hospital beds per capita will be introduced in the

section “Geographical differences”.

Vaccination data used in this study are taken from (iv) OurWorld in Data [33]. This data

set is updated regularly and provides, among others, the total number of vaccines adminis-

trated for 169 countries in the world with a daily time step.

The stringency index iox of (v) the Oxford COVID-19 Government Response Tracker
(OxCGRT) dataset [34] is also used for comparison with our results in the section “Mitigation

strategy impact”. The aim of this dataset is to address the need for continuously updated, read-

ily usable and comparable information on policy measures from 1 January 2020. The strin-

gency index focuses on containment and closure policies. It accounts for (1) school (2)

workplace and (3) public transport closing, (4) public events cancelation, (5) stay-at-home

requirements, restrictions on gathering size (6) internal movements and (7) international

PLOS NEGLECTED TROPICAL DISEASES The epidemic of COVID-19 in Africa

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0010735 September 16, 2022 4 / 24

https://doi.org/10.1371/journal.pntd.0010735


travel, and on (8) public information campaign. Each of these indicators is associated with a

specific weight to compose the stringency index. Their individual contribution is set to zero

when values are missing. The resulting index iox varies from 0 (no stringency) to 100 (maxi-

mum stringency). Since higher levels of stringency should be associated to lower numbers of

contacts, the index of reverse variations defined as 100—iox will be used in the present study.

The residential duration and the retail-recreation time were taken from (vi) the Google
COVID-19 Community Mobility Reports [35], it provides information from the 17 February

2020. Although some tips are made available to help the interpretation of these indices, the

methodology used to generate the product is not provided with full details. Nonetheless, albeit

rough, it brings some information that was found helpful for interpreting our results. All the

data are expressed in comparison to a baseline day assumed to represent a normal value for

that day of the week. This baseline day is taken equal to the median value estimated on the

period 3 January 2020 to 6 February 2020 [35]. Two indices are used in this study, both pro-

vided with a 7-day moving average smoothing. The residential duration index iRD is provided

as a positive (negative) percentage when people will spend more (less) time at home than dur-

ing the baseline period. An offset of 100% was added to this index, such as 100 + iRD, to facili-

tate the comparisons with the other variables. The retail and recreation index iRR aims to

measure the changes in total visitors at a country scale. It accounts for various categories of

places including restaurants, cafés, shopping centres, theme parks, museums, libraries and

movie theatres. Similarly, an offset was applied to this index, such as 100 + iRR, the 100% level

corresponding to the reference situation.

Countries of study

One hundred and three countries are considered in the whole world to identify potential fac-

tors that could explain the differences observed in the values of COVID-19 total cases and

deaths at countries and continents scales: 47 in Africa, 43 in Asia, 36 in Europe and 24 in

America. Their complete list is provided in S1 File. Only the countries of more than one mil-

lion inhabitants were studied. Countries for which information was missing in the data bases

(i) and (ii) (see previous subsection) were also removed. More specifically for Africa, South

Sudan was not retained in the analysis due to missing value for the number of hospital beds

per capita, Tanzania was also removed due to the government decision to no longer count

COVID-19 cases and deaths since June 2020. For Gabon, the estimate of the number of bed

per inhabitant made available in 2010 was found inconsistent and replaced by an estimate

made on 2008, more reliable.

Time series from data base (iii) were used for the modelling study. Seventeen African coun-

tries were selected for this purpose. Sixteen of these are those with the most data available (no

gaps longer than 2–3 days in the daily counts, and significant number of cases/deaths), while

keeping some diversity in epidemiological dynamics observed. The last one (Togo), is a coun-

try with a limited amount of information that was kept in order to test the effectiveness of the

data pre-processing.

Time series pre-processing

A careful pre-processing is required to apply the global modelling technique. This was applied

only to the time series from the John Hopkins database (cases and deaths), since data from the

other sources were used only for preliminary statistics (annual values) or comparative analyses

(external indices), not for modelling.

The following steps were applied to the time series: (1) information about anomalies were

gathered for each country and complemented by a visual inspection of each studied time series
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to detect possible non reported anomalies, these anomalies were corrected manually when pos-

sible; Once these corrections applied (2) the cumulated time series (cases or deaths) were sub-

sampled at a weekly time sampling leading to an ensemble of seven time series, each starting

from a different day of week; (3) These seven time series were resampled at a hourly sampling

using cubic splines. To keep as much as possible of the information of the very last days, the

time sampling was increased during the very last week with a maximum gap of three days

allowed (it was avoided to use the same last values for the seven time series in order to keep

information about the dispersion, up to the very end of the studied period); (4) The average

and standard deviation of the seven time series was computed to obtain an average estimate of

the time evolution and of the error (deduced from the dispersion); (5) A geographical correc-

tion factor was then applied to the whole set of time series based on the efficacy of the health

system in the country to account for underreporting. Finally (6) a Savitzky-Golai algorithm

was used with a ±1 day window (a larger window of ±6 days was used to assess the contact

number) to estimate the successive time derivatives, required to apply the global modelling

technique (note that this was also applied to both the average and the individual time series to

have an estimate of the error associated with the derivatives).

Basic statistics for inter-country comparison

Basic indices are introduced to investigate the influence of factors that may have contributed

to the large differences observed in terms of numbers of infections and deaths per inhabitant.

Two weighting factors wA and wB are used to compare the numbers of cases and deaths at

country scale. The former one is based on the proportion of aged people and defined as

1

wA
¼

N�60

N
; ð1Þ

with N�60 the number of inhabitants of 60 years old and over, and N the total number of

inhabitants; The latter one is defined as

1

wB
¼

nbed

nref
bed

; ð2Þ

and based on nbed the number of hospital beds per inhabitant and nref
bed a reference number

taken equal to 5.5 hospital beds per 1 000 inhabitants corresponding to the average value in

European countries. The weighted numbers

IwTOT ¼ w� ITOT; ð3Þ

and

Dw
TOT ¼ w� DTOT; ð4Þ

were then estimated for each country considering the influences of the proportion of elderly

people (w = wA), the number of hospital beds (w = wB) or both (w = wA × wB) together. In the

former case, the weighted numbers are given per inhabitant of 60 years old and more; In the

second case, per inhabitant considering a number of hospital beds brought back to a situation

corresponding to nref
bed; In the latter case, per inhabitant of 60 years old and more, and under

hospital beds conditions brought back to the reference number nref
bed.
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The global modelling technique

In the second part of the analysis, a versatile modelling approach—the global modelling tech-

nique [24]—is used with the aim to characterize the epidemic of COVID-19 in terms of

dynamical regime.

The global modelling technique used in the present study aims to obtain sets of governing

equations directly from observational time series, without strong hypotheses [23, 36–38]. It

was first applied in the 1990s to model chemistry reactions [39]. Being based on the theory of

nonlinear dynamical systems, the present approach is particularly well suited to cope with epi-

demiological dynamics highly sensitive to the initial conditions as previously illustrated [9, 15,

17]. In contrast to most of the other data driven approaches, it can be applied to very small

data sets (starting from a single time series), and even under scarce conditions (a few cycles,

subsampled and noisy conditions) [24]. In its differential form, when a single time series is

considered, the aim of the approach is to obtain a set of ordinary differential equations of

canonical form

_X1 ¼ X2

_X2 ¼ X3

..

.

_Xn ¼ QðX1;X2; ::;XnÞ;

8
>>>>><

>>>>>:

ð5Þ

where the dots denote the first derivatives, X1 to Xn the successive derivatives of X0 the cumula-

tive number of new cases or deaths (including X1 the daily number of new cases or deaths), n
the model dimension, and Q a polynomial function which structure has to be retrieved in the

modelling process. For the present analysis, the model dimension was fixed equal to n = 3, and

the maximum polynomial degree to q = 3. Structure identification is a mandatory stage in the

modelling process far from being trivial. Indeed, direct parameter identification without struc-

ture identification will lead, quasi systematically, to diverging models. The GPoM algorithm

developed in R language by our team [40] was used to identify the model structure. Structure

selection is operated in several stages. (i) The first selection stage is performed by ordering the

monomials from smaller to higher importance (in terms of efficacy to reduce the residual sig-

nal resulting from the parameter identification). For a general formulation with p terms in the

polynomial, this process enables to reduce the number of possible models from 2p to (p + 1)

models. This is a drastic selection. In the present situation (n = 3, q = 3), the full polynomial

will have p = 35 terms. The present algorithm will then reduce the number of possible models

in the basket from more than 3.4 � 1010 models to thirty-six models, only. (ii) The remaining

candidates are then integrated numerically to test their robustness. Diverging models (present-

ing values larger than four times the standard deviation of the original variable) and inconsis-

tent models (i.e. presenting negative numbers of cases or deaths) are systematically rejected.

(iii) Considering their dynamics, remaining models are then classified, after the convergence

is reached, as: fixed points, periodic cycles (of period 1, 2 or more), or as unclassified. Models

presenting the higher consistency in terms of range are considered more realistic (fixed points

are then rejected in the present situation; and periodic models of period 1 as well, if any model

of higher complexity is also obtained). Finally (iv), the remaining models are then chosen in

terms of forecasting performances. If several models presenting the same capacities remain at

this stage, the model of smallest size is preferred. A detailed description of the algorithm, its

application procedure, and its performances are provided in [24].

This algorithm has proven a very high level of performance, enabling to retrieve original

sets of equations among tremendous number of possible ones. Its robustness was successfuly
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tested under various types of degraded conditions (short time series, undersampling, noise,

etc.). It could be applied to very diversified realms (including epidemiology, eco-epidemiology,

but also soil eco-hydrology, hydro-geology, agronomy). At present, most of the chaotic models

directly obtained from environmental time series were obtained with this algorithm.

Models validation was performed according to the forecasting performances, estimated on

an independent window using the error growth defined as

jetj ¼ jX̂ tðtÞ � Xobs
tþtj; ð6Þ

where X̂ tðtÞ denotes the model forecast performed at time t for a prediction time τ, and Xobs
tþt

the observed value (of cases or deaths per million inhabitants) at time t + τ (corresponding to

the forecasts time). The forecasting performances are summarized in S2 Table based on the

percentage of error of the number of new daily cases/deaths per million inhabitants at a 10-day

prediction horizon (with a 90% confidence level).

Estimating the mitigation strategy impact

In the third part of the analysis, an approach is introduced and used to estimate the time evolu-

tion of the contact number, directly from observational time series.

Assuming that the people exposed to infected cases become infectious after a time delay τ,

the continuous variations of the average number of contact β per person and per day can be

estimated as

b̂ðtÞ ¼ u
NIð1Þt

ðSt¼0 � Ið0Þt � VtÞit� t
ð7Þ

with N the population size, Ið1Þt the daily number of new cases at time t, St = 0 the initial number

of susceptible people (taken equal to N), Ið0Þt the cumulated number of infected people since

the beginning of the epidemic at time t, Vt the number of vaccinated people at time t, it−τ the

total number of infectious people at time (t − τ), and υ a correction coefficient close to 1 esti-

mated empirically. Vaccination has to be taken into account here because it will reduce the

number of susceptible people which role is important here. Estimates of the recovering ratio,

morbidity ratio and effective reproduction number Rt can also be derived from it. A complete

introduction of the approach is presented in S1 Appendix.

To check its validity, the method was tested on a complicated version of compartment

model including both symptomatic and asymptomatic compartments, and run under an exog-

enous social forcing of weekly period characterised by differentiated specifications for the

symptomatic and asymptomatic compartments. Two application scenarios of the approach are

presented in S2 Appendix to illustrate its efficacy. These simulations clearly point out the very

different behaviour of the contact number compared to the reproduction number: it shows

that once the vaccination has reached a sufficient proportion of population, the contact num-

ber can be increased to its original level keeping the outbreak under control (Rt< 1); and that

the methodology here developped can be efficiently used to reconstruct the time variations of

both β(t) and Rt.
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Results

Geographical differences

Since the beginning of the pandemic of COVID-19, the total numbers of cases and deaths per

capita exhibit huge geographical differences not only from one continent to another but also

between the countries within each continent.

For Africa, two factors of first order have been identified to explain these geographical dif-

ferences. The proportion of elderly people is the first factor. Indeed, as most of the cases of

COVID-19 requiring hospitalization, or, leading to death, concern elderly people, demography

is expected to play a key role. In Africa the proportion of elderly people (� 60 years old) ranges

from 3% to 6% for most of the countries, it is a bit higher in the Southern part of Africa

(7%-9%) and in North Africa (7%-13%). In contrast, it is significantly higher for instance in

Europe where it ranges from 20% to 30% (25% on average).

The second factor is linked to the health systems capacities. The ability to track the evolu-

tion of an epidemic over time necessarily relies on the capacities of the health system at the

country scale. The number of hospital beds per capita can be a good proxy of this capacity in

particular for the analysis of the total number of cases and deaths. Capacities and efficacy of

the health systems are highly variable from one country to another. In Europe, for instance,

the number of hospital beds per inhabitant is close to 5.5‰ on average with variations ranging

from 2.1‰ to 8‰. In Africa, these values are systematically lower. The highest values are

found in the Northern part (up to 3.2‰ in Lybia) and Southern part (up to 2.7‰ in Namibia)

of Africa. Capacities are lower than 1‰ in most of the African countries, and can reach

extremely low values in some of them (0.4‰ in Mauritania, Burkina-Faso, Chad and Côte

d’Ivoire, 0.33‰ in Ethiopia, 0.3‰ in Senegal and Guinea, 0.2‰ in Madagascar, down to

0.1‰ in Mali).

Intracontinent contrasts in the total numbers of cases and deaths are particularly marked in

Africa where the coefficient of variation (c0
v ¼ s=m in Tables 1 and 2) reaches 1.63 for the cases

and 1.82 for the deaths, in comparison to the other continents (in the ranges [0.39; 1.13] and

[0.52; 1.09], respectively). Considering the weighted numbers of cases or deaths, using wA to

account for the proportion of elderly people, or wB for the health system capacities (see section

Material and methods for details), enables to reduce considerably the inter-country contrasts

on the African continent. The contrast reduction relating to health systems capacity is particu-

lary noticeable in Africa, especially for the deaths (cBv=c
0
v ¼ 0:70 for cases and 0.54 for deaths).

The reduction relating to elderly people is also clear (cAv =c
0
v ¼ 0:91 for cases and 0.79 for

Table 1. Statistics of ITOT the total number of COVID-19 cases per thousand inhabitants on 10 January 2022 since the beginning of the pandemic. Four variables are

considered: the unweighted number, the numbers weighted by the proportion of aged people (wA), by the number of hospital beds per inhabitant (wB) or both (w). The

coefficient of variation cv = σ/μ is calculated for each variable (with σ the standard deviation and μ the mean). The variation coefficients of the weighted numbers are then

compared to the unweighted ones. Statistics are provided for five ensembles (Europe, America, Eastern and Southern Asia and Africa), and for the whole world.

Cases ITOT IwA
TOT IwB

TOT IwTOT
Region μ σ c0

v μ σ cAv cAv =c0
v μ σ cBv cBv =c0

v μ σ cv cv=c0
v

Europe 146.50 56.88 0.39 582.6 235.9 0.40 1.04 187.8 106.6 0.57 1.46 751.6 452.3 0.60 1.55

America 70.28 47.86 0.68 491.2 275.0 0.56 0.82 227.8 145.0 0.64 0.93 1873.4 1566.1 0.84 1.23

Eastern Asia 26.43 29.88 1.13 251.0 403.4 1.61 1.42 54.2 42.5 0.78 0.69 523.2 484.6 0.93 0.82

Southern Asia 67.05 63.14 0.94 830.3 863.4 1.04 1.10 198.1 169.3 0.85 0.91 2862.7 3321.4 1.16 1.23

Africa 13.39 21.85 1.63 207.9 309.1 1.49 0.91 51.1 58.4 1.14 0.70 878.6 850.3 0.97 0.59

World 65.76 68.31 1.04 463.7 508.5 1.10 1.06 139.9 134.2 0.96 0.92 1342.1 1835.9 1.37 1.32

https://doi.org/10.1371/journal.pntd.0010735.t001
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deaths). Moreover their combined effect (w = wA × wB) confirms the role of these two factors

(cv=c0
v ¼ 0:59 for cases and 0.54 for deaths).

All the other factors tested in the analysis were not able to explain the geographical differ-

ences, since leading to increase the contrast observed between the continents or between the

countries, or to maintain it close to one (c :v=c
0
v ≳ 1:).

Demographic and health system factors do not have such a systematic effect to reduce the

contrasts on the other continents. Obviously, it is efficient at the global scale only to reduce the

contrasts observed in the number of cases when taking the health system capacities into

account (for which cBv=c
0
v reaches 0.92 on average). Note that the effect of this factor in Europe

(cBv=c
0
v ¼ 1:46) is in opposition to the other parts of the world (in the range [0.69; 0.93]), how-

ever, the contrast among the European countries being relatively much lower (c0
v ¼ 0:39) this

increased dispersion still remains marginal after applying the weighting (contrast between the

countries is actually the lowest in Europe for all the situations, whatever weighting is applied—

or not—and for both cases and deaths).

Contrast reduction is far not systematic in all the other situations. On average, results

show that the contribution of elderly people is significant only for the cases in America

(cAv =c
0
v ¼ 0:82) and for both the cases and deaths in Southern Asia (cAv =c

0
v ¼ 0:92 and

cBv=c
0
v ¼ 0:78). Elsewhere, it is not.

Despite their limited effect at the global scale, these two factors clearly enable to reduce the

dispersion of the numbers of cases and deaths between Africa and the other continents. The

contrast is particularly flagrant between Africa (with ITOT = 13.4 cases and DTOT = 0.26 deaths,

per thousand inhabitants on average) and the whole world (65.8 and 1.03, respectively) before

any weighting is applied (see Fig 1A–1D); It reduces considerably after accounting for the two

factors (IwTOT ¼ 878:6 and Dw
TOT ¼ 304:9 in Africa against IwTOT ¼ 1342:1 and Dw

TOT ¼ 275:3 for

the whole world, each per thousand inhabitants of 60 years old and over, Fig 1E–1H). The con-

trast is thus reduced by 3.2 for the cases and 3.6 for the deaths.

The demongraphic factor enables a reduction of contrast in comparison to the whole world

by a factor 2.2 for the cases, and 3.8 for the deaths; and the health system by a factor of 1.8 for

the cases and 2.9 for the deaths (and even by 2.8 and 5.2 with Europe, respectively).

Geographically, using the weighting factor wB as a proxy of the under-ascertainment,

underreporting is estimated to be moderately high in the Northern part (Lybia, Tunisia and

Algeria are in the range [1.7; 2.9]), Southern part (Namibia, South Africa, Eswatini, Zambia,

Botswana and Zimbabwe, in the range [2.0; 3.2]) Eastern (Rwanda, 3.4) and Central part of

Africa (Equatorial Guinea and Congo, in the range [2.6; 3.4]). Contrarily, it is estimated partic-

ularly high, for the most in West Africa (Burkina Faso, Chad, Mauritania, Niger, Côte d’Ivoire,

Guinea, Senegal, in the range [13.7; 18.3], and up to 55. for Mali), and Estearn Africa (16.7 for

Ethiopia). See S1 File for details.

Table 2. Same as Table 1 for DTOT the total number of COVID-19 deaths per thousand inhabitants since the beginning of the pandemic.

Deaths DTOT DwA
TOT DwB

TOT Dw
TOT

Region μ σ c0
v μ σ cAv cAv =c0

v μ σ cBv cBv =c0
v μ σ cv cv=c0

v

Europe 2.17 1.14 0.52 34.76 22.08 0.63 1.21 10.01 5.73 0.57 1.09 40.51 26.17 0.65 1.23

America 1.67 1.30 0.78 104.54 92.81 0.89 1.14 52.91 53.66 1.01 1.30 500.79 623.97 1.25 1.59

Eastern Asia 0.23 0.19 0.82 26.41 33.75 1.28 1.56 7.18 8.91 1.24 1.52 81.34 105.17 1.29 1.58

Southern Asia 0.77 0.84 1.09 107.42 107.10 1.00 0.92 28.08 23.82 0.85 0.78 438.34 476.44 1.09 1.00

Africa 0.26 0.47 1.82 64.85 93.22 1.44 0.79 16.02 15.78 0.98 0.54 304.91 299.40 0.98 0.54

World 1.03 1.19 1.15 68.08 85.23 1.25 1.09 21.85 29.47 1.35 1.18 275.35 400.84 1.46 1.27

https://doi.org/10.1371/journal.pntd.0010735.t002
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These two factors being taken into account (that is, both the under-ascertainment of the

cases/deaths and the proportion of elderly people), the analyses reveal that the total number of

cases in Africa (878.6 cases per inhabitant of 60 years old and older) is actualy only slightly

higher than what is observed in Europe (751.6). It is significantly (1.5 times) lower than the

global average, the highest values being found in Southern Asia (2862.7) and America

Fig 1. Statistical and geographical distributions of COVID-19 in the world. Boxplots and geography of the numbers of COVID-19 cases (A and C) and deaths (B

and D) per thousand inhabitants before health system correction is applied, and of the numbers of COVID-19 cases (E and G) and deaths (F and H) per thousand

inhabitants of 60 years old and over, with health system correction based on the number of hospital beds per inhabitant applied. Geographical distributions resulting

from these two factors separately are presented in S1 Fig. Results are presented for each continent separately (boxplots) and for the whole world (maps). Only countries

with more than 1 million inhabitants are considered in the boxplots analysis where the rectangles correspond to the 25% and 75% centiles, and the extreme values to

the minimum and maximum of the distributions; the central bar within the box corresponds to the median. Map created using Plotly and Mapbox. https://plotly.com/

python/map-configuration.

https://doi.org/10.1371/journal.pntd.0010735.g001
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(1873.4), the lowest ones in Eastern Asia (523.2). Concerning the deaths, the number (304.9

deaths per inhabitant of 60 years old and older) is moderately higher in Africa (1.1 times) than

at global scale (275.3), significantly lower than America (500.8) and Southern Asia (438.3), but

much higher than Eastern Asia (81.3) and Europe (40.5).

When taking into account these two factors, the geographical map highlights (see Fig 1C

and 1D before, and Fig 1G and 1H after) particular geographical contrasts in Africa, in the

southern part of the continent (mainly in Namibia, South Africa, Botswana, Swaziland and

Zimbabwe), in West Africa (Mali, Mauritania and Senegal), and some more local behaviours

(in Ouganda and Tunisia). It also reveals a high level of cases (in the range [1200; 1600]) and/

or deaths (in the range [12; 24], both per inhabitant of 60 years old and over) in Morocco,

Lybia, Zambia, Malawi, Mozambique and Madagascar.

The maps of the separate contribution of the two factors show that the capacity of the health

system enables to explain only moderatly the values observed in West Africa (Mauritania, Mali

and Senegal), in particular regarding the deaths (see S1(B) Fig). The map also reveals a specific

behaviour for South Africa and neighbouring countries where higher levels of cases and deaths

are associated with comparatively higher proportion of elderly people, even when taking their

proportion into account.

Dynamical complexity and diversity

The global modelling technique was applied to seventeen countries (see section Material and

methods for details). The time series used for this purpose are presented in S2 and S3 Figs.

Models were obtained for eleven of the selected countries for the dynamics of COVID-19 cases,

and for nine of them for the dynamics of the deaths. Several of them are presented in Fig 2 as

phase portraits to illustrate the diversity of dynamical behaviours; the other ones are provided

in S4 and S5 Figs. Phase portraits are projections of the state space. This space provides a geo-

metrical representation of the dynamics. Under proper conditions of observability [41], this

space can be reconstructed [22] from a single observational variable. This space being indepen-

dent to the initial conditions (since it contains, in principle, all the initial conditions), it can be

used to obtain models for chaotic dynamics and is well suited to tackle with epidemiological

behaviours which long-term dynamics is often poorly predictable. Not to require any strong

assumption about the underlying processes at work is another interest of this modelling

approach. It can thus be used to reproduce the original dynamics as a whole in a compact for-

mulation [24], including processes that are not explicitly described, difficult to quantify, or even

possibly unknown. The equations of the models obtained in the present study are all provided

in S3 Appendix, together with the initial conditions used in the simulations. The dynamical

regimes reached by these models are summarized in S1 Table. Their validation was carried out

based on their forecasting performances (see S6 and S7 Figs and S2 Table) by the end of 2021.

Their application to the most recent evolution of the epidemic, after the emergence of the omi-

cron variant, revealed the high non stationarity of the dynamics resulting from this mutation.

Chaotic regimes (metastable in some cases) were obtained with ten models: six ones for the

cases dynamics, five for the deaths. By definition, chaos refers to dynamics that are—

simultaneously – deterministic and unpredictable [18]. Detecting chaos from observational

data requires—as a necessary condition—to detect determinism in the first place [42]. For this

reason, the global modelling technique is particularly well designed to detect chaos [19]. An

in-depth analysis of the models enabled to confirm rigorously the chaotic properties when it

was the case. The multiple monotonic branches in first return maps were used for this purpose

S8 and S9 Figs; these reveal the presence of folding in the models state space and are obvious

indicators of chaotic dynamics.
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It is sometimes believed that chaotic models should be avoided because they produce

dynamics unpredictable at long term [43]. This idea results from a misunderstanding. To per-

form optimal predictions of an observed behaviour, a model should be as close as possible to

the original dynamics. If the original dynamics is chaotic, ideally, the model should also be

chaotic. Using a non chaotic model for performing predictions of a chaotic system will also

lead to a divergence between the model and the observation since the original dynamics is cha-

otic. Moreover, in such a situation, a non chaotic model will not be able to estimate the fore-

casting error resulting from the divergence of the dynamics. However, it is also true that the

model dynamics should not be more unstable than the observed system.

Models of less interest were obtained in several cases (see S10 and S11 Figs). Their interest

is regarded as poorer because their dynamics is obviously oversimplified in comparison to the

Fig 2. Attractors (differential phase portraits in (I1, I2) projection) obtained by tuning the models parameters (or from alternative models) for cases or deaths

dynamics of four countries. In each case, the original phase portrait is also reported (in black line) for comparison. The two chaotic attractors presented in (A) for the

cases dynamics in Egypt were obtained from Eq. (3) in S3 Appendix with κ = 1.25 (in magenta) and κ = 1.7 (in green). The three non chaotic attractors presented in

(B) for the dynamics of cases in Algeria were obtained from Eq. (1) in S3 Appendix with (κ1, κ2) = (1., 0.75) (in magenta), (κ1, κ2) = (1., 1.2) (in blue), and (κ1, κ2) =

(1.7, 1.) (in brown, with its transient in cyan). The attractors for the dynamics of cases in Kenya (C) were obtained from Eq. (6) in S3 Appendix with κ1 = κ2 = 1. (in

green), (κ1, κ2) = (1.08, 0.9901) (in red), (κ1, κ2) = (1, 0.9882353) (in blue). The two attractors (in magenta and green) presented for cases dynamics in Ghana (D) were

both obtained from equations (5) in S3 Appendix with κ = 0.85, but from different initial conditions revealing to a situation of bistability; The attractor presented in

(E) was obtained from Eq. (13) in S3 Appendix, presenting one term less than Eq. (5). The two chaotic attractors presented in (F) for the dynamics of deaths in Algeria

were obtained from Eq. (14) (in green) and (23) (in magenta), both in S3 Appendix, and correspond to two different epidemiological situations.

https://doi.org/10.1371/journal.pntd.0010735.g002
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original observations (these are converging either to a fixed point or to period-1 cycles, and no

more complexity could be obtained from them). They were kept for their relatively good fore-

casting performances resulting from their long transient to reach the (trivial) attractor. These

models are—local—rather than—global—models, since unable to capture the dynamics glob-

ally. No model could be obtained for Morocco, Togo, Zimbabwe and Zambia.

Small modifications of the parameter values were applied to the models to investigate

the variations of the dynamics under such perturbations. In most of the cases, more devel-

oped chaos could be generated (e.g. for cases in Egypt, see Fig 2A) which is a very common

situation in bifurcation diagrams. No complexity could be generated with some models

(e.g. for the cases in Algeria), but their tuning enabled to get oscillations around very vari-

able mean levels (Fig 2B). An important diversity of dynamics could be generated with

other models (e.g. for the cases in Kenya), some characterised by very slow oscillations of

large amplitude more or less altered (through parameter tuning) by quick oscillations of

small amplitude; or by dynamics converging to a period-1 cycle of high mean level of new

infection (Fig 2C).

A very unusual situation was found for the dynamics of cases in Ghana. A slight tuning of

one of the parameters (κ = 0.85 in Eq. 5, see S3 Appendix) enabled to reach a situation of bis-

table chaos: two separated chaotic attractors (one of the two being very close to a period-8

cycle) corresponding to distinct attraction basin in the state space (see Fig 2D). Surprisingly,

the two attractors present a large overlapping in their range of new infections per day, requir-

ing a specific shape of their basins of attraction, as illustrated in Fig 3. Interestingly, a second

model (Ghana-2) was also obtained from the same observations. This model gathers the two

sub-basins in a single one, leading to a larger and much more complex attractor (see Fig 2E

and S9 Fig).

Two models were also obtained for the deaths in Algeria. These are presented in Fig 2F

after the transients were removed. Their dynamics correspond to very different epidemiologi-

cal situations since the largest one is non chaotic and produces rapid increases of the number

of infections whereas the smallest one is close to chaos but produces slow increases.

Mitigation strategy impact

Estimates of the daily variations of the average number b̂ðtÞ of contact per person and per day

were performed for the seventeen countries selected in the study. These variations are pre-

sented in Fig 4. For most of the countries, a drastic decrease is clearly observed at the begin-

ning of the epidemic down to a level close to 0.2 contact per person and per day. This decrease

is followed by a slower decrease, sometimes associated with more or less complex oscillations,

so that the minimum is reached after a delay of 50–100 days (e.g. Morocco and Côte d’Ivoire),

or even more (up to 150 days or more) for some countries (e.g. Egypt, Kenya and South

Africa). After this decrease, the signal is generally characterised by complex oscillations which

amplitude highly varies from one country to another. Minimum values rarely go above 0.1. A

quick increase is then observed in most of the cases by the beginning of 2022, coinciding with

the arrival of the omicron variant. Very specific behaviours are observed for some countries.

This is the case for Morocco for which a rapid increasing trend of the contact number is

observed starting from the second part of 2021. A similar behaviour is observed in Tunisia,

although the start is delayed toward the end of 2021. Cameroon exhibits stochastic-like varia-

tions of b̂ðtÞ directly resulting from the irregular reporting of cases in the original time series

(see S2(K) Fig).

The error associated with the estimates of the contact number are mostly due to the approx-

imative knowledge of the length of infected period. The total error is generally lower than
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±0.03 contact per person and per day. Larger levels of dispersion (± 0.15) were found only for

Morroco and Tunisia by the end of 2021 / beginning of 2022.

The time evolution of the reverse stringency index (100—iox) is also reported for compari-

son with the contact number. It shows a drastic decrease in the earlier development of the out-

break, followed by oscillations of varying amplitude, in time, and from one country to another.

For most of the countries, these oscillations are associated with an increasing trend more or

less marked from one country to another.

The time evolution of the indices of residential duration 100 + iRD(t) and retail and recrea-

tion 100 + iRR(t) are also reported, when available. The behaviour of the latter can also be

described by a drastic decrease during the earlier spread of the disease, followed by (often)

obvious increasing trend, agitated by small oscillations. It is the opposite for the former (sud-

den increase followed by a decreasing trend).

Despite the overall agreement (or reversed agreement) of the contact number with the

three indices, the relationship appears more complex when considering the variations in more

details.

Fig 3. Differential phase portraits in (I1, I3) projection of the dynamics of daily new cases for Ghana. Observations

(black lines) and model simulations (colored lines), are the same as the ones presented in Fig 2D.

https://doi.org/10.1371/journal.pntd.0010735.g003
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Discussion

Underreporting and demographic effects

Two main factors were identified to explain the lower number of cases/deaths in Africa in

comparison to the other continents. These two factors are very different in nature. On one

hand, the capacities of the health systems reveal an important bias resulting from underreport-

ing. Indeed, the presence of health care facilities is a condition to have the cases/deaths being

reported. When no facilities are available, the cases/deaths will not be reported, leading to

underreporting. The reference number of hospital beds per inhabitant being taken equal to

5.5‰, the analyses lead to an under-ascertainment by a factor 8.7 on average for the African

Fig 4. Average number of contact estimated per person per day. Average number of contact per person per day (green lines) reconstructed from the daily time series

of new cases from 23 January 2020 (day 23) to 18 January 2022 (day 740) for seventeen countries (panels are organised geographically on the figure). For each country,

an ensemble of 54 estimations is presented, obtained by varying the exposure duration (from 4.5 to 5.5 days), the sickness duration (from 4.5 to 5.5 days), the

distribution shape (three types) and the percentage of asymptomatic (from 25% to 35%). The (reversed) index of stringency 100 − iox(t) [in %] (red line), from the

University of Oxford is also provided. When available, the percentage of residential duration (100 + iRD(t) in orange) and retail-recreation time (100 + iRR(t) in purple)

are also plotted (in comparison to the median of the period 3 January to 6 February 2020 which represents 100%).

https://doi.org/10.1371/journal.pntd.0010735.g004
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continent (each country being considered independently to its population size). On the other

hand, the age pyramid plays a direct role in the total numbers of cases and deaths. Its effect

reflects a real situation: Indeed, even after accounting for the effect of underreporting, the

numbers of cases and deaths remain significantly lower in Africa in comparison to the whole

world (by a factor 2.7 for the cases and 1.4 for the deaths), and this directly results from the

lower proportion of elderly people. This explains why, despite insufficient diagnostic capaci-

ties, health facilities have not been overwhelmed by patients.

Geographically, specific behaviours were observed in Mauritania, Mali and Senegal. These

countries are characterised, at the same time, by—particularly low—health system capacities

and proportion of elderly people. This may have led to over-estimate the correction in compar-

ison to their neighbouring countries and finally, to over-estimate the number of cases and

deaths when estimating the role of these two factors. Comparatively, most of the other coun-

tries in Southern and Northern African regions, are characterised by a relatively larger propor-

tion of elderly people which may have contributed to a quicker development of the epidemic

leading to high levels of cases and deaths, despite a higher capacity of the health system in com-

parison to the other African countries. Long-term care facilities for elderly people are much

more developped in South Africa (and possibly in its neighbouring countries) than in the Afri-

can continent in general [3]. This has very likely increased the communication of the disease

and may thus explain the larger numbers of cases and deaths. It is interpreted here, at least for

a part, as a real effect rather than a reporting bias.

Chaotic dynamics

Low-dimensional chaotic models could be obtained for numerous countries, both for the

dynamics of cases and deaths. This provides strong arguments for chaotic dynamics underly-

ing the epidemics of COVID-19 in Africa. This detection is highly consistent with the model

obtained for COVID-19 at the very beginning of the pandemic (05 February 2020) in China

[17, 44]. To detect low-dimensional chaos from epidemiological time series is not only a chal-

lenging task. It is also an important issue as practical consequences follow: It shows that deter-

minism plays a dominant role in the dynamics and that deterministic modelling makes sense.

It also reveals that the unpredictability of the dynamics largely relies on the nonlinear (deter-

ministic) couplings taking place between few main variables at play, rather than on a very high

number of variables.

The large difference of performance observed between the models obtained for cases and

deaths may be found surprising. Indeed, cases and deaths of COVID-19 are epidemiologically

coupled, so that similar results may have been expected. Though, depending of the nature of

this coupling, the coupled variables may exhibit very different behaviours. In some cases, such

a dynamical coupling could be reconstructed algebraically from observational data at other

geographical places (for COVID-19 in China [17] or for other diseases such as the Ebola Virus

Disease [9] and was found to be much more complex than what is often assumed in compart-

ment models. Two different consequences may result from this complex coupling: First, the

time evolution of the two variables may be completely different and may be characterised by

very different levels of predictabilty; Second, our ability to obtain performent models from two

variables of the same epidemiological system can also be affected very differently, due to a

problem of observability and controllability [41, 45, 46]. This may have direct consequences

on the model quality and on its forecasting performances.

Chaos includes extremely diverse catergories of dynamics. Beyond this general property of

chaotic feature detected here in many situations, specific chaotic dynamics were found. In par-

ticular, a model presenting bistability was obtained for one country (Ghana). This result was
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completely unexpected, first because bistability is quite rare in non symmetric dynamical sys-

tems [47] and no bistable models was ever obtained from observational time series, in particu-

lar under environmental conditions. Second, for its epidemiological implications: bistability

proves that, under strictly identical conditions (exactly the same equations and parameter val-

ues, that is, under exactly the same sanitary, policy, demographic, etc. conditions), the epi-

demic can evolve on distinct attractors, depending on the attraction basin from which the

initial conditions started from, at the very beginning of the outbreak. Therefore, for strictly

identical sanitary conditions, two equivalent countries (or even the same country) may experi-

ence very different epidemiological situations as a consequence of the early evolution of the

epidemic which will lead to one attraction basin or another before converging to its corre-

sponding attractor. Typically, a rapid growth of the number of infected cases at the beginning

of the epidemic may directly lead to the attractor corresponding to a situation of quick diffu-

sion of the disease, whereas a careful control of the growth since the earlier beginning of the

epidemic (typically by avoiding massive entrance of new cases), may enable to contain the suc-

cessive outbreaks at a low level.

Impact of the mitigation strategy

The overall behaviour of the contact number, characterised by a quick decrease at the begin-

ning of the epidemic and followed by complex oscillations, is found to be in rather good agree-

ment with the three indices considered in the study. Considering the details of the variations,

the agreement with the reversed Oxford index 100 − iox remains convincing only for few coun-

tries, all presenting relatively higher health care capacities. It is relevant for South Africa, Tuni-

sia and Kenya, and, although less obviously, for Morocco, Algeria and Egypt. This

correspondance is however far to be perfect and numerous reasons can contribute to explain

the observed differences.

One important effect that must be pointed out is the inertial effect. It is explained by the

time required for social reorganisation after new constraining measures are applied but also

after the constraints are relaxed. Communication about the disease in the media (to which the

Oxford index accounts for) can also have such an inertial effect. Such a behaviour is clearly

illustrated by South Africa where the changes in the stringency index are associated with

reversing slope of the contact number rather than abrupt changes.

Several other reasons can be put forward. Contact number involves factors (both objec-

tive and subjective) that are not taken into account in the stringency index. Control mea-

sures can generate increasing socio-economical incompatibilities with the everyday life

making the respect of the measures difficult or sometimes impossible, generating mistrust,

and thus fostering behaviours that may facilitate the propagation of the disease. Moreover,

the repetitive application of control measures on a long duration will also lead to fatigue and

weariness.

Regardless of the impact of the control measures, the new variants that have emerged since

the beginning of the pandemic must have influenced the level of the contact number, but also

the perception of the disease. Indeed, the emerging variants have shown an increasing capacity

of spreading, which may have contributed to increase the contact number. At the mean time,

the level of severity and the rate of mortality have also progressively decreased with the succes-

sive variants (considerably after omicron variant), reducing the fear of being contaminated.

This must have contributed to increase interpeople contacts. Though, increasing trends of the

contact number are observed only in very few countries (e.g. Morocco, Tunisia, Lybia). Else-

where, this influence is not detectable as a general trend but it has probably played a role in the

observed oscillations. Indeed, each outbreak event, often associated with new variants, has
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generated a quick increase of the number of cases and deaths, followed by a decrease in reac-

tion to both the fear deriving from the perception of this increase (media communication

effect, or contaminated relatives) and as a result of the control measures specifically put in

place. Contrarily to the previous ones, the effect of the Omicron variant was found obvious for

most of the countries.

Concerning the specific behaviour observed in Morocco, one main factor can be pointed

out. In comparison to the other African countries, Morocco has been far advanced in the vac-

cination process. In October 2021, 60% of the population had already received at least one

dose whereas quite few countries had already passed 20% (Tunisia 42.8%, South Africa, 21.0%,

Zimbabwe 20.5% and Lybia 20.1%), and most of them were still under 10% and possibly much

lower. The trend observed here is probably associated with the vaccination (70.2% Sputnik /

29.8% Pfizer/Biomoderna in Morocco) which efficacy is probably over-estimated here. This

trend cannot be explained by the release of the control measures since no significant variations

of the stringency index is observed during this period.

Methodology must also be mentioned to explain the differences. Although quantitative in

its formulation, the Oxford index remains mostly qualitative in practice, and cannot be

expected to give direct information about the contact number to which it is here compared.

Indeed, it is an aggregated index that relates on multiple sub-contributions. Each contributing

factor, as well as the weight given to each contributor, cannot be expected to relate simply to

the contact number. To this end, its construction is in a large part arbitrary. Moreover, this

index is largely based on governmental declarations, but it does neither account for the practi-

cal acceptance of the decisions, nor for their follow-up, even less for their unexpected reverse

consequences (due to the misacceptance of the constraining measures, mistrust of the vac-

cines, etc.). In other words, despite its genuine interest, this index must be considered with

caution for the present comparison.

On the long term, most of the control measures have had a real impact on people life.

Indeed, it is observed that the progressively decreasing level of stringency (positive trend of the

reverse Oxford index) is in agreement with the trends of the two mobility indices, and for all

the countries. Though, this effect is not obvious in the contact number. In other words, mobil-

ity has apparently been a minor contributor to the propagation of the disease.

Of course, our estimates of the contact number will also present limitations since based on

observational data (the epidemiologic time series), which, themselves, can suffer from various

observational limitations and biases, and because their reconstruction also relies on underly-

ing hypotheses. However, the effect of underreporting is in principle largely attenuated (cor-

rection applied based on the health system capacity), and the error resulting from poorly

known parameters is found rather moderate in amplitude (� ± 0.03 contact per person and

per day).

These limitations in the comparison being kept in mind, the efficacy of the control mea-

sures appears rather contrasted. On one hand, the quick decrease of the contact number at

the beginning of the pandemic highlights the overall efficacy of the control measures, and the

following oscillations reveal that some of them have contributed to limit temporarily and effi-

ciently the development of the successive outbreaks. On the other hand, the progressive

release of the original high level of stringency has not revealed any effect on the long term.

The usefulness of maintaining a high level of control measures on long duration is therefore

questioned. However, this observation seems consistent with the situation of bistability

unveiled by one of the models: Although possibly too much stringent, the control measures

have at least enabled to maintain the epidemic on a dynamics of relatively low level of

propagation.
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Supporting information

S1 Fig. Geographical distribution of COVID-19 with weighting wA and wB applied sepa-

rately. Geographical distribution of the numbers of COVID-19 cases (A) and deaths (B) per

thousand inhabitants with health system correction applied based on the number of hospital

beds per inhabitant; And of the numbers of COVID-19 cases (C) and deaths (D) per thousand

inhabitants of 60 years old and over. Map created using Plotly and Mapbox. https://plotly.

com/python/map-configuration.

(TIFF)

S2 Fig. Time series of cases. Observed and pre-processed time series of COVID-19 cases per

million inhabitants from January 1st 2020 (day 1) for seventeen African countries. The thin

lines correspond to the original observations uncorrected (in blue) or corrected (in black)

from the health system bias. Pre-processed time series are provided in thick lines with the one

sigma error bar associated with it (in red).

(TIFF)

S3 Fig. Time series of deaths. Observed and pre-processed time series of COVID-19 deaths

per million inhabitants from January 1st 2020 (day 1) for seventeen African countries. The

thin lines correspond to the original observations uncorrected (in blue) or corrected (in black)

from the health system bias. Pre-processed time series are provided in thick lines with the one

sigma error bar associated with it (in red).

(TIFF)

S4 Fig. Phase portraits for the dynamics of cases. Original (in black) and modelled (in

green) differential phase portraits, in (I1, I2) projection, for the dynamics of COVID-19 cases,

for 6 African countries. Original phase portrait is reconstructed for the period 22 January 2020

to 21 June 2021 where solid lines were used for modelling, dashed lines for validation.

(JPEG)

S5 Fig. Phase portraits for the dynamics of deaths. Original (in black) and modelled (in

green) differential phase portraits, in (D1, D2) projection, for the dynamics of COVID-19

deaths, for 8 African countries. Original phase portrait is reconstructed for the period 22 Janu-

ary 2020 to 21 June 2021 where solid lines were used for modelling, dashed lines for validation.

(JPEG)

S6 Fig. Absolute forecasting error growth |e(τ)| of the daily new cases of COVID-19, as a

function of the prediction time τ, for models obtained for twelve countries. For each coun-

try, the error growth is reported for 250 initial conditions equally distributed over the model-

ling period, on a prediction horizon of 0 to 20 days (green lines). Three confidence levels (in

black) are provided corresponding to the percentiles 75% (dashed lines), 90% (dashed-dotted

line) and 95% (dotted line). The same confidence levels are provided for the validation window

(in orange).

(TIFF)

S7 Fig. Absolute forecasting error growth |e(τ)| of the daily COVID-19 deaths, as a func-

tion of the prediction time τ, for models obtained for nine countries. See S6 Fig for details.

(TIFF)

S8 Fig. First return maps of models for cases. Maps were reconstructed for (A) Egypt cases

model with κ = 1. (in black), κ = 1.25 (in magenta) and κ = 1.7 (in green); (B) Ethiopia cases

model with κ = 0.91 (in green) and κ = 0.93 (in blue); (C) Ghana-1 cases model (Eqs. 33)

with κ = 0.85 but using different initial conditions (magenta and green), and Ghana-2 model
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(Eqs. 41) (in orange); (D) Kenya cases model with κ1 = κ2 = 1. (in green), (κ1, κ2) = (1.08,

0.9901) (in red) and (κ1, κ2) = (1, 0.9882353) (in blue); (E) Namibia cases model with κ1 = κ2 =

κ3 = 1. (in black), (κ1, κ2, κ3 = (1.06, 1., 1.) (in green) and (κ1, κ2, κ3 = (1., 0.9, 1.12) (in red);

and (F) South Africa cases model (black only). Corresponding equations and initial conditions

are provided in S3 Appendix (Section 1).

(JPEG)

S9 Fig. First return maps of models for deaths. Maps were reconstructed for (A) Algeria

deaths model with κ1 = κ2 = 1. (in black) and κ1 = 1. and κ2 = 1.2 (in green); (B) Cameroon

deaths model; (C) Egypt deaths model; (D) Namibia deaths model; and (E) Zimbabwe

deaths model. Corresponding equations and initial conditions are provided in S3 Appendix

(Section 2).

(JPEG)

S10 Fig. Differential phase portraits in (I1, I2) projection of the daily new cases dynamics.

Observations (black lines) and models (green lines).

(JPEG)

S11 Fig. Differential phase portraits in (D1, D2) projection of the deaths dynamics. Obser-

vations (black lines) and models (green lines).

(JPEG)

S1 File. Database. This file provides the total number of cases and deaths, on 10 January 2022,

for 150 countries in the world, as provided by the Center for System Science and Engineering of

the John Hopkins University [32]. It also includes the number of hospital beds per inhabitants

and the number of people of 60-year old and older from the United Nations [30] and the

World Bank [31], respectively.

(XLS)

S1 Appendix. Estimating the contact number. The number of contact per person and per

day is an important parameter because this number plays a key role in the transmission of a

virus during an epidemic. Here, a reformulation of the equations of an epidemic is used to

reconstruct β(t) the number of contact per person and per day from I(t) the number of

new cases per day and V(t) the number of vaccination at time t. All the details of these

reformulation are provided in the present Appendix. To test its validy, the approach is

applied to the dynamics of a 7-compartment model in S2 Appendix in order to show that,

although based on a simple formulation, this formulation can apply to dynamics of higher

complexity.

(PDF)

S2 Appendix. Two applicative scenarios. A seven-compartment model involving S (suscepti-

ble), E (exposed), iS and iA (symptomatic and asymptomatic cases), R (recovered), V (vacci-

nated) and D dead comparments was used to simulate the epidemic with the number of

contact varying as a function of time under two different scenarios. Based on the number of

new cases per day I(t) and the number of vaccination V(t) (see S1 Appendix for details), it was

proven possible to reconstruct the time evolution of the number of contact per day and per

person for the two scenarios.

(PDF)

S3 Appendix. Models equations. All the global models obtained in the present study are

based on the same general algebraic structure given in Eq 5 with n = 3. The detailed definition

of the polynomial Q(X1, X2, X3) provided in the present Appendix are thus sufficient to have
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the full model description. Note that the initial conditions are also provided.

(PDF)

S1 Table. Dynamical regimes of the models. The models dynamics was investigated consid-

ering 100 000 integration time steps of 0.1 day each (corresponding to a duration of 24 years).

Metastable is mentioned when the integration could be checked on 20 000 time steps (*6

years) only. P1, P2 and P5 refer to period cycles of period one, two and five, respectively.

Toroidal chaos refers to chaotic attractors structured around, and bounded by, a toroidal

structure (see [48] for details).

(PDF)

S2 Table. Models forecasting performances. Models forecasting performances: forecasting

error (in % of the maximum value observed during the modelling period), for a 10 day predic-

tion horizon (90% confidence level) of daily cases and deaths per million inhabitants. Error

level is provided for the validation window and also (in brackets) for the modelling window.

The modelling and validation (in brackets) period length (in day) are also provided.

(PDF)
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6. Nkuba Ndaye A, Hoxha A, Madinga J, Mariën J, Peeters M, Leendertz FH et al. Challenges in interpret-

ing SARS-CoV-2 serological results in African countries, The Lancet Global Health 2021; 9(5):E588–

E589. https://doi.org/10.1016/S2214-109X(21)00060-7 PMID: 33609481

7. Makinde OA, Odimegwu CO, Udoh MO, Adedini SA, Akinyemi JO, Atobatele A et al. Death registration

in Nigeria: a systematic literature review of its performance and challenges, Global Health Action 2020;

13(1). https://doi.org/10.1080/16549716.2020.1811476 PMID: 32892738

8. Whittaker C, Walker PGT, Alhaffar M, Hamlet A, Djaafara BA, Ghani A et al. Under-reporting of deaths

limits our understanding of true burden of covid-19, BMJ 2021; 375:n2239. https://doi.org/10.1136/bmj.

n2239 PMID: 34642172

9. Mangiarotti S, Peyre M, Huc M, A chaotic model for the epidemic of Ebola virus disease in West Africa

(2013–2016), Chaos: An Interdisciplinary Journal of Nonlinear Science 2016; 26(11):113112. https://

doi.org/10.1063/1.4967730

10. Olsen LF, Truty GL, Schaffer WM, Oscillations and chaos in epidemics: a nonlinear dynamic study of

six childhood diseases in Copenhagen, Denmark, Theoretical Population Biology 1988; 33:344–370.

https://doi.org/10.1016/0040-5809(88)90019-6 PMID: 3266037

11. Schaffer WM, Kot M, Nearly one dimensional dynamics in an epidemic, Journal of Theoretical Biology

1985; 112:403–427. https://doi.org/10.1016/S0022-5193(85)80294-0 PMID: 3982045

12. O’Regan SM, Kelly TC, Korobeinikov A, O’Callaghan MJA, Pokrovskii AV, Rachinskii D, Chaos in a

seasonally perturbed SIR model: avian influenza in a seabird colony as a paradigm, Journal of Mathe-

matical Biology 2013; 67(2):293–327. https://doi.org/10.1007/s00285-012-0550-9 PMID: 22648788

13. Stiefs D, Venturino E, Feudel U, Evidence of chaos in eco-epidemic models, Mathematical Biosciences

and Engineering 2009; 6(4):855–871. https://doi.org/10.3934/mbe.2009.6.855 PMID: 19835432

14. Eilerson A, Jensen MH, Sneppen K, Chaos in disease outbreaks among prey, Scientific Reports 2020;

10:3907. https://doi.org/10.1038/s41598-020-60945-z

15. Mangiarotti S, Low dimensional chaotic models for the plague epidemic in Bombay (1896–1911),

Chaos, Solitons & Fractals 2015; 81:184–196. https://doi.org/10.1016/j.chaos.2015.09.014

16. Dalziel BD, Bjørnstad ON, van Panhuis WG, Burke DS, Metcalf CJE, Grenfell BT, Persistent Chaos of

Measles Epidemics in the Prevaccination United States Caused by a Small Change in Seasonal Trans-

mission Patterns, PLoS Computational Biology 2015; 12(2):e1004655. https://doi.org/10.1371/journal.

pcbi.1004655

17. Mangiarotti S, Peyre M, Zhang Y, Huc M, Roger F, Kerr Y, Chaos theory applied to the outbreak of

COVID-19: An ancillary approach to decisionmaking in pandemic context, Epidemiololy & Infections

2020; 148:e95. https://doi.org/10.1017/S0950268820000990
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