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Abstract

BACKGROUND: The purpose of this study was to investigate the potential of hyperspectral imaging for the characterization of
cooking quality parameters, dry matter content (DMC), water absorption (WAB), and texture in cassava genotypes contrasting
for their cooking quality.

RESULTS: Hyperspectral images were acquired on cooked and fresh intact longitudinal and transversal slices from 31 cassava
genotypes harvested in March 2022 in Colombia. Different chemometric methods were tested for the quantification of DMC,
WAB, and texture parameters. Data analysis was conducted through partial least squares regression, K nearest neighbors
regression, support vector machine regression and CovSel multiple linear regression (CovSel_MLR). Efficient performances
were obtained for DMC using CovSel_MLR with, coefficient of multiple determination R2

p=0:94, root-mean-square error of pre-
diction RMSEP= 0.96 g/100g, and ratio of the standard deviation values RPD=3.60. High heterogeneity was observed
between contrasting genotypes. The predicted distribution of DMC within the root can be homogeneous or heterogeneous
depending on the genotype. Weak predictions were obtained for WAB and texture parameters.

CONCLUSIONS: This study showed that hyperspectral imaging could be used as a high-throughput phenotyping tool for the
visualization of DMC in contrasting cooking quality genotypes. Further improvement of protocols and larger datasets are
required for WAB and texture quality traits.
© 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of
Chemical Industry.
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INTRODUCTION
Cassava (Manihot esculenta Crantz), was first domesticated in
South America. It is one of the world's most important root and
tuber crops and a fundamental staple of rural and urban house-
holds in sub-Saharan Africa.1 Cassava roots are a major source of
calories for ∼800 million people in the Americas, Asia, and Africa.2

Cassava is consumed in different ways: directly after boiling,
steaming, or frying, or after processing into gari, eba, fufu, lafun,
attiéké, and agbelima.3,4 Consumers of boiled cassava prefer
genotypes with a short cooking time (CT).5,6 Dry matter content
(DMC), mealiness, water absorption (WAB), and texture were iden-
tified as themost important parameters for the characterization of
cooking quality of cassava.5-9

Currently, the non-destructive techniques of near infrared (NIR)
and visible–NIR (VNIR) spectroscopy are used in cassava breeding
programs as high-throughput phenotyping methods.10-18 How-
ever, those classical spectral techniques ignore the spatial varia-
tions of biochemical and physical properties within a root.

Therefore, in recent years, many researchers became interested
in the spatial distribution of quality traits in food. Hyperspectral
imaging (HSI) has been widely used for the characterization of
roots and tubers, taking images either of the inside (sliced root,
destructive method) or of the surface (intact root, non-destructive
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method). Many applications have been successfully identified,
mainly for potatoes. These applications concern quantification
of biochemical constituents,19-25 characterization of physical
properties,19,24,26-29 and detection of diseases and other defects,
such as scabs or bruises.27,30-38

This study focused on the prediction of the distribution of cook-
ing ability (boiling) of cassava from hyperspectral images
acquired on fresh cassava, which to our knowledge has not been
investigated on cassava or even on other products.
The objectives of this study were (i) to explore whether HSI can

discriminate between roots of contrasting cassava varieties in
terms of cooking behaviors, (ii) to explore the potential of HSI to
replace physico-chemical methods for the determination of
DMC, WAB, and texture, thus saving time for quality traits evalua-
tion of boiled cassava, (iii) to develop models for the prediction of
DMC, WAB, and texture parameters, and (iv) to produce DMC,
WAB, and texturemaps using the best models for the visualization
of the spatial distribution of these traits within fresh and boiled
cassava slices.

MATERIALS AND METHODS
Plant material
Thirty-one cassava genotypes with contrasting cooking proper-
ties from the RTBfoods progenitors collection were grown at the
International Center for Tropical Agriculture (CIAT, Cali,
Colombia) and harvested at 12 months after planting, from 7 to
11 March 2022. Six genotypes were harvested per day (in the
morning) and processed immediately. The RTBfoods progenitors
collection was selected and planted for the first time in 2018,
and replanted over several years (2018–2022) in order to charac-
terize yearly variability. The collection is described in more detail
by Tran et al.,9 with small differences in the number of genotypes,
caused by unforeseen situations such as diseases.
The roots used in this study are from good‑ and poor-cooking

quality genotypes. Samples with high values of WAB correspond
to genotypes with low CT as well as softer texture and highermea-
liness expression. A limit between short and long CT genotypes
was set at 12% for WAB (measured after 30 min of boiling), which
corresponds to CT = 36 min according to a linear regression
between WAB and CT obtained at CIAT using data from several
years and harvests.9 The limit CT = 36 min was based on discus-
sions with cassava breeders, who indicated that they would reject

genotypes with CT > 36 min when selecting for cooking quality,
whereas genotypes with CT < 25 min and 25 ≤ CT ≤ 36 min
would be considered desirable and acceptable respectively.
Genotypes with WAB ≤ 12% can therefore be considered as poor
cooking (CT ≥ 36 min), and genotypes with WAB > 12% corre-
spond to low CT (CT < 36 min) and are more suitable for end
users.9

Samples preparation
For each cassava genotype, 12 roots (at least 25 cm long and 5.5 cm
diameter in the central part) were selected from at least four plants.
For each root, both ends were cut and discarded, and six half-
cylinders (6 cm long and 5.5 cm diameter) were obtained from the
middle section. The half-cylinders were identified individually by
numbering from 01 to 06 for the first root, from 11 to 16 for the sec-
ond root, from 21 to 26 for the third root, and so on (Fig. 1). Codes
ending with 1 or 2, 3 or 4, and 5 or 6 correspond to pieces from,
respectively, the proximal, central, and distal parts of the roots.
The pieces were allocated semi-randomly for various measure-
ments: WAB, CT, texture, dry matter (of fresh roots), and HSI
(Fig. 1). Six half-cylinders from the central parts of different roots
were used for HSImeasurements (03, 43, 44, 103, 104, and 114). First,
a transversal slice (1 cm thick) was cut from each half-cylinder and
used for HSI, followed by dry matter analysis. The remaining parts
of the pieces were boiled for 18 min (pieces 04, 44, and 104) and
30 min (pieces 03, 43, 103, 114), and then another slice (1 cm thick)
was cut for HSI measurements after cooking.

HSI setup
The monitoring mode of the HSI system used in this study and all
required steps for the acquisition of HSI data are described in the
RTBfoods’ standard operating protocol (SOP).39

The system is based on pushbroom imaging equipment. The
main components include a spectrograph with prism–grating–
prism optical structure (ImSpector, N17E; SPECIM, Oulu, Finland),
a 12-bit CCD camera (V-light; Lowel Light Inc., New York, NY,
USA), 150 W tungsten halogen lamps (Fibre-Lite DC950 Illumina-
tor; Dolan Jenner Industries Inc., Boxborough, MA, USA), and a
translation LabScanner with dimension (L × W) of 40 cm × 20 cm
by a step motor. The harmonious work of the integral system is
assured by using LumoScanner control software (SPECIM).
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Figure 1. Sample preparation of 12 cassava roots per genotype, for measurements of hyperspectral imaging (HSI), dry matter content, water absorption,
cooking time, and texture. Each root was cut in six half-cylinders (6 cm long × 5.5 cm diameter). The half-cylinders in green, pink, and blue were used for
water absorption, cooking time, and texture measurements respectively. Half-cylinders numbered in red (03, 43, 44, 103, 104, 114) were also used for
hyperspectral image acquisition of transversal slices, before and after cooking. One additional root of each genotype (not shown on the figure) was
divided into two longitudinal pieces and scanned by HSI. The remaining half-cylinders without green, pink, or blue color were mashed and used for
dry matter content and additional measurements outside the scope of the present HSI study.
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The assembly disperses the incoming line of light into the spec-
tral and spatial matrices and then projects them onto the CCD.
The optics, spectrograph, and the camera have high sensitivity
from 932 to 1721 nm with a spectral resolution of 8 nm. Hyper-
spectral images have three dimensions (x, y, z), of which x and
y are spatial and z is spectral. The spatial dimension x × y has
dimensions of pixels, and the spectral dimension z is the number
of wavelengths (224). The spatial dimensions depend on the size
of the sample.

Hyperspectral images measurements procedure
For each half-cylinder allocated to HSI (Fig. 1), one transversal slice
was cut (1 cm thick) immediately before measurement. The slices
were scanned by HSI at the cut surface and kept for DMC measure-
ment. The remaining parts of the half-cylinders 03, 43, 103, and
114were cooked for 30 min forWABmeasurement and then cooled
for 10 min before a second transversal slice was cut (1 cm thick) and
immediately scanned by HSI at the cut surface. The remaining parts
of the half-cylinders 44 and 104 were cooked for 18 min for texture
measurements and then scanned by HSI following the same proce-
dure as for WAB measurement. A total of 186 (6 slices × 31 geno-
types) images were acquired for fresh transversal slices and
186 images for cooked transversal slices. Moreover, for each geno-
type, one hyperspectral image was acquired on a longitudinally cut
root, making a total of 31 additional images for longitudinal slices.

Determination of DMC
DMCwas measured immediately after HSI analyses by cutting the
transversal fresh slices (1 cm thick) from pieces 03, 43, 44, 103,
104, and 114 into smaller pieces and drying them at 105 °C for
24 h.40 DMC was expressed as the percentage of dry weight rela-
tive to fresh weight:

DMC %wetbasisð Þ= Weight of the sample after drying
Weight of the sample before drying

×100

In total, 186 (6 slices × 31 genotypes) DMC values were mea-
sured from fresh transversal slices.

Determination of WAB and CT
For each genotype, 24 half-cylinder pieces (shown in green in
Fig. 1) were semi-randomly selected among the 72 obtained after
sample preparation, distributed among three metal strainers
(eight pieces per strainer) and boiled for 30 min. WAB was mea-
sured according to Tran et al.,9 and the RTBfoods’ SOP.41 For each
genotype, one WAB value was recorded as the average of the
three strainers, making a total of 31 values.
WAB was expressed as the change in weight of the cassava

pieces in relation to their initial weight:

WAB %ð Þ=Weight at t=30min–Weight at t=0min
Weight at t=0min

×100

For each genotype, nine half-cylinder pieces (shown in pink in
Fig. 1) were semi-randomly selected, placed in a metal strainer,
and put in boiling water. CT was determined as described in Tran
et al.9 and the RTBfoods’ SOP.41 For each genotype, one CT value
was recorded as the time at which six out of the nine pieces
became soft, making a total of 31 values.

Texture measurements
For each genotype, 18 half-cylinder pieces (shown in blue in Fig. 1)
were semi-randomly selected among the 72 obtained after sam-
ple preparation and boiled for 18 min.42 The pieces were allowed
to cool for 10 min in a half-closed plastic container in order to limit

Figure 2. Flowchart of hyperspectral images processing from image acquisition to application of chemometrics methods.
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water loss. The texture-extrusion test was then carried out accord-
ing to the RTBfoods’ SOP.42 Several texture parameters were cal-
culated; for example, maximum force, distance at maximum
force, area under the compression curve (‘Area’). Area was
selected in this study as the main texture parameter because it
was a better discriminant (lower coefficient of variation). For each
genotype, the average of the Area of the 18 pieces was recorded,
making a total of 31 values.

Hyperspectral images processing
All the steps of hyperspectral images processing from back-
ground segmentation to extraction of spectral data were pro-
grammed in Matlab R2018b (The Mathworks Inc., Natick, MA,
USA) coupled with PLS Toolbox (version 8.7) and Image Proces-
sing Toolbox (version 5.4). The protocol of image processing is
described in Fig. 2.

Elimination of the background
The background was removed using a binary mask. In our case,
the region of interest was selected from the image at 1325 nm,
which provided the best discrimination between the sample sur-
face and the background by thresholding at a reflectance value of
0.318. From these images, the positions of all the pixels on the
boundary of the sample were located. All the pixels located inside
this boundary were considered as sample, and the pixels outside
this boundary were classified as background. A virtual binary
image was then created at this wavelength and used for back-
ground removal of all the images at other wavelengths in the
hypercube. Each pixel of the three-dimensional (3D) image repre-
sents one spectrum from 932 to 1721 nm.

Transformation of the hyperspectral (x, y, z) image into a two-
dimensional spectral matrix (z, x × y)
The transformation of a 3D image into a two-dimensional spectral
matrix was done by unfolding the 3D hypercube (x, y, z) into a
two-dimensional matrix (z, x × y), where each row represents
the spectrum of one pixel and the columns represent wave-
lengths. Each image of one wavelength was infolded in one col-
umn in a spectral matrix. The same procedure was repeated to
obtain the final spectral matrix (Fig. 2).

Calculation of mean spectra of hyperspectral images
The reflectance values of all pixels from one image were averaged
to obtain one mean spectrum for each sample. The same proce-
dure was repeated to obtain an average spectrum for each

hyperspectral image. All average spectra of all images were
arranged together to form a spectral matrix.

Multivariate data analyses
Multivariate analyses were applied on average spectra using R
software (version 4.1.0)56 coupled with packages such as pro-
spectr43 and rchemo.44 The dataset was split into two sets using
the duplex algorithm: a learning set, which corresponds to two
thirds of the complete dataset, and a test set, which corresponds
to the remaining third of the samples. Before the model develop-
ment, different combinations of preprocessing were applied to
the spectra. The best performances were obtained with
Savitzky–Golay smoothing with a parameter width of 15 and poly-
nomial order 2, a baseline correction with the parameters ⊗ = 5
and P = 0.001, and, finally, normalization reduction using the
standard normal variate method.
Different chemometric methods – partial least-squares regres-

sion (PLSR),45 K nearest neighbors regression,46 support vector
machine regression,47 and CovSel multiple linear regression
(CovSel_MLR)48 – have been tested in order to obtain the best
model for the quantification of quality traits from the spectral
information.
The optimum number of latent variables to introduce in the

models was determined using the minimum value of the root-
mean-squared error estimated by repeated k-folds cross-
validation.
The performances of the models developed were evaluated

using the coefficient of multiple determination R2p for predicted
values, the root-mean-square error of prediction (RMSEP),15 and
the ratio of the standard deviation values (RPD).12 Equations to
calculate RMSEP and RPD are provided in the references.12,15

Principal components analysis (PCA) was applied on hyper-
spectral images of transversal slices of cassava after 30 min boil-
ing for the visualization of the variations in water content
among cassava genotypes. This variation can be linked to cook-
ing behavior, as evaluated by WAB. PCA was applied to 1000
randomly selected spectra of each image, for a total of
124 000 spectra (31 genotypes × 4 images (slices) per genotype
× 1000 spectra per image).

Visualization maps of boiled cassava quality traits
After validation, the best model was applied to predict each pixel
of transversal and longitudinal slice images in order to obtain the
physical or biochemical composition at pixel level.

Table 1. Calibration and validation performances of chemometrics models applied for the prediction of dry matter content in fresh pieces of cas-
sava by hyperspectral imaging

Calibration Validation

Model Ncal RMSEC (g/100 g) R2cal Nval R2p RMSEP (g/100 g) RPD

PLSR 78 0.78 0.94 38 0.93 1.06 3.26
KNNR 78 0.16 0.99 38 0.77 1.94 1.78
SVMR 78 2.85 0.17 38 0.46 3.63 0.95
CovSel_MLR 78 0.88 0.92 38 0.94 0.96 3.60

CovSel_MLR, CovSel multiple linear regression, KNNR, K nearest neighbors regression; PLSR, partial least-squares regression; RMSEC, root-mean-
standard error for calibration; RMSEP, root-mean-square error of prediction; RPD, ratio of the standard deviation values; SVMR, support vector
machine regression.
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RESULTS
Prediction of DMC
Performance of the models
Among the different models tested, the best prediction of DMC
was obtained using the variable selection method (CovSel_MLR;
Table 1). This model is based on ten feature wavelengths:
932, 1021, 1130, 1169, 1222, 1385, 1410, 1444, 1484, and
1717 nm.25 Actually, the goal of the CovSel algorithm is to
improve the accuracy of spectral analysis models (such as PLSR)

by reducing the number of variables or spectral bands required
for the analysis, while preserving the most relevant and discrimi-
native information. This helps to reduce noise, improves separa-
tion between classes, and facilitates interpretation of the results.
In the present case, the wavelengths selected were related to
water content and corresponded to the most discriminative and
representative wavelengths in the spectral data according to the
criteria to analyze (i.e. DMC). Figure 3 shows the quality of the fit-
ting using this model, where RMSEP = 0.96 g/100 g and R2p=0:94,

Figure 3. Scatter plot of measured dry matter content (DMC) versus predicted DMC by hyperspectral imaging using CovSel_MLRmodel of validation test
set (n = 38).

Figure 4. Dry matter content (DMC) distribution map of fresh cassava slices (longitudinal and transversal) generated using the CovSel_MLR model, for
good (IND135, PER368, MAL3) and poor (COL2246, BRA325, COL2089) cooking-quality genotypes. WAB, water absorption.
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with RPD= 3.60. Models with RPD≥ 3 are considered usable for
routine analysis.12,49 This model was therefore selected for the
visualization of DMC distribution in the whole slices of cassava
roots (transversal and longitudinal).

Visualization of DMC distribution among cassava genotypes
The model with the best performance (CovSel_MLR) was applied
to predict DMC at the pixel level of all hyperspectral images of the
31 cassava genotypes, revealing the distribution of DMC within
both longitudinal and transversal fresh cassava slices (Fig. 4).
The images are in false colors, with the scale ranging from deep
blue (low DMC) to deep red (high DMC). The pixels with the same
DMC have the same color. The results highlight a high heteroge-
neity in DMC distribution: (i) between genotypes with overall
higher or lower DMC; and (ii) within a cassava root, with higher
DMC values in the peripheral parts where starch reserves are high-
est, and lower DMC in the internal part, where more fibrous ligno-
cellulosic tissue can be found. The observed distribution of DMC
was similar in longitudinal and transversal slices of the same

genotype. Although, visually, genotypes with higher WAB
appeared to have a higher DMCwith a more homogeneous distri-
bution from proximal to distal zone (Fig. 4), no clear correlation
was observed between DMC and cooking quality, as indicated
by WAB (Table 2) as well as a previous publication.9

The heterogeneity index (HI) of the distribution of DMC was
evaluated as the standard deviation of the DMC distribution pre-
dicted by HSI over the longitudinal slices of fresh cassava roots,
for each genotype (Table 2). No correlation between HI and cook-
ing quality of genotypes, as indicated by WAB, was found
(Table 2).

Prediction of water absorption and texture (Area)
Performances of models of prediction
PLSR was applied to average spectra (n = 109) of fresh slices of cas-
sava in order to investigate the potential of HSI to predict WAB and
texture. Weak prediction performances were obtained for WAB and
texture (Area) with, respectively, coefficient of determination for cal-
ibration R2cal=0:53, root-mean-standard error for calibration

Table 2. Cooking time (CT), water absorption (WAB), dry matter content (DMC), and DMC heterogeneity index (HI) values measured for 31
genotypes

Genotype CT (min) WAB (%)a DMC (g/100 g fresh root)b DMC HI (g/100 g fresh root)c

CM7436-7 24 14.8 35.2 6.19
GUA24 26 9.7 32.3 5.67
PER183 13 21.8 36.0 7.53
PER496 13 21.8 37.6 6.52
VEN208 23 16.1 34.9 11.17
CM5948-1 20 11.5 41.2 9.59
IND135_7 10 34.2 40.9 7.07
COL1505 21 19.2 37.1 9.05
COL2246_9 36 12.4 36.9 5.67
MAL3 21 23.8 33.7 7.89
PER368 15 26.2 35.6 8.92
COL1516 23 16.2 33.8 9.74
VEN77 19 15.3 __ __
COL1722 20 9.6 39.3 5.78
COL2627 18 12.9 __ __
SM593-5 25 9.9 35.8 8.04
VEN117B 17 18.5 33.5 7.50
CM6370-2 19 13.5 36.6 10.16
IND27 20 9.5 33.4 9.01
PER234 20 11.6 36.4 6.50
IND129 21 28.6 39.7 5.88
IND135_22 17 32.3 42.4 5.88
BRA158 36 5.9 37.6 8.61
COL2246_24 17 11.1 34.4 8.44
COL2089 49 2.7 29.6 9.96
COL1736 29 14.9 41.7 5.44
BRA325 60 2.0 34.0 6.54
BRA512 60 3.1 __ __
CUB46 25 13.3 36.0 5.01
VEN25 60 0.4 37.2 7.24
CR63 20 18.3 36.3 6.18

a WAB after boiling 30 min; average of 24 pieces of fresh cassava roots per genotype.
b DMC determined by oven-drying method; average of six pieces of fresh cassava roots per genotype.
c Standard deviation of the dry matter distribution predicted by hyperspectral imaging over a longitudinal slice of fresh cassava root.
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RMSEC= 5.68% and R2cal=0:51, RMSEC= 40 273 gmm (Fig. 5).
Other texture parameters (initial gradient, maximum force, etc.)
gave weak predictions too. Hence, no reliable predictive distribu-
tion maps of WAB and texture can be made for the slices of cas-
sava roots, probably due to the limited dataset (n= 109).

Visualization of water absorption distribution in contrasting
cooking quality of cassava genotypes
As the previous models did not present satisfactory performances
to predict WAB from fresh cassava, a PCA was applied to the HSI
data from boiled cassava by following the procedure described
in the Materials and methods section. The first component (PC1)
loading explained 96% of total variability (Fig. 6). The NIR bands

contributing most to PC1 were located at 1131 nm and
1396 nm, corresponding respectively to the first and second over-
tones of the O H bond from water.50 Thus, PC1 was related
mostly to water content of the samples after boiling, and by infer-
ence toWAB and cooking quality. In order to determine variations
in water content within the slices, each pixel of each image was
projected onto the PC1 axis. The resulting PC1 score values were
arranged together to reconstruct scores-images in false colors,
which allow one to observe the variations in water content in
boiled cassava slices (Fig. 7). Water content distribution was mark-
edly different among good (CR63, CUB46) and poor (VEN25,
BRA512) cooking-quality genotypes, with higher water contents
observed in good cooking genotypes (WAB > 12%). Good

Figure 5. Scatter plot of measured versus predicted water absorption (a) and texture (Area) (b) by hyperspectral imaging using partial least-squares
regressionmodel performed with training set (n = 109). R2cal, coefficient of determination for calibration; RMSEC, root-mean-standard error for calibration.
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cooking genotypes appeared to absorbmore water in the internal
part of the roots, and less in the periphery.
The WAB values measured in the laboratory for the 31 geno-

types (Table 2) confirm the high diversity of cooking behaviors
among cassava landraces, with variations from 0.4% to 32.6%
WAB. The results also confirm the negative correlation between
WAB and CT, previously demonstrated by Tran et al.9

DISCUSSION
The performance of the model developed for DMC quantification
(RPD = 3.6) in fresh intact (i.e. not mashed) cassava roots was suf-
ficient for high-throughput phenotyping purposes. These results
were better than those obtained by Ikeogu et al.12 andMaraphum

et al.15 (RPD = 1.63–2) using classical VNIR spectrophotometry
(350–2500 nm) for prediction of DMC in intact cassava roots, pos-
sibly because of the much higher number of spectra collected by
HSI in one scan. On the other hand, Sánchez et al.51 and Ikeogu
et al.12 obtained an even better accuracy (RPD = 4.3) for predic-
tion of DMC inmashed cassava roots, also using VNIR spectropho-
tometry. This difference in accuracy is due to the higher
homogeneity of mashed samples, which results in lower light
scattering and thus lower noise in the spectra.
To our knowledge, the present study is the first carried out for

the prediction of DMC in cassava roots using HSI, although many
studies have been done for DMC prediction in potato tubers.25 In
particular, locally weighted partial least-squares regression
(LWPLSR) achieved high accuracy for DMC quantification in
potato slices (R2p=0:98, RMSEP= 0.016%). The LWPLSR chemo-
metric method can be used in cases of large databases containing
thousands of samples from different locations, years, harvests,
and so on.11 For cassava, further data collection is needed to apply
LWPLSR, as the current number of samples is still limited (n= 116).
Using HSI for predicting DMC per se may not be practical, as

other high-throughput phenotyping approaches, such as porta-
ble NIR spectroscopy and the conventional gravimetric method
allow for the screening of large numbers of genotypes reliably
and inexpensively. However, a unique advantage of HSI is the
analysis of the heterogeneity of DMC along and across the sam-
ple, which for some products is a key quality trait to take into
account (e.g. French fries).
The low performances of the models for prediction of texture

(Area) and WAB can be explained by various factors, such as weak
correlation between biochemical composition of the samples and
physical parameters (cooking quality), defects and diseases of
some of the samples, and NIR range. The biochemical constitu-
ents related to WAB or texture are in low concentration and so
do not impact the spectral fingerprint that much. Also, biochem-
ical reactions and changes in the structure of the root matrix
may take place during boiling, which the compositional
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Figure 6. Principal components analysis loading showing the character-
istic bands of water, 1131 and 1396 nm (first overtone of O H), explained
by the PC1 axis.

Figure 7. Visualization map of water absorption (WAB) variation of slices (transversal) of boiled cassava generated from PC1 scores of a principal com-
ponents analysis of hyperspectral imaging data. Four contrasted genotypes are presented, from good (CR63, CUB46; WAB > 12%) to poor (VEN25,
BRA512, WAB < 12%) cooking quality. The false colors scale indicates low and high water contents in blue and red hues respectively. DMC, dry matter
content.

Prediction of cooking quality traits of boiled cassava using HSI www.soci.org

J Sci Food Agric 2024; 104: 4782–4792 © 2023 The Authors.
Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

wileyonlinelibrary.com/jsfa

4789
 10970010, 2024, 8, D

ow
nloaded from

 https://onlinelibrary.w
iley.com

/doi/10.1002/jsfa.12654 by C
IR

A
D

, W
iley O

nline L
ibrary on [21/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://wileyonlinelibrary.com/jsfa


information contained in the NIR spectra of fresh cassava roots
may not be able to fully predict. Nevertheless, high performances
were obtained using classification approaches for the prediction
of physical parameters by HSI in other crops,27,28,32,35,52,53 so fur-
ther data collection to increase the database of HSI, WAB, and tex-
ture data may also improve the prediction models for boiled
cassava.
The visualization of water content after boiling among contrast-

ing cooking quality cassava genotypes was investigated using the
PCA method. The visualization of PC1 scores (Fig. 7) highlighted
higher water contents after boiling in high WAB genotypes
(WAB > 12%, i.e. good cooking) and that water absorption during
boiling spreads from the internal part to the periphery of the half-
cylinders of cassava roots. HSI may be used for a more in-depth
investigation of water absorption, by taking hyperspectral images
of root slices at increasing boiling times (e.g. every 10 min from
10 to 60 min) and analyzing the rate of migration of the water
front from the internal part to the periphery for a selection of cas-
sava genotypes with contrasting cooking quality. In this study, the
potential of hyperspectral imaging for the visualization of DMC
and WAB in fresh and cooked slices of cassava was evaluated. A
high-quality model was developed for the prediction of DMC dis-
tribution in fresh slices of cassava using the CovSel_MLR model;
however, a model for prediction of WAB and texture by HSI may
necessitate collecting a larger dataset. In the meantime, PCA
coupled with HSI was used for the visualization of WAB variation
in cooked slices of boiled cassava, with the potential to investi-
gate the rate of absorption of water during boiling, from the cen-
tral part towards the periphery of the slices. No correlation was
found between cooking quality and DMC of fresh roots, as
observed previously.9 Moreover, HSI revealed that the heteroge-
neity of DMC distribution within fresh cassava roots had no effect
on cooking quality either. Contrary to cassava, in other roots,
tubers, and bananas (RTBs), such as yam, dry matter is a key factor
determining cooking quality and consumers’ preferences.54

Hence, applying HSI to other RTBs may result in more effective
predictions of cooking quality than was found for cassava in the
present study. The model to predict and visualize the distribution
of DMC and the PCA approach to visualize the distribution of
water content after boiling can contribute to a better understand-
ing of cooking behavior of boiled cassava and selection of desir-
able genotypes. The weak performance of the PLSR models to
predict physical parameters (WAB and texture) may be due to
the lack of direct correlation between NIR–HSI and physical con-
stituents, and/or the low number of samples in the dataset.

CONCLUSION
The current work demonstrated the potential of HSI as a high-
throughput tool, since it can detect differences between geno-
types. In particular, the heterogeneity of distribution of DMC
between the center and the periphery and between the proximal
and distal ends of cassava roots is very useful. This could help in
understanding, for example, the variation in concentration of rel-
evant nutritive constituents, such as carotenoids.55

Future research on HSI applied to prediction of cooking quality
of cassava can investigate several points, including to increase the
dataset of HSI, DMC, WAB, and texture to more than 200 samples,
in order to confirm the lack of correlation between the heteroge-
neity index of DMC distribution and cooking quality, and to
improve the model of prediction of WAB and/or texture; to
develop a dataset of HSI and various components of cassava roots

(starch, amylose, pectins, etc.) in order to try to better predict
cooking quality; and to apply HSI to predict cooking quality of
other RTBs.
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