#### **Master Degree Internship:**

# Development of prediction models for C, N, Fe and Al in volcanic soils in Costa Rica using Infrared spectroscopy

Intern: Ulysse CHABROUX (ENS)

Tutors: Juan-Carlos MENDEZ (UCR) y Julien DEMENOIS (CIRAD) Colaborators: Aurélie CAMBOU (IRDENSAIA), Gilles CHAIX (CIRAD),

Cintya Solano (UCR)







## Introduction: do you know Costa Rica?

Costa Rica: a small country in Central America, well known for its nature and a model of eco-tourism...



### Introduction: do you know Costa Rica?

Costa Rica: a small country in Central America, well known for its nature and a model of eco-tourism...

...But Costa Rica is also a country with intense agriculture (very fertile volcanic **andosols** and **ultisols**), and is the country in the world with the highest use of herbicides per km<sup>2</sup> \*



\* technically, it is third after the Maldives and Trinity and Tobago, but they both account for less than 0.1% of world global pesticide use (1500 tonnes/year), meanwhile Costa Rica is the 34th country in the world using most pesticides, with 12 811 tonnes/year. source: FAOSTAT

#### Introduction

The region of the Irazu and Turrialba volcano at the North of Cartago, is the most intensively cultivated, and exports to the whole country.





photo credit: Julien Demenois

#### Introduction

Classic monitoring of agricultural soil implies **laboratory analysis** of C,N, Al and Fe -> time consuming and expensive



## Quick reminder: How to develop a prediction model



# Sampling the Irazu volcano south flank...



At each point, several samples were taken at different depths

## Spectroscopy and laboratory measurements

**VNIR spectra** (500nm - 2500nm) acquired with the FOSS DS2500 provided by CINA

**MIR spectra** (2000 - 25000 nm) provided by CICA (currently analysed)



Laboratory analysis: lab provided by CIA (UCR)

SOC : **dry combustion** using C / N analyser (Dumas method)

Al / Fe : selective dissolution extraction by ammonium oxalate



#### Final dataset

#### The dataset is made of:

- · A total of **108** samples, from 39 locations, with 2 to 10 horizons sampled at each location
- · Environmental data : Soil type, soil subtype, altitude, land use, mean annual temperature, mean annual precipitation
- · Laboratory measurement of Al, C, N and Fe for each sample
- · V-NIR Spectra measurement for each sample
- · MIR spectra measurement for each sample (not analysed yet)

## Final dataset

#### A priori problems:

- · 108 samples isn't that much to make a PLSR model
- · some of the data are strongly correlated (samples from the same hole...)

### Final dataset

#### A priori problems of the dataset :

- · 108 samples isn't that much to make a PLSR model
- · some of the data are strongly correlated (samples from the same hole... )

#### Idea to make a better model:

- · use VNIR and MIR data (separately or together with spiking)
- · add environmental variables (altitude, depth) as extra covariables





for each element, 7 different pretreatments were tested (none, detrend, SNV, SavGol1/2, SNV+SavGol1/2) Spectral Pre-treatments





for each element, 7 different pretreatments were tested (none, detrend, SNV, SavGol1/2, SNV+SavGol1/2) Spectral Pre-treatments

Split the data between calibration and validation

We used a custom Duplex sampling algorithm, enabling us to keep in a same group the samples from the same geographic point -> independence between calibration and validation



for each element, 7 different pretreatments were tested (none, detrend, SNV, SavGol1/2, SNV+SavGol1/2)

The PLSR was run with R package *rnirs* and used 3 group of cross-validation sampled with the K-foldings method, with 10 replicates.

We select t this step the number of Latent variables (LV) for which the RMSECV is the lowest.

Spectral Pre-treatments Split the data between calibration and validation Run the PLSR with cross-validation to get a model

We used a custom Duplex sampling algorithm, enabling us to keep in a same group the samples from the same geographic point -> independence between calibration and validation



for each element, 7 different pretreatments were tested (none, detrend, SNV, SavGol1/2. SNV+SavGol1/2)

The PLSR was run with R package *rnirs* and used 3 group of cross-validation sampled with the K-foldings method, with 10 replicates.

We select at this step the number of Latent variables (LV) for which the RMSECV is the lowest.



of the validation. If RPD>1.6, we accept the model.



prediction error

For each element (C, N, Fe, Al):

For each of the 7 pretreatments:

For each combination of environmental variables: without, with Altitude, with depth, with altitude+depth

-> 112 PLSR models (28 per element) were run

## Synthesis of the results



 $RPD = SD_{cal} / RMSEP$ 

The prediction for C and N is better with lighter/no pretreatments, and improved when we add field covariables

# Synthesis of the results: prediction of Al and Fe



 $RPD = SD_{cal} / RMSEP$ 

Fe was poorly predicted in almost every situation. Adding environmental variables on heavily-treated spectras seems helping.

# Summary



- · Adding environmental variables increases the prediction performance of most PLSR models
- · For C, N and AI, we encounter some models with a good (RPD>1.6) prediction performance.
- · Fe is poorly predicted, but with heavy pre-treatment and environmental variables, we manage to reach the RPD threshold

## Limitations and further investigations

Selection Cal/Val after the pretreatments
 => overfitting +
 we don't have the same Cal and Val groups for each model : can we really compare the different RPD with themselves ?

## Limitations and further investigations

- · Selection Cal/Val **after** the pretreatments
  - => overfitting +

we don't have the same Cal and Val groups for each model : can we really compare the different RPD with themselves ?

#### **Solution**

- · making the cal/val selection **before** the pretreatments to have the same groups
  - and/or
- · making the cal/val selection based on the explanatory variables (y growing) rather than on the spectra

# That's it! Thanks for your attention!





