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Introduction : do you know Costa Rica ?

Costa Rica : a small country in
Central America, well known for its
nature and a model of
eco-tourism...

< T
e Caribbean Sea

Arenal
-*,)f ?‘ALiberia Volcano
: by

Monteverde
Guanacaste  Cloud

ﬂ}" 7‘. Forest
Nos?xra +_)?“ ?‘

Tamarindo

Samara

Punta Islita Tambor
[ 4

% i PEULED

Y  Quepos

<
. g Tortuguero
<4 € Canals &
Sarapiqui Forest
Rainforest
F g River
7 jrorest | gdges 2 .
{Lodges! - o
¥ San'Jose " F:‘ue;to
‘}W} iejo-Limon
<

:/5{'{(‘

Manuel Antonio

-

N

$ Pacific Ocean

yi f
Dominicar o

o outn

® - Facific

2

by
'}" Osa
Peninsula

-



Introduction : do you know Costa Rica ?

Costa Rica : a small country in
Central America, well known for its
nature and a model of
eco-tourism...

...But Costa Rica is also a country
with intense agriculture (very
fertile volcanic andosols and

), and is the country in the
world with the highest use of
herbicides per km? *

Costa Rica soil suborden maps : SuelosCR built by the UCR

* technically, it is third after the Maldives and Trinity and Tobago, but they both account for less than 0.1% of world global pesticide use (1500
tonnes/year), meanwhile Costa Rica is the 34th country in the world using most pesticides, with 12 811 tonnes/year. source : FAOSTAT



Introduction

The region of the Irazu and Turrialba volcano at the
North of Cartago, is the most intensively cultivated,
and exports to the Whole country.

=

photo credit ; Julien Demenois



Introduction

Classic monitoring of agricultural soil implies laboratory analysis of C,N, Al and Fe
-> time consuming and expensive

OBJECTIVE : Being able to assess C,N,Al and Fe
from soil thanks to infrared spectroscopy (cheaper
and faster) for a better monitoring of soil
characteristics in the region.

photo credit : Julien Demenois



Quick reminder : How to develop a prediction model
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Sampling the Irazu volcano south flank...

Altitude distribution among samples
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At each point,
several samples
were taken at
different depths



Spectroscopy and laboratory measurements

VNIR spectra (500nm - 2500nm) acquired with the
FOSS DS2500 provided by CINA

MIR spectra (2000 - 25000 nm) provided ,@‘
CE)

by CICA (currently analysed) =\

Laboratory analysis : lab provided by CIA (UCR)

UNIVERSIDAD DE COSTA RICA

CENTRO DE INVESTIGACIONES AGRONOMICAS
FACULTAD DE CIENCIAS AGROALIMENTARIAS

SOC : dry combustion using C / N analyser (Dumas method)
Al / Fe : selective dissolution extraction by ammonium oxalate



Final dataset

The dataset is made of:
- A total of 108 samples, from 39 locations, with 2 to 10 horizons sampled at
each location

- Environmental data : Soil type, soil subtype, altitude, land use, mean
annual temperature, mean annual precipitation

- Laboratory measurement of Al, C, N and Fe for each sample
- V-NIR Spectra measurement for each sample

- MIR spectra measurement for each sample (not analysed yet)



A priori problems :

- 108 samples isn’t that much to make a PLSR model

- some of the data are strongly correlated (samples from the same hole...




Final dataset

A priori problems of the dataset :
- 108 samples isn’t that much to make a PLSR model

- some of the data are strongly correlated (samples from the same hole... )

|ldea to make a better model :
- use VNIR and MIR data (separately or together with spiking)

- add environmental variables (altitude, depth) as extra covariables






Spectral
Pre-treatments

Split the data between
calibration and
validation

Run the PLSR with
cross-validation to get
a model

Apply the model to the
validation set and check
prediction error




Spectral
Pre-treatments b

detrending

for each element, 7 different
pretreatments were tested
(none, detrend, SNV,
SavGol1/2,
SNV+SavGol1/2)
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for each element, 7 different
pretreatments were tested
(none, detrend, SNV,
SavGol1/2,
SNV+SavGol1/2)
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Spectral
Pre-treatments

Split the data between
calibration and
validation

e

PC2

PCA of the spectra pretreated with
detrending,

showing the calibration and validation subset
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We used a custom Duplex
sampling algorithm, enabling
us to keep in a same group
the samples from the same
geographic point ->
independence between
calibration and validation



for each element, 7 different
pretreatments were tested
(none, detrend, SNV,
SavGol1/2,
SNV+SavGol1/2)

The PLSR was run with R
package rnirs and used 3
group of cross-validation
sampled with the K-foldings
method, with 10 replicates.

We select t this step the
number of Latent variables
(LV) for which the RMSECV
is the lowest.
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a model

We used a custom Duplex
sampling algorithm, enabling
us to keep in a same group
the samples from the same
geographic point ->
independence between
calibration and validation

Measured data

result of the Cross Validation:
auto-prediction of N
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for each element, 7 different
pretreatments were tested
(none, detrend, SNV,
SavGol1/2,
SNV+SavGol1/2)

The PLSR was run with R
package rnirs and used 3
group of cross-validation
sampled with the K-foldings
method, with 10 replicates.

We select at this step the
number of Latent variables
(LV) for which the RMSECV
is the lowest.
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/ Pre-treatments

Split the data between
calibration and
validation

Run the PLSR with
cross-validation to get
a model

Mesasured data
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Predicted data

Apply the model to the
validation set and check
prediction error

For each element and each
pretreatment, we looked at the

. —— RPD (SD/rmse) of the prediction

of the validation. If RPD>1.6, we
accept the model.




Spectral
Pre-treatments

A,

Split the data between
calibration and
validation

A,

Run the PLSR with
cross-validation to get
a model

Apply the model to the

validation set and check

prediction error

112 different

conditions

For each element (C, N, Fe, Al) :
For each of the 7 pretreatments :
For each combination of environmental

variables : without, with Altitude, with depth,
with altitude+depth

-> 112 PLSR models (28 per element)
were run



Synthesis of the results

Synthesis of prediction models for C
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The prediction for C and N is better with lighter/no pretreatments, and
improved when we add field covariables



Synthesis of the results : prediction of Al and Fe

Synthesis of prediction models for Al

Synthesis of prediction models for Fe
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Fe was poorly predicted in almost every
situation. Adding environmental variables
on heavily-treated spectras seems helping.



Summary

Enhanced prediction : modification of RPD
with environmental variables
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- Adding environmental
variables increases the
prediction performance of most
PLSR models

- For C, N and Al, we encounter
some models with a good
(RPD>1.6) prediction
performance.

- Fe is poorly predicted, but with
heavy pre-treatment and
environmental variables, we
manage to reach the RPD
threshold



Limitations and further investigations

- Selection Cal/Val after the pretreatments
=> overfitting +
we don’t have the same Cal and Val groups for each model : can we really
compare the different RPD with themselves ?



Limitations and further investigations

- Selection Cal/Val after the pretreatments
=> overfitting +
we don’t have the same Cal and Val groups for each model : can we really
compare the different RPD with themselves ?

Solution

- making the cal/val selection before the pretreatments to have the same groups
and/or

- making the cal/val selection based on the explanatory variables (y growing) rather than
on the spectra
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