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ABSTRACT

The coronavirus disease 2019 (COVID-19) continues to have a huge impact on health care and economic systems
around the world. The first question to ponder is to understand the flow of COVID-19 in the spatial and temporal
dimensions. We collected 7 Omicron clusters outbreaks in China since the outbreak of COVID-19 as of August
2022, selected outbreak cases from different provinces and cities, and collected variable indicators that affect
spillover outcomes, such as distance, migration index, PHSM index, daily reported cases number and so on. First,
variables influencing spillover outcome events were assessed and analyzed retrospectively by constructing an
infectious disease dynamics model and a classifier model, and secondly, the association between explanatory
variables and spillover outcome events was constructed by fitting a logistics function. This study incorporates 7
influencing factors and classifies the spillover risk level into 3 levels. If different outbreak sites could be classified
into different levels of spillover, it may reduce the pressure of epidemic prevention in some districts due to the

Influencing factors

lack of a uniform standard, which might be more conducive to achieving the goal of "dynamic zero".

1. Introduction

In the two and a half years since the WHO declared the novel coron-
avirus pneumonia epidemic a global pandemic in Geneva on 11 March
2020 [11], it has had an unusually large impact on the health care and
economies of almost every country in the world. And after the WHO
declared Omicron a variant of concern on 26 November 2021 [2], it
recommended that countries lift or relax travel restrictions, saying that
travel restrictions cannot stop the spread of Omicron [3]. The measures
taken internationally vary from country to country. However, most de-
veloped countries have already announced the removal of vaccination
restrictions and free mass COVID-19 testing, such as Denmark, which an-
nounced the removal of all vaccination restrictions on 1 January 2022,
and the UK, which announced on 1 April 2022 that it would no longer
offer free testing for the general public [4]. Estimates published by the
Office for National Statistics (ONS) show that for the second consecu-
tive week since the launch of the "Living with COVID-19” program [5],
the number of confirmed cases of COVID-19 in the UK is approaching 5
million in a single week, continuing at the highest level ever recorded,
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in most parts of the country. In most parts of the country, an average
of 1 in 13 people are infected with SARS-CoV-2. In China, according to
incomplete statistics, the seven Omicron clusters since March 2022 have
generated a total of 676,482 cases and 929 spillover events.

Under the guidance of China’s "dynamic zero" and the ninth edition
of the prevention and control guidelines, how to prevent the spillover
of infected persons from the COVID-19 outbreak in the context of the
Omicron variant pandemic in 2022 has become a priority issue in China.
In this paper, we first explored the main factors influencing spillover
outcome events by building a classifier model to incorporate factors af-
fecting disease spillover, training and adjusting the model accuracy, and
setting three different spillover risk levels. This was followed by fitting
functions to further demonstrate the extent to which the main factors
influencing spillover outcome events contributed to spillover outcomes.

There is a paucity of literature addressing disease spillover, with one
study using the COVID-19 Community Index to model the risk rating of
COVID-19 spillover by county and region [6] but without a weighted
comparison of risk factors for outbreak spillover to analyze its main in-
fluences. There appears to be a gap in current research in understanding
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how the specifics of infected spillover under COVID-19 pandemic evolve
over time and how it spreads to other regions. Therefore, this study
hopes to fit a classifier model and infectious disease dynamics model
with a classifier model in machine learning that can be more accurate
in measuring the severity of spillover within and between regions and
predicting the number of infections.

Our findings suggest that spatial distance will be a key factor influ-
encing spillover outcome events in the context of an Omicron variant
pandemic, a finding that implies that the likelihood of reduced spillover
risk decreases with increasing distance from the site of occurrence, and
that spillovers tend to occur in the early stages of an outbreak.

2. Material and methods
2.1. Data collection and variables definition

All case data, mid-risk and high-risk area data sources are from
National Health Commission of the People’s Republic of China. The
migration index is from the official website of Baidu migration
(https://qianxi.baidu.com/).

The definition and rationale for the variables included in the clas-
sifier model in this study are as follows: 1) distance: calculate the
distance between two points on the sphere using the haversine for-
mula, the latitude and longitude of the location are derived from the
amap (https://ditu.amap.com/); 2) R;: real-time reproduction number;
3) cases: number of new cases reported per day; 4) mid-risk and high-
risk: risk level definition originated from National Health Commission
of the People’s Republic of China; 5) migration index: from the num-
ber of migrations announced by Baidu Migration; 6) same area: based
on seven regions in China based on geographic regions and Hong Kong,
Macau and Taiwan, a total of eight areas.

2.2. Dynamic model structure

We considered pre-symptomatic infections based on the basic
Susceptible- Exposed- Symptomatic- Asymptomatic- Quarantined- Re-
covered/Removed (SEIAQR) deterministic model according to the pre-
vious research [7-10]. In our model, the whole population were first
divided into two groups, completed booster vaccination population and
uncompleted booster vaccination population. Furthermore, individuals
of each group were divided into six categories: Susceptible (S), Exposed
(E), Symptomatic (I,), Pre-symptomatic (Ip), Asymptomatic (A), Quar-
antined (Q) and Removed (R) including recovered. The equations of the
model were

d
=P xS *x ([gy+xxIp+Kx%xA
ai(s,) 11 1 (I Pl 1)
= Poy xSy % (Lgy+ K % Ipy+ K % Ay)
d =Py xSy x (Ig) + &% Ip +x % A))
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This extended SEIAQR model follows some basic assumptions, in-
cluding that population is homogeneous and well-mixed interactions
without influence by social behavior, age and work. And we add some
assumptions to our study:

(1) Susceptible population would be infected with a transmission rel-
ative rate of § by contact with pre-symptomatic/ symptomatic/ asymp-
tomatic infections, and their transmission relative rate is the same.

(2) The incubation period of symptomatic infections was 1/w +
1/@", the latent period of an asymptomatic person was 1/w’.

(3) Parameter p (0 <p<1) gave the proportion of individuals who
had asymptomatic infections.

(4) Symptomatic infections are communicable in 1/w” days before
developed symptoms.

(5) Individuals in categories I, and A were transferred into category
R after an infectious period of 1/y’ and1/y, respectively.

(6) Case fatality rate (CFR) was 0 and was not simulated in the model
because Omicron variant has low CFR.

(7) We assumed that the infectivity and susceptibility would be re-
duced after vaccination. VEI and VES due to being fully vaccinated were
denoted as (1 - x) and (1 - y), respectively.

2.3. Parameter estimation approach

Three parameters were estimated based on real data, which are the
total population, asymptomatic infection rate and the coverage rate of
COVID-19 booster vaccination. In this study, several parameters were
adopted to develop the model, and the description, value, and source
are listed in Table S1.
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(1) According to the statistical year in 2021, the total population
of the seven districts is 21,893,000, 15,618,300, 5464,087, 6255,000,
8782,285, 24,870,000, 10,081,200, respectively. The number of initial
infections (I), including symptomatic and asymptomatic, is obtained
from the actual reported data, and the initial values I, of the seven dis-
tricts are 1, 12, 3, 2, 10, 1, 1 respectively. The initial values of E and R
were set to 0.

(2) The coverage rate of COVID-19 booster vaccination in seven dis-
tricts is 71.07%, 1.53%, 0, 0 and 0, 42.74%, 30.85% respectively (dis-
tricts with O booster vaccination are assumed to have a 30% booster
vaccination rate for all districts with vaccination rates below 30% in
the model due to the lack of publicly available data).

(8) The parameter « refers to the relative transmissibility rate of
asymptomatic to symptomatic individuals. Refer to the previous re-
search. k is set to 1 in this study.

(4) Since reported asymptomatic patients are far more than infected
in Shanghai city, the p in Shanghai is set to 0.8 by assumption, while the
p in other districts are set to 0.31 according to the previous research.

(5) As of August 23, 2022, no death case was reported in the report
data of the seven districts, so this study did not incorporate the case
fatality rate (f) in the model.

(6) At present, there were few researches on the incubation
period of the symptomatic infections(w) and latent period of the
asymptomatic(w’) of Omicron Variant, so we made assumptions based
on the existing literatures of Omicron BA.1, and we assumed that the
latent period is the same as the incubation period, which is similar with
the previous study in Gauteng and KwaZulu-Natal. According to the out-
break in Norway, the median incubation period was 3 days (interquar-
tile range: 3—4); it was 4.2 days (range, 2-8 days) according to other
publicly reported data from Korea; the incubation found by a survey in
South Korea median incubation period was 3-4 days; it was 3 days (in-
terquartile range:1-4 days) in the study of a northern region of Spain;
We also refer to another study in Japan, mean incubation periods were
3.7 (95% credible interval (CI) 3.4-4.0) and 5.0 (95% CI 4.5-5.6) days
for Delta and non-Delta cases, respectively. According to CDC Newsroom
report in December 27, 2021, the 1/w” was 1-2 days.

(7) In this study, the infectious period was set to 4.5 days
(y = y’=0.22) by our previous research about Delta and CDC Newsroom
report in December 27, 2021.

2.4. Statistical analysis

Real-time reproduction number (R,) was performed by EpiEstim
(version 2.2. 4) in R software (version 4.1.2). Other statistical analy-
sis was conducted by using Python (version 3.8.8). Univariate logis-
tic regression analysis was performed to screen related risk factors of
Spillover risk factors. We found the point on the ROC curve that is clos-
est (i.e., the shortest distance) to the perfect model (with 100% sensi-
tivity and 100% specificity), which was associated with the upper left
corner of the plot. The discrimination ability of the model was evalu-
ated by using receiver operator characteristic (ROC) curve [11] analysis.
The AUC > 0.5 indicated better predictive values, the closer the AUC to
1, the better the model performance. The specific process is shown in
Fig. 1.

The decision tree model. A tree structure composed of root node,
branch node and leaf node, which reflected the mapping relationship
between features and tags [12].

Random forest [13]. An ensemble learning method for classifica-
tion, regression, and other tasks that operates by constructing a large
number of decision trees at training time. We used scikit-learn (version
1.1.3) in python for training and prediction of the model. The criterion
of function in this model that measures the quality of a split is gini,
and we use RandomizedSearch and GridSearchCV to find the optimal
parameters of the model, considering and solving the impact of sample
imbalance problem on the model.
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Fig. 1. Model selection and comparison flowchart.

Naive Bayes classifier. Bayes’ Rule answers [14] the question
“based on the predictors that we have observed. In this study, we
use gaussian naive bayes, sample imbalance problem solved using im-
blearn.over sampling in python. The likelihood of the features is as-
sumed to be Gaussian as follow:

Support Vector Machines (SVM). The basic idea of SVM [15] learn-
ing is to solve the separated hyperplane that correctly partitions the
training data set and maximizes the geometric separation. We use svm
in scikit-learn (version 1.1.3) in python in this study.

Fitting function

We use SMOTE in imblearn.over_sampling in python (version 3.8.9)
to resample the unbalanced data and fit the logit function using
statsmodels.

All model code can be posted on github when the article is received.

3. Result and discussion
3.1. Epidemiological description

3.1.1. Descriptive analysis of aggregated outbreaks

In this study, a total of seven Omircon outbreaks were collected, as
shown in Fig. 2, and the list from top to bottom are Beijing, Tianjin,
Langfang, Nanchang, Quanzhou, Shanghai city and Hannan province.
The remaining six cities were all BA.2 among the seven aggregated out-
breaks counted, the durations were 91 days, 54 days, 25 days, 44 days,
31 days, and 22 days, respectively. The longest duration of the out-
break was 93 days in Shanghai, and the highest cumulative number of
reported cases was 649,354, followed by 19,266 in Hainan (data as of
August 23, 2022), and the cumulative number of reported cases during
the outbreak in the remaining five cities was 2,283, 834, 3,409, 1,133,
and 3,175, respectively. Based on previous research, this study simu-
lates the outbreak curve of 7 areas by establishing the SEIAQR model,
as shown in Fig. 2b, from left to right, Beijing, Tianjin, Langfang, Nan-
chang, Quanzhou, Shanghai city and Hainan province. The bars in the
figure are the actual number of cases in the area, while the red curve
is the fitted curve, which is the number of new cases per day fitted by
the SEIAQR model. Since the reported case data are often lagging or un-
stable, the risk can be subsequently determined by importing the fitted
data into the classifier model to increase the stability and real-world fit
of the model. The peak time of the outbreak in the seven areas counted
was 53 days, 16 days, 12 days, 8 days, 6 days, 16 days, and 44 days, with
Beijing taking the longest time to peak at 53 days, followed by Shanghai
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Fig. 2. COVID-19 outbreak curves in seven districts. From left to right, the first district is Beijing and the last district is Shanghai.

at 44 days. The peak number of cases in the seven districts was 96, 76,
546, 92, 265, 1663, and the highest peak number of cases was 27,719
in Shanghai.

Among the seven outbreaks counted, the COVID-19 outbreak in
Shanghai was long in duration and large in scale, but we believe that
Shanghai took a unique approach [16] to fighting the earliest waves
of SARS-CoV-2 outbreaks in China and that this outbreak had the most
far-reaching impact and generated the most spillover cases of Omicron
variant of SARS-CoV-2. Therefore, it was included in the statistics de-
spite its potential impact on the stability of the data. In a large outbreak
such as Shanghai, we can use the number of cases fitted by the dynam-
ics model (SEIAQR) to correct for bias in the number of daily reported
cases due to reporting. Therefore, in this study, the dynamics model can
be used as a correction for the input classifier model variables.

3.1.2. Spillover risk description

This study counted the specific districts and the cumulative number
of spillover cases in each of the 7 areas, as shown in Fig. 3. Fig. 3a shows
the number of spillover cases in the 7 areas, the number of which is 12,
3, 5, 4, 154 and 47. Among them, the area with the highest number
of spillover cases was Shanghai with 959 cases, followed by Quanzhou,
Beijing, Langfang, Nanchang and Tianjin. Fig. 3b shows the specific dis-
tricts involved in the spillover of each district and the proportion of all
spillover cases. According to the geographical division of China, it is
divided into 8 different regions. Among them, Shanghai has the largest
number of districts involved in the spillover, with 127 districts, followed
by 17 in Quanzhou, 14 in Hainan, 10 in Beijing, 3, 3, and 2 in Nanchang,
Langfang, and Tianjin.

The reason we divided China into eight regions on the map was to
perform a descriptive analysis of the spillover case data, expecting to
find the distribution of the number of spillover cases. In the spillover
map, it can be seen that the spillover of diseases is mainly concentrated
in the surrounding districts, i.e. the same areas, which is perhaps also
related to the fact that people’s choice of transport [17] for traveling
is mostly by rail, car, etc. Perhaps better management of the same area
could be more effective in controlling the outbreak and spread of the
disease, or depending on the distance from the remaining seven areas,
different levels of control in areas with cases may help reduce the pres-
sure to prevent outbreaks.

3.1.3. Descriptive analysis of influencing factors

We conducted a descriptive analysis of the influencing factors based
on the number of spillover cases mentioned above, and the cumula-
tive results of the 472 samples included are shown in Table 1, in which
the mean value of the distance was 1310.59 km, the interquartile spac-
ing was 1154.07-1649.34 km, the mean value of the R, was 1.1, and
the interquartile spacing was 0.82-1.27 for the samples with successful
spillover. The mean values of the number of cases, mid-risk areas, high-
risk areas, and migration index were 10,878.85, 18.29, 11.98, 0.73, and
0.89, with interquartile spacing of 557.5-22,248, 13-13, 0-0, and 0.41-
0.74.

The results showed that the interquartile range of R, was (0.82-1.27),
which is a low R, level, and the interquartile range of migration index
was (0.41-0.74), both of which indicated that the spillover cases were
not in the rapid growth phase of the disease outbreak and tended to be
in the early or late phase.

3.2. Analysis of influencing factors

3.2.1. Weight analysis of influencing factors

The random forest model was used in this study, and the explana-
tory variable weight scores of different districts affecting spillover out-
comes were calculated. As shown in Fig. 4, in the seven districts in-
cluded in the study, distance is almost the most important factor affect-
ing spillover events, and its weight is above 0.3 in many districts. How-
ever, in Nanchang and Langfang, it could be detected that the weight of
the population of the spillover area is higher than that of distance, but
distance is still one of the main influencing factors. In addition to the
most important influencing factor of distance, whether it is within the
same geographical area is also one of the main influencing factors, the
weight ratio of spillover results in it that Tianjin, Quanzhou, and Shang-
hai has reached more than 0.2. These four influencing factors of spill,
mid-risk, high-risk areas and R, have similar effects on spillover outcome
events.

3.2.2. Variable correlation analysis
We conducted variable correlation analysis and variable frequency
distribution plotting for the seven included explanatory and response
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Table 1
Statistical description of influencing factors.
distance R, Cases Mid-risk High-risk Migration index Same Area Y
mean 1310.59 1.1 10,878.85 18.29 11.98 0.73 0.89 1.97
std 559.62 0.45 10,370.66 25.96 49.11 0.66 0.32 2.92
min 41.55 0.3 0 0 0 0.05 0 1
25% 1154.07 0.82 557.5 13 0 0.41 1 1
50% 1466.45 0.99 7333 13 0 0.5 1 1
75% 1649.34 1.27 22,248 13 0 0.74 1 2
max 3435.78 3.93 27,719 189 268 4.92 1 36
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Fig. 4. Influencing factor weights. From left to right and from top to bottom, the weighting ratios of spillover risk influencing factors for different districts are

shown, with Beijing as the first district and Shanghai as the last district.

variables, as shown in Fig. 5. The results indicate that the data distribu-
tions of R,, Cases, High-risk, Mid-risk, Migration index, and Y all show
positive skewed distributions, while Same Area shows negative skewed
distributions. The pairwise correlation analysis performed in it shows
that the correlations between distance and other explanatory variables
except Same Area are almost negatively correlated. The R, has little cor-
relation with other explanatory variables. Cases has a strong correla-
tion with distance, but it has a certain negative correlation with other
explanatory variables. Among all explanatory variables, Mid-Risk and
High-Risk showed a very strong positive correlation, and the correlation
with other influencing factors was weak. There is almost no correlation
between the other influencing factors.

As shown in Fig. 6, it was found that similar to the results of the
correlation analysis above, the mid and high risk areas, R, and migra-
tion index were more inclined to the same category, while the number of
cases and distance, and whether the same area were more inclined to the
same category, which has similarities with the results in Fig. 4 (Influenc-
ing factor weights), where the number of cases and distance were the
factors that contributed more to the spillover outcome factors. There-
fore, we can pay more attention to the two factors of distance and
number of cases when we focus on the spillover outcomes in the real
world.

3.2.3. Analysis of influencing factors of successful spillover events

In this study, the main influencing factors of the successful spillover
outcome events were analyzed, as shown in Fig. 7. The results of the
distribution of the influencing factors are similar to Fig. 5, with dis-
tance, R, andmigration index showing a positive skewed distribution. In
the analysis of influencing factors for all successful spillover events, the
probability of successful spillover events was highest when the distance

was around 1600 km, the R, was close to 1, and the migration index was
close to 0.5, the probability of a successful spillover event is the highest.

For the spillover events at the time of the outbreak, this study fo-
cused on the analysis of the factors influencing the spillover events. In
the analysis results, it is found that the spillover infections are mainly
concentrated in the same province or the same geographical area, and
the distance is also concentrated within 200-300 km. And according to
the analysis of the second most influential factor in the results section, it
is also clear that distance is an important factor influencing the spillover
results regardless of which district’s classifier model is used for simula-
tion. Moreover, there is no correlation between distance and other in-
fluencing factors, so it can be considered that spatial distance has the
greatest impact on spillover outcome events. The degree of contribution
of the remaining explanatory variables to the model varies widely across
districts without corresponding stability, but still has a high weight in
some models, even higher than the degree of influence of distance on
the outcome event. For example, the influence of the number of peo-
ple moving out of the destination in Langfang and Quanzhou on the
outcome is higher than the influence of distance as a factor. Therefore,
we should consider various factors, such as the geographical location
of the outbreak, the radius of the outbreak, the size of the population,
etc., when we subsequently develop different levels of prevention and
control measures.

We further integrate the spillover success events and analyze the
results of their influencing factors to show that the distance, R;, and mi-
gration index all show a positive skewed distribution, which similarly
indicates that the spillover success events are mostly concentrated in the
proximity area. In contrast, the positive skewed distribution of R, and
migration index indicates that the spillover of infected persons is more
likely to occur in the first and middle phases of the outbreak, which is
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Fig. 5. Correlation analysis of variables. The diagonal line is the distribution of different influencing factors, both horizontal and vertical coordinates indicate
the influencing factors, the cross part is the relationship between two influencing factors, and the thick blue line with a range indicates the degree of correlation

between them.

also related to the way the outbreak is managed in the first and mid-
dle phases. The prevention and control measures are not strong and the
frequency of nucleic acid testing is low in the first and middle stages of
an outbreak, which makes it easier to generate the number of spillover
cases. Therefore, we should strengthen the prevention and control ef-
forts in the early stage of the outbreak, and deal with the outbreak as
soon as possible to achieve rapid extinction and prevent spillover in the
early stage.

In this study, we made a radiation range map for the spillover risk
probability of more than 200 cities generated by the spillover model of
seven districts. And the results showed that only Shanghai, Hainan, and
Quanzhou have high-risk radiation, while the remaining four districts
do not have high risk radiation. But the study does not exclude that
there is still high-risk in the same provinces and geographical divisions.

3.3. Analysis of model results

3.3.1. Function fitting results

In this study, the logit function was fitted using spillover success
data, and the specific results of the fit are shown in Table 2. The largest
absolute value of coef is same area, followed by Intercept, then R;, and
the smallest is High-risk. p-value is less than 0.005 except for high-risk,
which is statistically significant. We considered the multicollinearity of
the model, and the results are shown in the Supplementary Table S2.
The functions are as follows:

logit = In L. 1.1333 — 0.0022Dis + 0.9072R, + 0.001Cases
Po

+0.0308Mid — 0.0008High — 0.5918Spill — 1.9669Same
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Table 2
Logit regression result.
coef std err zZ P>|z|  [0.025  0.975]
Distance —0.0022 2.15e-0.5 -102.753 0.000 —-0.002 —-0.002
R, 0.9072 0.013 67.529 0.000 0.881 0.933
Cases 0.0010 5.33e-0.5 19.497 0.000 0.001 0.010
Mid-risk 0.0308 0.001 50.954 0.000 0.030 0.032
High-risk —0.0008 0.000 -1.865 0.062 —0.002 3.84e-0.5
Migration —-0.5918 0.013 —45.583 0.000 -0.617 —-0.566
Same_area —1.9669 0.023 —85.320 0.000 -2.012 -1.922
Intercept 1.1333 0.028 39.796 0.000 1.077 1.189
0.30
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3.3.2. Model score results

We incorporated three classifier models RF, SVM, and Bayes, and
compared the accuracy, macro mean, and AUC values of the three clas-
sifier models. As shown in Table 3, due to too few positive samples, the
three districts of SVM, Bayes, namely Tianjin, Langfang, and Nanchang
cannot be used for calculation. The model scoring results of the three
models for seven districts, RF, earn accuracy, macro, and accuracy in
the three models. The mean value and AUC value were the highest.

This study focuses on the simulation of disease prevalence curves
using infectious disease dynamics models. Comparing classifier models
in machine learning, it is concluded that the random forest model has the
advantages of interpretability as well as high accuracy, so the random
forest model is chosen in this study. Although the sample imbalance was
considered and solved in the training model, the AUC value of the model
could still not be calculated for some regions due to the problem of a
small sample size of positive events, i.e., spillover successes. In the end,
the results of the three classifier models were synthesized, and the RF
model was used to simulate the spillover risk.

3.3.3. Spillover risk level

As shown in Figs. 8, and 7 districts are divided into three different
risk level ranges. According to the simulation results of the classifier
model, if the spillover success probability is greater than 0.5, it is iden-
tified as a high-risk area (red), the spillover risk probability is between
0.2 and 0.5 as mid risk (mid risk), and less than 0.2 as low risk (blue).
Not every district has three risk areas at the same time, only two dis-
tricts, Quanzhou and Shanghai, have both high and low-risk areas, but
Quanzhou’s mid and high-risk areas are concentrated in Fujian province,
covering 4 and 2 geographical areas respectively. The low-risk area cov-
erage is 1,274 km, while Shanghai’s three risk areas range from high-risk
to low-risk coverage is focused on 1,300-166 km, in the order of 1,317,
1,519, 1,586 km, and covers all eight regions of the Tianjin and Lang-
fang, having similar mid and low risk coverage, and there is no high-risk
area. But the coverage of Tianjin involves three regions and Langfang
covers only one north China. Beijing mid-risk areas are concentrated
within Beijing, and low-risk area coverage is mainly concentrated in
northern China. Nanchang only exists mid risk area coverage to 6 areas.
Hainan only had mid and high-risk areas, mainly concentrated in South
China.

°
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Fig. 7. Distribution probability of spillover success event variables. (a-c, e) The probability density distribution of the five influencing factors of Distance, R,,
Cases, Migration, and Same Area, respectively. (f) represents the distribution of all influencing factors, where the red dot position is the median and the error line is

the interquartile spacing.
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Table 3
Model comparison results.
Model Evaluation Indicators Beijing Tianjin Langfang Nanchang Quanzhou Hainan Shanghai
accuracy_score 0.9989 0.9991 0.998 0.9996 0.9973 0.9946 0.716
RF Macro-averaging 0.6247 0.5 0.4993 0.5 0.8179 0.4981 0.5161
roc_auc_score 0.6247 - 0.4997 - 0.9364 0.4992 0.7081
accuracy_score 0.9993 - - - 0.983 0.8694 0.716
SVM Macro-averaging 0.4996 - - - 0.4978 0.5144 0.5161
roc_auc_score 0.5 - - - 0.4937 0.9344 0.7081
accuracy_score 0.9869 - - - 0.8667 0.9946 0.9832
Bayes Macro-averaging 0.5071 - - - 0.5159 0.4801 0.4919
roc_auc_score 0.6187 - - - 0.9331 0.4992 0.4997

a Beijing city

¢ Langfang city

Taiwan,

Hong Kong and

.Macao regions of China
g
99 North China N

{77 South China

{0 Northeast China @ High-risk
" Northwest China ‘ Mid-risk
© Southwest China

(7 Central China Low-risk
@ East China

Fig. 8. Spillover risk rating range. From left to right, from top to bottom, the last district is Shanghai, such as Beijing and Tianjin, where the red range indicates
that the model simulation results in high risk, the orange part indicates medium risk, and the blue part indicates low risk areas. (Map approval number: GS (2018)

5572).

The results of this part of the study show that the scope of the out-
break affected varies from district to district, but it is the surrounding
cities that are most affected. This study divided into three risk levels,
and some districts differed greatly in the scope of the three levels, while
others differed very little, which may be related to the population mo-
bility preferences of a particular location, an issue not considered in this
study.

4. Conclusion

The variables affecting the spillover outcome events are diverse, and
the study believes that it is difficult to prevent the spillover of infected
people by implementing the same outbreak prevention measures at the
provincial, city and county levels. The human factors that lead to the
emergence of diseases vary by society, and they can also vary by culture,
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history and geography, or by the occurrence of black swan events and
other factors that ultimately lead to outbreaks. However, the chain of
spillover events may vary from society to society, and the only way to
prevent future disease spillovers from occurring is to analyze the impact
factors on outcome events according to their respective characteristics
to stop the chain of events and prevent the occurrence of unexpected
events.

The results of all studies show that the most important factor in-
fluencing disease spillover is distance. Therefore, different risk radius
should be classified according to the spatial distance of outbreak sites,
and different risk levels should be classified according to different stages
[15] of the outbreak to achieve the purpose of stratified prevention and
control, which is more conducive to "Dynamic zero" and in line with
the cost-benefit principle. However, many factors influence the devel-
opment of an epidemic and we need to consider them in the context of
various realities; for example, we may need to consider the impact of
different local population movements, economic and cultural levels, and
other factors on the epidemic. Nonetheless, we can still identify some of
the major factors influencing the spread of the epidemic and thus change
the level of measures to achieve more effective epidemic control.
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