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a b s t r a c t 

The coronavirus disease 2019 (COVID-19) continues to have a huge impact on health care and economic systems 

around the world. The first question to ponder is to understand the flow of COVID-19 in the spatial and temporal 

dimensions. We collected 7 Omicron clusters outbreaks in China since the outbreak of COVID-19 as of August 

2022, selected outbreak cases from different provinces and cities, and collected variable indicators that affect 

spillover outcomes, such as distance, migration index, PHSM index, daily reported cases number and so on. First, 

variables influencing spillover outcome events were assessed and analyzed retrospectively by constructing an 

infectious disease dynamics model and a classifier model, and secondly, the association between explanatory 

variables and spillover outcome events was constructed by fitting a logistics function. This study incorporates 7 

influencing factors and classifies the spillover risk level into 3 levels. If different outbreak sites could be classified 

into different levels of spillover, it may reduce the pressure of epidemic prevention in some districts due to the 

lack of a uniform standard, which might be more conducive to achieving the goal of "dynamic zero". 
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. Introduction 

In the two and a half years since the WHO declared the novel coron-
virus pneumonia epidemic a global pandemic in Geneva on 11 March
020 [1] , it has had an unusually large impact on the health care and
conomies of almost every country in the world. And after the WHO
eclared Omicron a variant of concern on 26 November 2021 [2] , it
ecommended that countries lift or relax travel restrictions, saying that
ravel restrictions cannot stop the spread of Omicron [3] . The measures
aken internationally vary from country to country. However, most de-
eloped countries have already announced the removal of vaccination
estrictions and free mass COVID-19 testing, such as Denmark, which an-
ounced the removal of all vaccination restrictions on 1 January 2022,
nd the UK, which announced on 1 April 2022 that it would no longer
ffer free testing for the general public [4] . Estimates published by the
ffice for National Statistics (ONS) show that for the second consecu-

ive week since the launch of the "Living with COVID-19 ″ program [5] ,
he number of confirmed cases of COVID-19 in the UK is approaching 5
illion in a single week, continuing at the highest level ever recorded,
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n most parts of the country. In most parts of the country, an average
f 1 in 13 people are infected with SARS-CoV-2. In China, according to
ncomplete statistics, the seven Omicron clusters since March 2022 have
enerated a total of 676,482 cases and 929 spillover events. 

Under the guidance of China’s "dynamic zero" and the ninth edition
f the prevention and control guidelines, how to prevent the spillover
f infected persons from the COVID-19 outbreak in the context of the
micron variant pandemic in 2022 has become a priority issue in China.

n this paper, we first explored the main factors influencing spillover
utcome events by building a classifier model to incorporate factors af-
ecting disease spillover, training and adjusting the model accuracy, and
etting three different spillover risk levels. This was followed by fitting
unctions to further demonstrate the extent to which the main factors
nfluencing spillover outcome events contributed to spillover outcomes.

There is a paucity of literature addressing disease spillover, with one
tudy using the COVID-19 Community Index to model the risk rating of
OVID-19 spillover by county and region [6] , but without a weighted
omparison of risk factors for outbreak spillover to analyze its main in-
uences. There appears to be a gap in current research in understanding
 . 
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are listed in Table S1. 
ow the specifics of infected spillover under COVID-19 pandemic evolve
ver time and how it spreads to other regions. Therefore, this study
opes to fit a classifier model and infectious disease dynamics model
ith a classifier model in machine learning that can be more accurate

n measuring the severity of spillover within and between regions and
redicting the number of infections. 

Our findings suggest that spatial distance will be a key factor influ-
ncing spillover outcome events in the context of an Omicron variant
andemic, a finding that implies that the likelihood of reduced spillover
isk decreases with increasing distance from the site of occurrence, and
hat spillovers tend to occur in the early stages of an outbreak. 

. Material and methods 

.1. Data collection and variables definition 

All case data, mid-risk and high-risk area data sources are from
ational Health Commission of the People’s Republic of China. The
igration index is from the official website of Baidu migration

 https://qianxi.baidu.com/ ). 
The definition and rationale for the variables included in the clas-

ifier model in this study are as follows: 1) distance: calculate the
istance between two points on the sphere using the haversine for-
ula, the latitude and longitude of the location are derived from the

map ( https://ditu.amap.com/ ); 2) Rt : real-time reproduction number;
) cases: number of new cases reported per day; 4) mid-risk and high-
isk: risk level definition originated from National Health Commission
f the People’s Republic of China; 5) migration index: from the num-
er of migrations announced by Baidu Migration; 6) same area: based
n seven regions in China based on geographic regions and Hong Kong,
acau and Taiwan, a total of eight areas. 

.2. Dynamic model structure 

We considered pre-symptomatic infections based on the basic
usceptible- Exposed- Symptomatic- Asymptomatic- Quarantined- Re-
overed/Removed (SEIAQR) deterministic model according to the pre-
ious research [7–10] . In our model, the whole population were first
ivided into two groups, completed booster vaccination population and
ncompleted booster vaccination population. Furthermore, individuals
f each group were divided into six categories: Susceptible (S), Exposed
E), Symptomatic (Is ), Pre-symptomatic (Ip ), Asymptomatic (A), Quar-
ntined (Q) and Removed (R) including recovered. The equations of the
odel were 

𝑑 

𝑑𝑡
(
𝑆1 

) = −𝛽11 ∗ 𝑆1 ∗
(
𝐼𝑆1 + 𝜅 ∗ 𝐼𝑃 1 + 𝜅 ∗ 𝐴1 

)
− 𝛽21 ∗ 𝑆1 ∗

(
𝐼𝑆2 + 𝜅 ∗ 𝐼𝑃 2 + 𝜅 ∗ 𝐴2 

)

𝑑 

𝑑𝑡
(
𝐸1 

) = 𝛽11 ∗ 𝑆1 ∗
(
𝐼𝑆1 + 𝜅 ∗ 𝐼𝑃 1 + 𝜅 ∗ 𝐴1 

)
+ 𝛽21 ∗ 𝑆1 ∗

(
𝐼𝑆2 + 𝜅 ∗ 𝐼𝑃 2 + 𝜅 ∗ 𝐴2 

)
− ( 1 − 𝑝 ) ∗ 𝜔 ∗ 𝐸1 − 𝑝 ∗ 𝜔2 ∗ 𝐸1 

𝑑 

𝑑𝑡
(
𝐼𝑃 1 

) = ( 1 − 𝑝 ) ∗ 𝜔 ∗ 𝐸1 − 𝜔1 ∗ 𝐼𝑃 1 − ℎ ∗ 𝐼𝑃 1 

𝑑 

𝑑𝑡
(
𝐼𝑆1 

) = 𝜔1 ∗ 𝐼𝑃 1 − 𝛾 ∗ 𝐼𝑆1 − ℎ ∗ 𝐼𝑆1 

𝑑 

𝑑𝑡
(
𝐴1 

) = 𝑝 ∗ 𝜔2 ∗ 𝐸1 − 𝛾 ∗ 𝐴1 − ℎ ∗ 𝐴1 

𝑑 

𝑑𝑡
(
𝑅1 

) = 𝛾 ∗ 𝐼𝑆1 + 𝛾 ∗ 𝐴1 
2

𝑑 

𝑑𝑡
(
𝑅2 

) = 𝛾 ∗ 𝑄1 

𝑑 

𝑑𝑡
(
𝑄1 

) = ℎ ∗
(
𝐼𝑆1 + 𝐼𝑃 1 + 𝐴1 

)
− 𝑦 ∗ 𝑄1 

𝑑 

𝑑𝑡
(
𝑆2 

) = − 𝛽22 ∗ 𝑆2 ∗
(
𝐼𝑆2 + 𝜅 ∗ 𝐼𝑃 2 + 𝜅 ∗ 𝐴2 

)
− 𝛽12 ∗ 𝑆2 ∗

(
𝐼𝑆1 + 𝜅 ∗ 𝐼𝑃 1 + 𝜅 ∗ 𝐴1 

)

𝑑 

𝑑𝑡
(
𝐸2 

) = 𝛽22 ∗ 𝑆2 ∗
(
𝐼𝑆2 + 𝜅 ∗ 𝐼𝑃 2 + 𝜅 ∗ 𝐴2 

)
+ 𝛽12 ∗ 𝑆2 ∗

(
𝐼𝑆1 + 𝜅 ∗ 𝐼𝑃 1 + 𝜅 ∗ 𝐴1 

)
− ( 1 − 𝑝 ) ∗ 𝜔 ∗ 𝐸2 − 𝑝 ∗ 𝜔2 ∗ 𝐸2 

𝑑 

𝑑𝑡
(
𝐼𝑃 2 

) = ( 1 − 𝑝 ) ∗ 𝜔 ∗ 𝐸2 − 𝜔1 ∗ 𝐼𝑃 2 − ℎ ∗ 𝐼𝑃 2 

𝑑 

𝑑𝑡
(
𝐼𝑆2 

) = 𝜔1 ∗ 𝐼𝑃 2 − 𝛾 ∗ 𝐼𝑆2 − ℎ ∗ 𝐼𝑆2 

𝑑 

𝑑𝑡
(
𝐴2 

) = 𝑝 ∗ 𝜔2 ∗ 𝐸2 − 𝛾 ∗ 𝐴2 − ℎ ∗ 𝐴2 

𝑑 

𝑑𝑡
(
𝑅3 

) = 𝛾 ∗ 𝐼𝑆2 + 𝛾 ∗ 𝐴2 

𝑑 

𝑑𝑡
(
𝑅4 

) = 𝛾 ∗ 𝑄2 

𝑑 

𝑑𝑡
(
𝑄2 

) = ℎ ∗
(
𝐼𝑆2 + 𝐼𝑃 2 + 𝐴2 

)
− 𝑦 ∗ 𝑄2 

 = 𝑆1 + 𝐸1 + 𝐼𝑆1 + 𝐼𝑃 1 + 𝐴1 + 𝑅1 + 𝑅2 + 𝑄1 + 𝑆2 

+ 𝐸2 + 𝐼𝑆2 + 𝐼𝑃 2 + 𝐴2 + 𝑅3 + 𝑅4 + 𝑄2 

This extended SEIAQR model follows some basic assumptions, in-
luding that population is homogeneous and well-mixed interactions
ithout influence by social behavior, age and work. And we add some
ssumptions to our study: 

(1) Susceptible population would be infected with a transmission rel-
tive rate of 𝛽 by contact with pre-symptomatic/ symptomatic/ asymp-
omatic infections, and their transmission relative rate is the same. 

(2) The incubation period of symptomatic infections was 1∕ 𝜔 +
∕ 𝜔′′, the latent period of an asymptomatic person was 1∕ 𝜔′. 

(3) Parameter p (0 ≤ p ≤ 1) gave the proportion of individuals who
ad asymptomatic infections. 

(4) Symptomatic infections are communicable in 1∕ 𝜔′′ days before
eveloped symptoms. 

(5) Individuals in categories 𝐼𝑠 and A were transferred into category
 after an infectious period of 1∕ 𝛾 ′ and 1∕ 𝛾, respectively. 

(6) Case fatality rate (CFR) was 0 and was not simulated in the model
ecause Omicron variant has low CFR. 

(7) We assumed that the infectivity and susceptibility would be re-
uced after vaccination. VEI and VES due to being fully vaccinated were
enoted as (1 - x ) and (1 - y ), respectively. 

.3. Parameter estimation approach 

Three parameters were estimated based on real data, which are the
otal population, asymptomatic infection rate and the coverage rate of
OVID-19 booster vaccination. In this study, several parameters were
dopted to develop the model, and the description, value, and source

https://qianxi.baidu.com/
https://ditu.amap.com/
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Fig. 1. Model selection and comparison flowchart . 
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(1) According to the statistical year in 2021, the total population
f the seven districts is 21,893,000, 15,618,300, 5464,087, 6255,000,
782,285, 24,870,000, 10,081,200, respectively. The number of initial
nfections (I), including symptomatic and asymptomatic, is obtained
rom the actual reported data, and the initial values I0 of the seven dis-
ricts are 1, 12, 3, 2, 10, 1, 1 respectively. The initial values of E and R
ere set to 0. 

(2) The coverage rate of COVID-19 booster vaccination in seven dis-
ricts is 71.07%, 1.53%, 0, 0 and 0, 42.74%, 30.85% respectively (dis-
ricts with 0 booster vaccination are assumed to have a 30% booster
accination rate for all districts with vaccination rates below 30% in
he model due to the lack of publicly available data). 

(3) The parameter 𝜅 refers to the relative transmissibility rate of
symptomatic to symptomatic individuals. Refer to the previous re-
earch. 𝜅 is set to 1 in this study. 

(4) Since reported asymptomatic patients are far more than infected
n Shanghai city, the p in Shanghai is set to 0.8 by assumption, while the
 in other districts are set to 0.31 according to the previous research. 

(5) As of August 23, 2022, no death case was reported in the report
ata of the seven districts, so this study did not incorporate the case
atality rate ( f ) in the model. 

(6) At present, there were few researches on the incubation
eriod of the symptomatic infections( 𝜔 ) and latent period of the
symptomatic( 𝜔 ’) of Omicron Variant, so we made assumptions based
n the existing literatures of Omicron BA.1, and we assumed that the
atent period is the same as the incubation period, which is similar with
he previous study in Gauteng and KwaZulu-Natal. According to the out-
reak in Norway, the median incubation period was 3 days (interquar-
ile range: 3− 4); it was 4.2 days (range, 2–8 days) according to other
ublicly reported data from Korea; the incubation found by a survey in
outh Korea median incubation period was 3–4 days; it was 3 days (in-
erquartile range:1–4 days) in the study of a northern region of Spain;

e also refer to another study in Japan, mean incubation periods were
.7 (95% credible interval (CI) 3.4–4.0) and 5.0 (95% CI 4.5–5.6) days
or Delta and non-Delta cases, respectively. According to CDC Newsroom
eport in December 27, 2021, the 1∕ 𝜔′′ was 1–2 days. 

(7) In this study, the infectious period was set to 4.5 days
 𝛾 = 𝛾 ’ = 0.22) by our previous research about Delta and CDC Newsroom
eport in December 27, 2021. 

.4. Statistical analysis 

Real-time reproduction number ( Rt ) was performed by EpiEstim
version 2.2. 4) in R software (version 4.1.2). Other statistical analy-
is was conducted by using Python (version 3.8.8). Univariate logis-
ic regression analysis was performed to screen related risk factors of
pillover risk factors. We found the point on the ROC curve that is clos-
st (i.e., the shortest distance) to the perfect model (with 100% sensi-
ivity and 100% specificity), which was associated with the upper left
orner of the plot. The discrimination ability of the model was evalu-
ted by using receiver operator characteristic (ROC) curve [ 11 ] analysis.
he AUC > 0.5 indicated better predictive values, the closer the AUC to
, the better the model performance. The specific process is shown in
ig. 1 . 

The decision tree model . A tree structure composed of root node,
ranch node and leaf node, which reflected the mapping relationship
etween features and tags [ 12 ]. 

Random forest [ 13 ]. An ensemble learning method for classifica-
ion, regression, and other tasks that operates by constructing a large
umber of decision trees at training time. We used scikit-learn (version
.1.3) in python for training and prediction of the model. The criterion
f function in this model that measures the quality of a split is gini,
nd we use RandomizedSearch and GridSearchCV to find the optimal
arameters of the model, considering and solving the impact of sample
mbalance problem on the model. 
3

Naive Bayes classifier . Bayes’ Rule answers [ 14 ] the question
based on the predictors that we have observed. In this study, we
se gaussian naive bayes, sample imbalance problem solved using im-
learn.over sampling in python. The likelihood of the features is as-
umed to be Gaussian as follow: 

 (χi | γ) = 1 √ 

2πσ2 γ
exp 

⎛ ⎜ ⎜ ⎝ −
(
χi − μγ

)2 
2σ2 γ

⎞ ⎟ ⎟ ⎠ 
Support Vector Machines (SVM) . The basic idea of SVM [ 15 ] learn-

ng is to solve the separated hyperplane that correctly partitions the
raining data set and maximizes the geometric separation. We use svm
n scikit-learn (version 1.1.3) in python in this study. 

Fitting function 

We use SMOTE in imblearn.over_sampling in python (version 3.8.9)
o resample the unbalanced data and fit the logit function using
tatsmodels. 

All model code can be posted on github when the article is received.

. Result and discussion 

.1. Epidemiological description 

.1.1. Descriptive analysis of aggregated outbreaks 

In this study, a total of seven Omircon outbreaks were collected, as
hown in Fig. 2 , and the list from top to bottom are Beijing, Tianjin,
angfang, Nanchang, Quanzhou, Shanghai city and Hannan province.
he remaining six cities were all BA.2 among the seven aggregated out-
reaks counted, the durations were 91 days, 54 days, 25 days, 44 days,
1 days, and 22 days, respectively. The longest duration of the out-
reak was 93 days in Shanghai, and the highest cumulative number of
eported cases was 649,354, followed by 19,266 in Hainan (data as of
ugust 23, 2022), and the cumulative number of reported cases during

he outbreak in the remaining five cities was 2,283, 834, 3,409, 1,133,
nd 3,175, respectively. Based on previous research, this study simu-
ates the outbreak curve of 7 areas by establishing the SEIAQR model,
s shown in Fig. 2 b, from left to right, Beijing, Tianjin, Langfang, Nan-
hang, Quanzhou, Shanghai city and Hainan province. The bars in the
gure are the actual number of cases in the area, while the red curve

s the fitted curve, which is the number of new cases per day fitted by
he SEIAQR model. Since the reported case data are often lagging or un-
table, the risk can be subsequently determined by importing the fitted
ata into the classifier model to increase the stability and real-world fit
f the model. The peak time of the outbreak in the seven areas counted
as 53 days, 16 days, 12 days, 8 days, 6 days, 16 days, and 44 days, with
eijing taking the longest time to peak at 53 days, followed by Shanghai
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Fig. 2. COVID-19 outbreak curves in seven districts . From left to right, the first district is Beijing and the last district is Shanghai. 
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t 44 days. The peak number of cases in the seven districts was 96, 76,
46, 92, 265, 1663, and the highest peak number of cases was 27,719
n Shanghai. 

Among the seven outbreaks counted, the COVID-19 outbreak in
hanghai was long in duration and large in scale, but we believe that
hanghai took a unique approach [ 16 ] to fighting the earliest waves
f SARS-CoV-2 outbreaks in China and that this outbreak had the most
ar-reaching impact and generated the most spillover cases of Omicron
ariant of SARS-CoV-2. Therefore, it was included in the statistics de-
pite its potential impact on the stability of the data. In a large outbreak
uch as Shanghai, we can use the number of cases fitted by the dynam-
cs model (SEIAQR) to correct for bias in the number of daily reported
ases due to reporting. Therefore, in this study, the dynamics model can
e used as a correction for the input classifier model variables. 

.1.2. Spillover risk description 

This study counted the specific districts and the cumulative number
f spillover cases in each of the 7 areas, as shown in Fig. 3 . Fig. 3 a shows
he number of spillover cases in the 7 areas, the number of which is 12,
, 5, 4, 154 and 47. Among them, the area with the highest number
f spillover cases was Shanghai with 959 cases, followed by Quanzhou,
eijing, Langfang, Nanchang and Tianjin. Fig. 3 b shows the specific dis-
ricts involved in the spillover of each district and the proportion of all
pillover cases. According to the geographical division of China, it is
ivided into 8 different regions. Among them, Shanghai has the largest
umber of districts involved in the spillover, with 127 districts, followed
y 17 in Quanzhou, 14 in Hainan, 10 in Beijing, 3, 3, and 2 in Nanchang,
angfang, and Tianjin. 

The reason we divided China into eight regions on the map was to
erform a descriptive analysis of the spillover case data, expecting to
nd the distribution of the number of spillover cases. In the spillover
ap, it can be seen that the spillover of diseases is mainly concentrated

n the surrounding districts, i.e. the same areas, which is perhaps also
elated to the fact that people’s choice of transport [ 17 ] for traveling
s mostly by rail, car, etc. Perhaps better management of the same area
ould be more effective in controlling the outbreak and spread of the
isease, or depending on the distance from the remaining seven areas,
ifferent levels of control in areas with cases may help reduce the pres-
ure to prevent outbreaks. 
4

.1.3. Descriptive analysis of influencing factors 

We conducted a descriptive analysis of the influencing factors based
n the number of spillover cases mentioned above, and the cumula-
ive results of the 472 samples included are shown in Table 1 , in which
he mean value of the distance was 1310.59 km, the interquartile spac-
ng was 1154.07–1649.34 km, the mean value of the Rt was 1.1, and
he interquartile spacing was 0.82–1.27 for the samples with successful
pillover. The mean values of the number of cases, mid-risk areas, high-
isk areas, and migration index were 10,878.85, 18.29, 11.98, 0.73, and
.89, with interquartile spacing of 557.5–22,248, 13–13, 0–0, and 0.41–
.74. 

The results showed that the interquartile range of Rt was (0.82–1.27),
hich is a low Rt level, and the interquartile range of migration index
as (0.41–0.74), both of which indicated that the spillover cases were
ot in the rapid growth phase of the disease outbreak and tended to be
n the early or late phase. 

.2. Analysis of influencing factors 

.2.1. Weight analysis of influencing factors 

The random forest model was used in this study, and the explana-
ory variable weight scores of different districts affecting spillover out-
omes were calculated. As shown in Fig. 4 , in the seven districts in-
luded in the study, distance is almost the most important factor affect-
ng spillover events, and its weight is above 0.3 in many districts. How-
ver, in Nanchang and Langfang, it could be detected that the weight of
he population of the spillover area is higher than that of distance, but
istance is still one of the main influencing factors. In addition to the
ost important influencing factor of distance, whether it is within the

ame geographical area is also one of the main influencing factors, the
eight ratio of spillover results in it that Tianjin, Quanzhou, and Shang-
ai has reached more than 0.2. These four influencing factors of spill,
id-risk, high-risk areas and Rt have similar effects on spillover outcome

vents. 

.2.2. Variable correlation analysis 

We conducted variable correlation analysis and variable frequency
istribution plotting for the seven included explanatory and response
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Fig. 3. Spillover case number bar graphs and maps . (a) The specific number of spillover cases in each district, and the red box shows the number of spillover 

cases in Beijing, Tianjin, Langfang and Nanchang. (b) The number of spillover maps. There are one China map and 7 local maps, where the lines in the local maps 

point to the spillover direction for the specific district of spillover, and the pie chart shows the number of spillover cases in the districts. The pie chart shows the 

proportion of districts with the number of spillover cases. (Map approval number: GS (2018) 5572). 
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Table 1 

Statistical description of influencing factors . 

distance Rt Cases Mid-risk High-risk Migration index Same Area Y 

mean 1310.59 1.1 10,878.85 18.29 11.98 0.73 0.89 1.97 

std 559.62 0.45 10,370.66 25.96 49.11 0.66 0.32 2.92 

min 41.55 0.3 0 0 0 0.05 0 1 

25% 1154.07 0.82 557.5 13 0 0.41 1 1 

50% 1466.45 0.99 7333 13 0 0.5 1 1 

75% 1649.34 1.27 22,248 13 0 0.74 1 2 

max 3435.78 3.93 27,719 189 268 4.92 1 36 

Fig. 4. Influencing factor weights . From left to right and from top to bottom, the weighting ratios of spillover risk influencing factors for different districts are 

shown, with Beijing as the first district and Shanghai as the last district. 
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ariables, as shown in Fig. 5 . The results indicate that the data distribu-
ions of Rt , Cases, High-risk, Mid-risk, Migration index, and Y all show
ositive skewed distributions, while Same Area shows negative skewed
istributions. The pairwise correlation analysis performed in it shows
hat the correlations between distance and other explanatory variables
xcept Same Area are almost negatively correlated. The Rt has little cor-
elation with other explanatory variables. Cases has a strong correla-
ion with distance, but it has a certain negative correlation with other
xplanatory variables. Among all explanatory variables, Mid-Risk and
igh-Risk showed a very strong positive correlation, and the correlation
ith other influencing factors was weak. There is almost no correlation
etween the other influencing factors. 

As shown in Fig. 6 , it was found that similar to the results of the
orrelation analysis above, the mid and high risk areas, Rt and migra-
ion index were more inclined to the same category, while the number of
ases and distance, and whether the same area were more inclined to the
ame category, which has similarities with the results in Fig. 4 (Influenc-
ng factor weights), where the number of cases and distance were the
actors that contributed more to the spillover outcome factors. There-
ore, we can pay more attention to the two factors of distance and
umber of cases when we focus on the spillover outcomes in the real
orld. 

.2.3. Analysis of influencing factors of successful spillover events 

In this study, the main influencing factors of the successful spillover
utcome events were analyzed, as shown in Fig. 7 . The results of the
istribution of the influencing factors are similar to Fig. 5 , with dis-
ance, Rt andmigration index showing a positive skewed distribution. In
he analysis of influencing factors for all successful spillover events, the
robability of successful spillover events was highest when the distance
6

as around 1600 km, the Rt was close to 1, and the migration index was
lose to 0.5, the probability of a successful spillover event is the highest.

For the spillover events at the time of the outbreak, this study fo-
used on the analysis of the factors influencing the spillover events. In
he analysis results, it is found that the spillover infections are mainly
oncentrated in the same province or the same geographical area, and
he distance is also concentrated within 200–300 km. And according to
he analysis of the second most influential factor in the results section, it
s also clear that distance is an important factor influencing the spillover
esults regardless of which district’s classifier model is used for simula-
ion. Moreover, there is no correlation between distance and other in-
uencing factors, so it can be considered that spatial distance has the
reatest impact on spillover outcome events. The degree of contribution
f the remaining explanatory variables to the model varies widely across
istricts without corresponding stability, but still has a high weight in
ome models, even higher than the degree of influence of distance on
he outcome event. For example, the influence of the number of peo-
le moving out of the destination in Langfang and Quanzhou on the
utcome is higher than the influence of distance as a factor. Therefore,
e should consider various factors, such as the geographical location
f the outbreak, the radius of the outbreak, the size of the population,
tc., when we subsequently develop different levels of prevention and
ontrol measures. 

We further integrate the spillover success events and analyze the
esults of their influencing factors to show that the distance, Rt , and mi-
ration index all show a positive skewed distribution, which similarly
ndicates that the spillover success events are mostly concentrated in the
roximity area. In contrast, the positive skewed distribution of Rt and
igration index indicates that the spillover of infected persons is more

ikely to occur in the first and middle phases of the outbreak, which is
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Fig. 5. Correlation analysis of variables. The diagonal line is the distribution of different influencing factors, both horizontal and vertical coordinates indicate 

the influencing factors, the cross part is the relationship between two influencing factors, and the thick blue line with a range indicates the degree of correlation 

between them. 
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lso related to the way the outbreak is managed in the first and mid-
le phases. The prevention and control measures are not strong and the
requency of nucleic acid testing is low in the first and middle stages of
n outbreak, which makes it easier to generate the number of spillover
ases. Therefore, we should strengthen the prevention and control ef-
orts in the early stage of the outbreak, and deal with the outbreak as
oon as possible to achieve rapid extinction and prevent spillover in the
arly stage. 

In this study, we made a radiation range map for the spillover risk
robability of more than 200 cities generated by the spillover model of
even districts. And the results showed that only Shanghai, Hainan, and
uanzhou have high-risk radiation, while the remaining four districts
o not have high risk radiation. But the study does not exclude that
here is still high-risk in the same provinces and geographical divisions.
7

.3. Analysis of model results 

.3.1. Function fitting results 

In this study, the logit function was fitted using spillover success
ata, and the specific results of the fit are shown in Table 2 . The largest
bsolute value of coef is same area, followed by Intercept, then Rt , and
he smallest is High-risk. p-value is less than 0.005 except for high-risk,
hich is statistically significant. We considered the multicollinearity of

he model, and the results are shown in the Supplementary Table S2.
he functions are as follows: 

ogit = ln 
𝑝1 
𝑝0 

= 1 . 1333 − 0 . 0022Dis + 0 . 9072 𝑅𝑡 + 0 . 001Cases 

+0 . 0308Mid − 0 . 0008High − 0 . 5918Spill − 1 . 9669Same 
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Fig. 6. Clustering analysis . The horizontal coordinates are the influencing fac- 

tors of spillover risk, while the heat map part indicates the frequency magnitude 

of different variables, and the top part of the chart indicates the clustering re- 

sults, where the two influencing factors with higher correlation are grouped into 

one category. For example, mid-risk and high-risk are classified into the same 

category in one clustering. 

Table 2 

Logit regression result . 

coef std err z P > |z| [0.025 0.975] 

Distance − 0.0022 2.15e-0.5 − 102.753 0.000 − 0.002 − 0.002 

Rt 0.9072 0.013 67.529 0.000 0.881 0.933 

Cases 0.0010 5.33e-0.5 19.497 0.000 0.001 0.010 

Mid-risk 0.0308 0.001 50.954 0.000 0.030 0.032 

High-risk − 0.0008 0.000 − 1.865 0.062 − 0.002 3.84e-0.5 

Migration − 0.5918 0.013 − 45.583 0.000 − 0.617 − 0.566 

Same_area − 1.9669 0.023 − 85.320 0.000 − 2.012 − 1.922 

Intercept 1.1333 0.028 39.796 0.000 1.077 1.189 
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Fig. 7. Distribution probability of spillover success event variables . (a-c, e) The

Cases, Migration, and Same Area, respectively. (f) represents the distribution of all in

the interquartile spacing. 
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.3.2. Model score results 

We incorporated three classifier models RF, SVM, and Bayes, and
ompared the accuracy, macro mean, and AUC values of the three clas-
ifier models. As shown in Table 3 , due to too few positive samples, the
hree districts of SVM, Bayes, namely Tianjin, Langfang, and Nanchang
annot be used for calculation. The model scoring results of the three
odels for seven districts, RF, earn accuracy, macro, and accuracy in

he three models. The mean value and AUC value were the highest. 
This study focuses on the simulation of disease prevalence curves

sing infectious disease dynamics models. Comparing classifier models
n machine learning, it is concluded that the random forest model has the
dvantages of interpretability as well as high accuracy, so the random
orest model is chosen in this study. Although the sample imbalance was
onsidered and solved in the training model, the AUC value of the model
ould still not be calculated for some regions due to the problem of a
mall sample size of positive events, i.e., spillover successes. In the end,
he results of the three classifier models were synthesized, and the RF
odel was used to simulate the spillover risk. 

.3.3. Spillover risk level 

As shown in Figs. 8 , and 7 districts are divided into three different
isk level ranges. According to the simulation results of the classifier
odel, if the spillover success probability is greater than 0.5, it is iden-

ified as a high-risk area (red), the spillover risk probability is between
.2 and 0.5 as mid risk (mid risk), and less than 0.2 as low risk (blue).
ot every district has three risk areas at the same time, only two dis-

ricts, Quanzhou and Shanghai, have both high and low-risk areas, but
uanzhou’s mid and high-risk areas are concentrated in Fujian province,
overing 4 and 2 geographical areas respectively. The low-risk area cov-
rage is 1,274 km, while Shanghai’s three risk areas range from high-risk
o low-risk coverage is focused on 1,300–166 km, in the order of 1,317,
,519, 1,586 km, and covers all eight regions of the Tianjin and Lang-
ang, having similar mid and low risk coverage, and there is no high-risk
rea. But the coverage of Tianjin involves three regions and Langfang
overs only one north China. Beijing mid-risk areas are concentrated
ithin Beijing, and low-risk area coverage is mainly concentrated in
orthern China. Nanchang only exists mid risk area coverage to 6 areas.
ainan only had mid and high-risk areas, mainly concentrated in South

hina. 

 probability density distribution of the five influencing factors of Distance, Rt , 

fluencing factors, where the red dot position is the median and the error line is 
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Table 3 

Model comparison results . 

Model Evaluation Indicators Beijing Tianjin Langfang Nanchang Quanzhou Hainan Shanghai 

RF 

accuracy_score 0.9989 0.9991 0.998 0.9996 0.9973 0.9946 0.716 

Macro-averaging 0.6247 0.5 0.4993 0.5 0.8179 0.4981 0.5161 

roc_auc_score 0.6247 – 0.4997 – 0.9364 0.4992 0.7081 

SVM 

accuracy_score 0.9993 – – – 0.983 0.8694 0.716 

Macro-averaging 0.4996 – – – 0.4978 0.5144 0.5161 

roc_auc_score 0.5 – – – 0.4937 0.9344 0.7081 

Bayes 

accuracy_score 0.9869 – – – 0.8667 0.9946 0.9832 

Macro-averaging 0.5071 – – – 0.5159 0.4801 0.4919 

roc_auc_score 0.6187 – – – 0.9331 0.4992 0.4997 

Fig. 8. Spillover risk rating range . From left to right, from top to bottom, the last district is Shanghai, such as Beijing and Tianjin, where the red range indicates 

that the model simulation results in high risk, the orange part indicates medium risk, and the blue part indicates low risk areas. (Map approval number: GS (2018) 

5572). 
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The results of this part of the study show that the scope of the out-
reak affected varies from district to district, but it is the surrounding
ities that are most affected. This study divided into three risk levels,
nd some districts differed greatly in the scope of the three levels, while
thers differed very little, which may be related to the population mo-
ility preferences of a particular location, an issue not considered in this
tudy. 
9

. Conclusion 

The variables affecting the spillover outcome events are diverse, and
he study believes that it is difficult to prevent the spillover of infected
eople by implementing the same outbreak prevention measures at the
rovincial, city and county levels. The human factors that lead to the
mergence of diseases vary by society, and they can also vary by culture,
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istory and geography, or by the occurrence of black swan events and
ther factors that ultimately lead to outbreaks. However, the chain of
pillover events may vary from society to society, and the only way to
revent future disease spillovers from occurring is to analyze the impact
actors on outcome events according to their respective characteristics
o stop the chain of events and prevent the occurrence of unexpected
vents. 

The results of all studies show that the most important factor in-
uencing disease spillover is distance. Therefore, different risk radius
hould be classified according to the spatial distance of outbreak sites,
nd different risk levels should be classified according to different stages
 15 ] of the outbreak to achieve the purpose of stratified prevention and
ontrol, which is more conducive to "Dynamic zero" and in line with
he cost-benefit principle. However, many factors influence the devel-
pment of an epidemic and we need to consider them in the context of
arious realities; for example, we may need to consider the impact of
ifferent local population movements, economic and cultural levels, and
ther factors on the epidemic. Nonetheless, we can still identify some of
he major factors influencing the spread of the epidemic and thus change
he level of measures to achieve more effective epidemic control. 
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