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Towards Spatio-Spectral analysis of Sentinel-2 Time
Series data for land cover mapping

Yawogan Jean Eudes Gbodjo, Dino Ienco and Louise Leroux

Abstract—Modern Earth Observation (EO) systems produce
huge volumes of images with the objective to monitor Earth sur-
face. Due to the high revisit time of EO systems such the Sentinel-
2 constellation, satellite image time series (SITS) are continuously
produced allowing to improve the monitoring of spatio-temporal
phenomena. How to efficiently analyze SITS considering both
spectral and spatial information is still an open question in the
remote sensing field. To deal with SITS classification, in this letter
we propose a spatio-spectral classification framework that lever-
ages mathematical morphology to extract spatial characteristics
from SITS data and combines them with the already available
spectral and temporal information. Experiments carried out on
two study sites characterized by different heterogeneous land
cover have demonstrated the significance of our proposal and
the value to combine spatial as well as spectral information in
the context of SITS land cover classification.

Index Terms—Satellite Image Time Series, Mathematical Mor-
phology, Land Cover classification, Sentinel-2

I. INTRODUCTION

NOWADAYS, modern Earth Observation programs, sup-
ported by national or continental spatial missions, pro-

vide massive volume of remote sensing data every day. Among
such programs, a notable example is the Copernicus pro-
gramme, supported by the European Spatial Agency (ESA).
In the Copernicus programme, the Sentinel-2 (S2) mission
involves a constellation of two satellites with a spatial res-
olution of 10-m and 20/60-m, a targeted revisit time of 5-
days supplying optical information ranging from visible to
near and shortwave infrared [1]. The unprecedented spatial
and temporal resolutions offered by the S2 mission permits to
generate dense Satellite Images Time Series (SITS).

Such data is becoming a valuable source of information
for a wide range of land monitoring applications: agricultural
management [2], [3], fire mapping [4] and vegetation
growth [5] tasks. Among the different tasks, S2 data is getting
more and more attention to cope with Land Use/Land Cover
(LULC) mapping [6], [7] taking advantage of the spectral
dynamics they carrying out.

Despite the fact that SITS allows to leverage spectral-
temporal dynamics, that are essential to characterize certain
LULC types [8], some land cover classes (e.g. urban areas
or some agricultural land cover classes) are also characterized
by particular spatial patterns that standard pixel-based analyses
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(e.g. [6], [9]) are not able to exploit. In the general field of re-
mote sensing analysis, spatio-spectral classification has already
demonstrated its usefulness mainly for hyperspectral [10]
and multispectral [11] mono-temporal image analyses. Such
strategies integrate the already available spectral information
with spatial contextual features extracted via Mathematical
Morphology [12], [13], a theory and technique used to analyze
spatial relationships among pixels. More precisely, several
morphological operators at different scales are applied to an
image to derive multi-resolution representations. The derived
Morphological Profiles (MPs) are then used, jointly with the
input images, like a new set of features for the subsequent
classification task. Relying on previous spatio-spectral classifi-
cation frameworks commonly exploited in the remote sensing
field for the analyses of mono-temporal images [10], [11],
[14], here, we propose to exploit spatio-spectral analysis to
enhance the land cover mapping task from S2 time series
data. More in detail, the core idea of this study relies on
the extraction of the spatial characteristics from SITS data
via morphological operators at different spatial scales and,
successively, the combination of such features with the already
available time series spectral information. Such a process
permits to inject spatial knowledge in the land cover mapping
process involving the SITS data. To the best of our knowledge,
this is the first work towards proposing a framework to
integrate spatial contextual information, under the form of
morphological profiles, with spectral/temporal features for the
classification of optical (S2) SITS data.

II. DATA DESCRIPTION

The analysis was carried out on the Reunion Island study
site, a french overseas department located in the Indian Ocean
and on a part of the Dordogne department in the southwest of
France. The Reunion Island dataset consists of a time series of
21 S2 images acquired between January and December 2017
while the Dordogne dataset consists of a time series of 23 S2
images acquired between January and December 2016. The
spatial extent of the Reunion Island site is 6 666 × 5 916 pixels
while the extent for the Dordogne site is 5 578 × 5 396 pixels.
All the S2 images used are those provided at level 2A (top
of canopy reflectance) by the THEIA pole 1 and contain less
than 50% of cloudy pixels. Only 10-m spatial resolution bands
were used i.e. Blue, Green, Red, and Near Infrared (resp. B2,
B3, B4, and B8). A temporal gap-filling [6] was performed to
replace cloudy observations over each band using the previous
and following cloud-free dates and the Normalized Difference

1http://theia.cnes.fr
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Vegetation Index (NDVI) [15] was calculated for each date.
The reference database including labeled samples with land
cover classes for the Reunion Island was built from various
sources : the Registre Parcellaire Graphique (RPG) 2 reference
data for 2014, GPS land cover records from June 2017
completed by expert-knowledge based on visual interpretation
of a SPOT6/7 to distinguish natural and urban areas. For the
Dordogne site, the reference database was built from RPG
reference data for 2016 and visual interpretation of a SPOT6/7
image as well. Finally, the ground truth databases (available in
GIS vector format as a collection of class attributed polygons
which have been converted to raster format at the S2 spatial
resolution of 10-m) included 6 265 objects (880 775 pixels)
over 11 classes for the Reunion Island and 3 819 objects
(816 842 pixels) over 7 classes for the Dordogne site. The
characteristics of the reference data for the Reunion Island and
Dordogne are reported in Table I and Table II, respectively.

TABLE I
CHARACTERISTICS OF THE REUNION ISLAND GROUND TRUTH

Class Label Objects Pixels

1 Sugar cane 869 89030
2 Pasture and fodder 582 68180
3 Market gardening 758 17578
4 Greenhouse crops or Shadows 260 1934
5 Orchards 767 33675
6 Wooded areas 570 204928
7 Moor and Savannah 506 155263
8 Rocks and natural bare soil 299 154284
9 Shadows due to relief 81 54336
10 Water 177 82584
11 Urbanized areas 1396 18983

TABLE II
CHARACTERISTICS OF THE DORDOGNE SITE GROUND TRUTH

Class Label Objects Pixels

1 Urbanized areas 800 2105
2 Crops 600 94026
3 Water 800 50704
4 Forest 200 379910
5 Moor 187 99861
6 Orchards 632 97557
7 Vines 600 97557

III. SITS SPATIO-SPECTRAL CLASSIFICATION VIA
MATHEMATICAL MORPHOLOGY

In this section, the spatio-spectral framework for SITS data
is presented. Figure 1 depicts the proposed workflow.

Firstly, given a S2 time series dataset, like the ones de-
scribed in Section II, composed of the five bands time se-
ries (i.e. B2, B3, B4, B8 and NDVI); a per-band principal
component analysis (PCA) was applied. For each band time
series, the m principal components (PC) corresponding to 99%
of the cumulative variance were retained. The 99% threshold
is commonly used in order to reduce data redundancy while

2RPG is part of the European Land Parcel Identification System (LPIS),
provided by the French Agency for services and payment

keeping as much as possible the underlying variation [14].
Subsequently, several mathematical morphology (MM) opera-
tors [13] are applied to each of the PC.
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Fig. 1. Visual representation of the workflow. Firstly, the principal compo-
nents for each band time series were derived, then multi-resolution morpho-
logical operators were applied to obtain spatial features and finally, spatial
and spectral features were combined to perform the land cover mapping.

MM allows extracting useful features which can describe
the spatial patterns present in the image based on different
operators [16]. Fundamentals operators in MM are erosion and
dilation [13]. These operators are applied to an image using a
Structuring Element (SE) to consider the spatial neighborhood
around a pixel. The erosion operator shrinks objects that fit the
shape of SE, while the dilation operator expands them [17].
Other operators in MM are opening and closing which are
combinations of the first two operators. The dilation of an
eroded image is known as opening and, conversely, the erosion
of a dilated image is known as closing. An overview of these
operators can be found in [13], [18]. Furthermore, the different
operators can be applied at different spatial scales aiming at
capturing multi-resolution spatial information considering the
neighborhood of a pixel. In this study, a disk SE with a radii
ranges in the set of values {3,5,7} and four different operators:
{erosion, dilation, opening, closing} were considered. Yet, a
total of 12 morphological operations were applied to each
principal component previously derived. Specifically, for each
pixel i of an arbitrary principal component, a feature set of
size 12 (the number of morphological operations we have
considered) plus 1 (the principal component value) were
obtained. Due to the fact that m principal components have
been retained for a specific band time series, a generic
pixel will be described by a vector of 13 × m × 5 values
(the number of bands contained in the original optical SITS
data) in the morphological profiles. The four aforementioned
operators, at different scale resolution, were obtained via
the OrfeoToolBox 3 employing the GrayScale Morphological
Operation application using the disk as structuring element
with varying radii in the range previously reported. Hereafter,
the features extracted by morphological operators are named
morphological profile features.

3https://www.orfeo-toolbox.org/

https://www.orfeo-toolbox.org/
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IV. EXPERIMENTS

In this section, the quality of the spatio-spectral classi-
fication framework is assessed with respect to competitors
on the study sites introduced in Section II. Specifically, the
joint use of morphological profiles (MPs) and the original
spectral features (SF) coupled with the Random Forest (RF)
classifier was applied and named RF(SF,MPs). As competitors,
a RF classifier using only spectral features (resp. principal
components and morphological profile features) was tested and
named RF(SF) (resp. RF(PCs) and RF(MPs) ). The number of
features for each classification scheme and study area can be
found in Table III. We firstly report and discuss the average
results for each study site. Then, a per-class analysis is pro-
vided and finally map details produced on the Reunion Island
via the different competing methods are visually inspected.

TABLE III
NUMBER OF FEATURES FOR EACH REPRESENTATION: SPECTRAL

FEATURES (SF), PRINCIPAL COMPONENTS (PC) AND MORPHOLOGICAL
PROFILES (MP) INVOLVED IN THE PROPOSED WORKFLOW OVER THE TWO

STUDY SITES

Time series
Reunion site Dordogne site

SF PC MP SF PC MP

B2 21 17 221 23 18 234
B3 21 17 221 23 17 221
B4 21 17 221 23 16 208
B8 21 11 143 23 17 221

NDVI 21 16 208 23 18 234

Total 105 78 1014 115 86 1118

A. Experimental settings

For each study site, a train, validation, and test split with
an object proportion of 50%, 20%, and 30%, respectively, was
considered. Similarly to [6], pixels of the same objects were
imposed to belong exclusively to the train, test or validation
set avoiding a possible spatial bias in the evaluation procedure.
The validation set was used to optimize the selection of the
models hyper-parameters via a grid search procedure on the
number of trees as well as the maximum depth of each tree.
The former varies in the range {200,300,400,500} while the
latter spans over the range {20,40,60,80,∞}. The model with
the best hyper-parameters was then used to classify the test set.
The assessment of the classification was done considering the
overall Accuracy, the Kappa coefficient and the F1 score [19].
Since the performances of the models may vary depending
on the split of the data due to simpler or more complex
samples involved in the training/test set, all assessment metrics
are averaged over five iterations of different random splits
following the strategy previously reported.

B. Results and Discussions

Table IV report the average results of different classification
schemes on the Reunion Island and the Dordogne benchmark,
respectively. Regarding average behaviors, the RF classifiers
involving MPs features achieve better performances than the
classifiers trained on the original SF or the derived PC for
both of the study sites. Overall, RF(MPs) gains one point (resp.

TABLE IV
AVERAGED F1 SCORE, KAPPA AND ACCURACY CONSIDERING THE

DIFFERENT RF APPROACHES (RF(SF), RF(PCS), RF(MPS), RF(SF,MPS)
) ON THE TWO STUDY SITES

Classifier
Reunion site Dordogne site

F1 Kappa Acc. F1 Kappa Acc.

RF(SF) 0,884 0,861 0,884 0,849 0,786 0,853
RF(PCs) 0,851 0,824 0,853 0,840 0,774 0,846
RF(MPs) 0,893 0,873 0,894 0,860 0,806 0,868

RF(SF,MPs) 0,901 0,883 0,902 0,863 0,809 0,869
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Fig. 2. Averaged per-class F1 score of the different RF approaches (RF(SF),
RF(PCs), RF(MPs), RF(SF,MPs)) on the two study sites, see Tables I and II
for class definition.

two points) on the Reunion Island (resp. Dordogne) study site.
Furthermore, the RF classifier that involves the concatenation
of all of the features, i.e. RF(SF,MPs), outperforms the other
competitors. The union of the original spectral features with
the morphological profile features slightly improves the clas-
sification performance rather than using morphological profile
features only. On the other hand, the RF classifier that involves
only the PCs performs the worst on the two study sites. This is
not surprising since we lost a bit of the temporal information
via the reduction process. In addition, manual investigations of
the feature importance supplied as side information from the
RF(SF,MPs) model were conducted. MPs features are located
in top positions of the rank indicating that such information
is effective in the decision process of the classifier.

Figure 2a and Figure 2b show the averaged per-class
F1 score obtained by each competing methods on the Re-
union Island and Dordogne study site, respectively. Overall,
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RF(SF,MPs) achieves the best score on seven classes over
eleven for the Reunion Island while it is the best classifier
on five classes over seven for the Dordogne site. Considering
all the other classes, RF(SF,MPs) obtains very similar (or
comparable) behavior with respect to the competitors. More
precisely, considering the Reunion Island study site the re-
sults on classes: 3-Market gardening, 4-Greenhouse crops or
Shadows, 5-Orchards and 11-Urbanized areas are sensibly
improved while the biggest improvements on the Dordogne
site are related to the classes: 1-Urbanized areas and 6-
Orchards. This suggests that urban and agricultural land cover
types are characterized by a spatial pattern which is, logically,
better described by information coming from morphological
profiles features. Considering RF(PCs), we note that the
dimensionality reduction seriously influences the classification
behavior.
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Fig. 3. Confusion Matrices for the Reunion Island study site considering the
different RF approaches: RF(SF), RF(PCs), RF(MPs), RF(SF,MPs).

To better understand the misclassification behavior of the
different competitors, the confusion matrices obtained by the
different methods are investigated. Due to space limitation,
only matrices and discussions for the Reunion Island study
site are reported here since the Reunion Island exhibits a
more heterogeneous and challenging landscape in terms of
land cover classes than the Dordogne. The confusion matri-
ces are reported in Figure 3. These confusion matrices are
produced with the model that achieves the best Accuracy
performances over the five iterations. We can notice that
all the methods make some confusion on classes: 3-Market
gardening, 4-Greenhouse crops or Shadows and 5-Orchards.
Considering the class 3-Market gardening, some confusions
appear with classes 2-Pasture and fodder and 5-Orchards.
This behavior is more evident for the RF(PCs) and RF(SF)
classifiers while it is alleviated for the classifiers RF(MPs)
and RF(SF,MPs) due to the introduction of spatial information
via morphological profile features. This can be related to the
fact that such classes are characterized by particular spatial

patterns that can be leveraged using contextual information
coming from neighborhood pixels (e.g. regular trees plantation
for orchards). Regarding the 4-Greenhouse crops or Shadows
class, all the methods make confusion on this land cover type
with the main confusion between it and class 11-Urbanized
areas. Also in this case, the use of morphological profile
features supports a better detection of such class. Notice that
these classes represent land cover types that have very similar
temporal radiometric behaviors but they can be characterized
by different spatial contexts.

Finally, Figure 4 reports two representative map details
of the Reunion Island corresponding to the classification
produced by RF(SF) and RF(SF,MPs) competing methods. The
first detail (Fig. 4a, 4b and 4c) focuses mainly on a mixed
urban and agricultural area. In the RF(SF) classification, a
salt and pepper effect can be highlighted over urban areas
which result in confusion with 8-Rocks and natural bare soils
class. On the other hand, RF(SF,MPs) clearly takes advantage
of spatial information derived from morphological operators
providing a more homogeneous result. The MP features supply
a spatial regularization avoiding map pixellization effects. We
remind that use MPs is different than leverage object-based
image analysis (OBIA) even if the resulting maps can look
similar. The MPs, derived by MM, provide new multi-scale
features to enrich the pixel description while object-based
classification does not provide them. In addition, in our case
the unit of analysis is the pixel while in OBIA the unit is the
object and the object definition is a trade-off between spatial
and spectral criteria that needs to be tuned for the particular
application. The second detail (Fig. 4d, 4e and 4f) depicts
an agricultural zone essentially characterized by Orchards
cultivation with large spaces of natural vegetation surrounding.
Here, RF(SF) clearly underestimates the 5-Orchards class
classifying the orchard land cover as 2-Pasture and fodder
and 6-Wooded areas. Conversely, the RF(SF,MPs) approach
correctly detects the pixels belonging to the 5-Orchards class
limiting the confusion with other land cover classes. Also in
this case, including spatial context via MPs allows to better
discriminate among the land cover classes.

V. CONCLUSION

In this letter, a spatio-spectral classification framework for
optical Sentinel-2 time series data was proposed and tested.
The proposed approach integrates spatial information via mor-
phological operators to enhance the discrimination among land
cover classes. The obtained spatio-spectral representation was
coupled with a Random Forest classifier and evaluated on two
study sites. The quantitative and qualitative assessments have
underlined the usefulness of the proposed approach and, more
precisely, the advantage it provides in the classification of
urban areas and some type of agricultural land covers. De-
spite the fact that mathematical morphology is a well-known
tool for spatio-spectral remote sensing imagery analysis, no
previous work have exploited such an approach for optical
SITS classification.



5

RGB Image RF(SF) RF(SF,MPs)
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Fig. 4. Qualitative investigation of Land Cover Map details produced on the Reunion Island by RF(SF) and RF(SF,MPs) on two different zones (top : a
mixed urban and agricultural area. Bottom: an agricultural area with natural vegetation). The RGB composite supplied as reference image is a Sentinel-2
image acquired on June 11, 2017.
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