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A B S T R A C T   

Airborne laser scanning (ALS) is a remote sensing technology known for its applicability in natural resources 
management. By quantifying the three-dimensional structure of vegetation and underlying terrain using laser 
technology, ALS has been used extensively for enhancing geospatial knowledge in the fields of forestry and 
ecology. Structural descriptions of vegetation provide a means of estimating a range of ecologically pertinent 
attributes, such as height, volume, and above-ground biomass. The efficient processing of large, often technically 
complex datasets requires dedicated algorithms and software. The continued promise of ALS as a tool for im-
proving ecological understanding is often dependent on user-created tools, methods, and approaches. Due to the 
proliferation of ALS among academic, governmental, and private-sector communities, paired with requirements 
to address a growing demand for open and accessible data, the ALS community is recognising the importance of 
free and open-source software (FOSS) and the importance of user-defined workflows. Herein, we describe the 
philosophy behind the development of the lidR package. Implemented in the R environment with a C/C++ 
backend, lidR is free, open-source and cross-platform software created to enable simple and creative processing 
workflows for forestry and ecology communities using ALS data. We review current algorithms used by the 
research community, and in doing so raise awareness of current successes and challenges associated with 
parameterisation and common implementation approaches. Through a detailed description of the package, we 
address the key considerations and the design philosophy that enables users to implement user-defined tools. We 
also discuss algorithm choices that make the package representative of the ‘state-of-the-art’ and we highlight 
some internal limitations through examples of processing time discrepancies. We conclude that the development 
of applications like lidR are of fundamental importance for developing transparent, flexible and open ALS tools 
to ensure not only reproducible workflows, but also to offer researchers the creative space required for the 
progress and development of the discipline.   

1. Introduction 

1.1. Airborne Laser Scanning (ALS) 

Airborne laser scanning (ALS), also known as LiDAR (Light 
Detection and Ranging) technology has revolutionised data acquisition 
and resource quantification in natural sciences and engineering. ALS is 
an active remote sensing technology, that uses laser pulses to measure 
the time, and intensity, of backscatter from three-dimensional targets 
on the Earth's surface (Wulder et al., 2008). Retrieval of the position of 

the targets is made possible using precise geolocation information from 
Global Navigation Satellite Systems (GNSS), and orientation data from 
an Inertial Measurement Unit (IMU). When combined, the positional 
accuracy of the derived ALS data sets provide sub-meter measurement 
accuracy of surfaces, providing best-available data describing the three- 
dimensional structure of landscapes. As a result, ALS has been widely 
used for the generation of bare Earth terrain models (Furze et al., 2017), 
which have wide applicability in land surveying, hydrological studies 
and urban planning (e.g. Chen et al., 2009; Yu et al., 2010). In addition, 
high positional accuracy of returned point clouds and the ability of laser 
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pulses to pass through small openings in forest canopies facilitate the 
direct measurement of a number of key forest attributes such as tree 
height or canopy cover. Laser energy returned to the sensor can be 
recorded as either a series of discrete xyz locations (the most common 
data storage format), or a fully digitised return waveform (Mallet and 
Bretar, 2009). To date, the majority of ALS providers globally provide 
data in discrete return format largely due to established processing 
streams. Development of methods for processing full waveform data are 
ongoing and not yet considered to be conventional practice. 

In forestry, two well-established methods have been developed for 
deriving forest attributes: individual tree segmentation (ITS) and the 
area-based approach (ABA). ITS allow both individual tree tops to be 
located, and tree crowns delineated (Hyyppä and Inkinen, 1999;  
Jakubowski et al., 2013), followed by derivation of individual tree at-
tributes within each delineated crown. This method depends on the 
accuracy of tree identification and can be prone to errors that result 
from over- or under-estimation of tree crown dimensions (White et al., 
2016). In ABA, attributes are estimated for pre-established grid-cells 
based on metrics that summarise the distribution of the point cloud 
within each cell (Næsset and Økland, 2002; White et al., 2013). The 
grid cell is therefore a fundamental unit of the ABA, offering more 
spatial detail when compared to a traditional polygon-based inventory. 
For example, attributes that have been successfully modelled using ALS 
data over various forest types globally include canopy height, canopy 
cover, stand basal area, biomass, and volume estimates Maltamo et al. 
(2014); White et al. (2016). In addition to these two methods to mea-
sure characteristics of the forest resource, ALS can be used for a wide 
variety of usages including mapping water bodies (e.g. Morsy, 2017;  
Demir et al., 2019), forest roads mapping (e.g. Ferraz et al., 2016;  
Prendes et al., 2019), fire fuel hazard (Price and Gordon, 2016) or 
wildlife habitat assessment (e.g. Graf et al., 2009; Martinuzzi et al., 
2009). 

1.2. Historical software development for ALS processing 

The widespread interest and adoption of ALS-based technologies in 
the forestry arena over the past decade have generated a need for vi-
sualisation and processing software and scripts. Forest inventory data 
are often stored within geodatabases linked to aerial photographic in-
terpretation (API) information represented by polygonal topology. As a 
result, many forest industry professionals and managers are accustomed 
to a vector-based analysis framework for data manipulation and ana-
lysis. The advent of ALS-based datasets in the early 2000s facilitated the 
need for software solutions to display and analyse three dimensional 
point cloud data. Initially, software solutions were developed in-house, 
by university research groups or data providers, with more professional 
solutions following as the user market grew. Built from the 

photogrammetry disciplines, Terrascan (Soininen, 2016) was one of the 
first surveying-based software platforms to be able to input and process 
ALS-derived 3D point clouds. The program specialised in the classifi-
cation of point clouds into ground and non-ground returns, allowing 
generation of terrain models, a fundamental feature of the software. 
One of the first forestry-specific ALS data analysis platforms was FU-
SION (McGaughey, 2015), originally developed by the University of 
Washington and the US Forest Service (USFS) and released in the early 
2000s. The software, pioneering at the time, was one of the first 
packages specifically designed for the forestry research community, and 
was one of the first platforms where ITS was available. Its capabilities 
include extraction of 3D point clouds over forest inventory plots, point 
cloud visualisation, and calculation of plot and landscape-level metrics. 
FUSION also allows integrated large-scale batch processing of ALS da-
tasets, allowing for simple computation of wall-to-wall metrics, which 
at the time was cumbersome and could not be easily completed in 
commercial GIS or image processing environments without extensive 
pre-processing. 

As the user-base of ALS forestry applications grew, so did the re-
quirements for software solutions. A number of commercial companies 
started to develop ALS-specific software. Today, many GIS and image 
processing tools have graphical user interfaces and the ability to process 
ALS data with add-ons available for ESRI software, Whitebox, and 
image processing stand-alone software such as ENVI. 

A number of open source tools exist that allow users to capitalise on 
the complexity of ALS datasets. CloudCompare is an example of a 
commonly used open source software suite that allows ALS data to be 
analysed, manipulated, and merged. Among commercial software 
packages, LAStools is also commonly used for various large-scale ALS 
processing tasks. LAStools has been specifically designed for processing 
ALS data, from plots to large landscapes, and is free to use on small 
datasets, while commercial solutions unlock advanced capabilities for 
in-depth processing and broad area implementation. A number of 
modules available within LAStools are open source, including the 
compressed LAZ format that reduces storage size of original un-
compressed files (Isenburg, 2013). Table 1 shows a selected set of active 
free and open source software currently capable of processing LiDAR 
point clouds and that include useful tools for forestry and ecology ap-
plications. 

1.3. The move towards free and open-source software 

The current software landscape for ALS data processing, in parti-
cular for forestry applications, contains a mix of solutions. In some 
cases, tools are open-source and cross-platform (e.g. PDAL). In other 
cases, software are free to use, but the source code itself is not publicly 
available and use is restricted to the Microsoft Windows platform (e.g 

Table 1 
An overview of free and open source ALS processing packages or modules that include tools useful in forestry and ecology contexts.     

Package Brief Description Comment  

PDAL Point Data Abstraction Library in C/C++. Designed for translating and processing point cloud data.  
PDAL Contributors (2018) 

Generic and multi-purpose C++ library 

PCL Point Cloud Library in C++. Cross-platform and designed for 2D/3D image and point cloud processing.  
Rusu and Cousins (2011)  

CloudCompare 3D point cloud and triangular mesh processing software. It was originally designed to perform 
comparisons between two dense 3D point clouds  

LAStools A suite of LiDAR processing tools widely known for their very high speed and high productivity. They 
combine robust algorithms with efficient I/O and clever memory management to achieve high 
throughput for datasets containing billions of points. 

A few modules for LAS files manipulation are open 
source and cross-platform 

Whitebox GAT GIS capabilities for ALS including basic and advanced tools for ALS processing  
FUSION/LDV A collection of task-specific command line programs (FUSION) and a viewer (LDV) McGaughey (2015) Sources available on request only. Not cross- 

platform. 
GRASS GIS FOSS Geographic Information System software suite used for geospatial data management. It supports 

basic and advanced ALS data processing and analysis.  
SPDlib A set of open source software tools for processing laser scanning data (i.e., LiDAR), including data 

captured from airborne and terrestrial platforms. Bunting et al. (2011, 2013)  
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FUSION, LAStools). Some solutions propose free and open-source 
components on multiple platforms, but also contain closed source 
functionalities (e.g. LAStools). There are also a number of closed- 
source, single-platform commercial solutions requiring a paid sub-
scription or licence. 

Common to all closed source solutions is the use of specific algo-
rithms or workflows for ALS that are essentially black boxes to the 
users. For example, it is not possible to know what is used internally to 
segment ground points in software like TerraScan. While it can be 
guessed that it is based on the Progressive TIN Densification (PTD) 
(Axelsson, 2000), this is not documented nor verifiable. Similarly, the 
LAStools documentation states that “a variation of the PTD” is used 
without providing further details of the variant. If a closed-source 
classification routine misclassifies points, it is impossible to glean from 
the documentation why this happened, and consequently difficult to 
tune the corresponding settings or improve the method. This example of 
ground classification also applies to other routines and algorithms, in-
cluding tree segmentation, point cloud registration, point cloud classi-
fication, etc. 

Recently, however, the remote sensing community has shown a 
growing interest in the open-source and open-data philosophy. The 
availability of free and open-source software (FOSS) is of fundamental 
importance because it gives direct insight into the processing methods. 
In addition to its educational value, such insight allows users to obtain a 
better understanding of the consequences of their parametrisation. This 
is particularly important in remote sensing, a field in which complex 
algorithms are often strongly affected by implementation details. FOSS 
also serves as a catalyst for innovation as it avoids the need to duplicate 
programming efforts, and thus facilitates community-led development. 
Large FOSS projects usually assemble communities of users and pro-
grammers that can report, fix or enhance the software in a highly in-
teractive and dynamic way. Finally, FOSS are generally free-to-pay and 
cross-platform, both of which are very important, especially in the 
academic context. 

One example of the rapidly growing adoption of the FOSS philo-
sophy is the increasing use of the R environment (R Core Team, 2019) 
for research in natural sciences (Carrasco et al., 2019; Crespo- 
Peremarch et al., 2018; Mulverhill et al., 2018; Tompalski et al., 
2019b). R is a FOSS and cross platform environment for statistical 
computing and data visualisation supported by the R Foundation for 
Statistical Computing. A key feature of R is the ability for users to create 
package extensions that link to the base R architecture, and to its data 
storage and manipulation model. Based on this wide uptake of R, along 
with its FOSS philosophy, we describe an open source and cross-plat-
form R library titled lidR (Roussel and Auty, 2020), created not only to 
perform many of the tasks commonly required to analyse ALS data in 
forestry, but also to provide a platform sufficiently flexible for users to 
design original processes that may not necessarily exist in any other 
software. 

1.4. Manuscript organisation and intentions 

The lidR package has been rapidly adopted and is now widely 
used, especially in academic research. It is widely cited internationally 
(see section 6) and there are now several training courses designed to 
teach the package that have been created independently of the lidR 
development team. Consequently, this paper was written to clarify the 
goals and the design of the package for a broad audience in environ-
mental sciences, and to inform the community of our development 
choices. While the package is comprehensively documented, we have 
never explicitly set out our motivations underpinning its development 
because this kind of information does not belong in the user manual. 
lidR is part of a large suite of available tools that all bear their own 
strengths and weaknesses. Learning new tools can be laborious, so we 
believe it worthwhile to clarify what lidR is designed for, to help 
potential users and developers decide if it will meet their analysis needs 

upstream of the learning curve. This paper also serves as a general re-
view of the various steps available to the practitioner for processing 
ALS-based point clouds, with an emphasis on the forestry and ecology 
contexts. However, our intent was not to provide detailed descriptions 
of the algorithms hosted in lidR that can be used to perform these steps 
because these are already documented in detail in peer-reviewed pa-
pers, which are all referenced in the text. 

In this manuscript we focus on four components of the lidR ap-
proach. In the first part (section 2), we focus on the architecture of the 
package. In the second part (section 3), we focus on key processing 
algorithms for data acquired from discrete return ALS systems, given 
their prevalence in the ALS market today, to demonstrate the efforts we 
have made in the lidR package to provide a wide range of tools from 
the peer-reviewed literature. We follow a likely conventional ALS 
workflow involving ground classification and terrain interpolation, 
height normalisation, construction of digital canopy models, and ex-
traction of ALS metrics to allow ABA model development. In the third 
part (section 4) we highlight the versatility of the lidR package in its 
fundamental formulation, which allows for a highly flexible program-
ming environment to implement less common, or more innovative 
processing approaches. We provide some specific examples on how this 
flexibility can be used and leveraged. We conclude (section 5) with 
general comments on the processing speed and future functionalities of 
the package. 

As lidR is constantly evolving, it is important to state that this 
manuscript reflects the state of the package in its 3.0 version. While 
some information might become outdated, such as the supported for-
mats (section 2.2), the benchmarks (section 5), or the currently im-
plemented algorithms, the overall intentions and design choices will 
remain valid. 

2. lidR: an R package for ALS data processing 

2.1. Architecture and design 

lidR is a point-cloud oriented R package designed to be integrated 
into the R spatial analysis ecosystem by supporting inputs/outputs in 
formats defined by the packages sp (Pebesma and Bivand, 2005; Bivand 
et al., 2013), sf (Pebesma, 2018) and raster (Hijmans, 2019). It is 
designed with the FOSS philosophy in mind: the source code is open 
and freely modifiable, and the development is both driven by feature 
requests from users and open to third-party modifications/additions, 
thus allowing the package to constantly evolve. 

The lidR package was created to provide a variety of customisable 
processing strategies with the goal of enabling users to manipulate and 
analyse their data easily. In addition to a set of internally-defined 
functions, lidR offers the possibility to implement user-defined func-
tions, so that processing can be specialised and tailored to meet in-
dividual management and research needs. The package was developed 
to enable users to try, test and explore methods in a straightforward 
manner. In other words, it is not only designed as a toolbox, but also as 
a suite of tools that users can use to build new tools. 

To achieve this objective, tools available within lidR can be clas-
sified into three categories: (1) generic processes used in forestry, such 
as ABA processing (section 3.5) or digital terrain modelling (section 
3.2), (2) specific algorithms implemented from the peer-reviewed lit-
erature, such as snag detection (section 3.7) or tree segmentation 
methods (section 3.6), and (3) versatile tools providing a way to design 
new processing methods, such as a new classification routine, a new 
intensity normalisation routine, or new predictive models (section 4). 

The architecture behind lidR relies on two alternative ways to 
process data. The first (classical) way involves reading a file and 
loading the point cloud in memory to enable subsequent processing 
through the application of R functions. This allows the application of 
built-in functions from the package itself, such as digital terrain/surface 
model generation, but also any user-defined functions. This first option 
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is designed to develop and test either existing or user-defined methods 
on simple test cases. Once this is done, the second option is designed to 
apply a working routine on a broader area involving too many files to 
be loaded at once into memory. It consist of creating a link to a di-
rectory where a collection of files is located. Using what we call the 
“LAScatalog processing engine” (section 3), any internal or user-defined 
function can also be applied over a broad geographic area. The engine 
allows users to load successive regions of interest (ROI) buffered on-the- 
fly. This option is akin to batch processing, and the internal engine 
embeds all the complexity of on-the-fly buffering, parallelism, mapping, 
merging and error handling to help users focus on the development of 
their methods rather than being hindered by computing issues. With 
this architecture, the lidR package offers a straightforward approach 
to designing innovative processing workflows and scaling them up over 
broad landscapes. 

2.2. ALS data formats supported 

Discrete return ALS sensors record three coordinates per point as 
well as several types of supplementary data for each point. Reading, 
writing and storing these ALS data is a critical preliminary step before 
any subsequent analysis. ALS data is most commonly distributed in the 
LAS open format, which is specifically designed to store LiDAR data 
that is standardised, and officially and publicly documented and 
maintained by the American Society for Photogrammetry & Remote 
Sensing (ASPRS, 2018). LAS format enables point cloud data to be 
stored using an optimised amount of memory but without being com-
pressed. The requirement to store and share ALS data provided impetus 
for improved data compression (Pradhan et al., 2005; Mongus and 
Žalik, 2011). Since there is currently no official standard to compress 
point cloud data files, several different schemes were developed over 
the last decade to compress LAS files, such as ‘LizardTech LiDAR 
compressor’ (LizardTech), ‘LAScompression’ (Gemma lab) or ‘zlas’ 
(ESRI), many of which are proprietary, resulting in difficulties sharing 
the data between users or platforms. However, since the development 
of the LASzip library (Isenburg, 2013), the LAZ format has become the 
de facto standard, because it is free and open-source and can be im-
plemented and supported by any software. 

As a consequence of the open nature of the LAS and LAZ formats, 
their widespread use in the community and their adequacy with pro-
cessing requirements, the lidR package is designed to process LAS and 
LAZ files both as input and output, taking advantage of the LASlib and 
LASzip C++ libraries via the rlas package (Roussel and De Boissieu, 
2019). Due to the underlying input / output drivers, lidR also supports 
LAX, or spatial indexing, files (Isenburg, 2012) to increase access speeds 
when undertaking spatial queries (see section 5). Alternative open 
formats do exist, such as PLY, HDF5 or E57, but their use is either ill- 
suited for large ALS coverages or they have not been widely adopted, in 
the forestry community at least, and are thus not yet supported by 
lidR. 

Fig. 1 shows a selected set of outputs and displays that can be 
generated by the lidR package. Some were produced using built-in, 
ready-to-use functions and can be easily reproduced from the user- 
manual examples while others were derived from user-defined func-
tions designed on top of the existing versatile tools provided in the 
package. 

3. Common processing workflow in lidR 

ALS data processing relies on recurring steps that are systematically 
applied to a dataset. These steps include ground classification, digital 
terrain generation, digital surface model generation, height normal-
istion of the point cloud and, in the case of forestry applications, an 
ABA and/or ITS analysis. While, the lidR package was designed pri-
marily to explore processing beyond these steps (section 4), it embeds 
the required tools to apply these routines. All tools dedicated to such 

common processing steps are derived from the peer-reviewed literature. 
As far as possible, lidR aims to provide a wide range of processing 
options implemented from original papers or published methods, with a 
view to promoting reproducible science. 

Strictly speaking, lidR contains source code to process point 
clouds, which are decoupled from any environmental context. 
However, it is important to recognise that the available methods are not 
necessarily applicable in all environmental contexts. For example, some 
ground classification algorithms (section 3.1) may or may not be sui-
table for all terrain types. Similarly, for individual tree segmentation 
(section 3.6), we rely on the users to study each available method, 
ideally from the original peer-reviewed publication, and determine if 
the context for which the methods were developed applies to their own 
situation. Users are then provided with the possibility to adjust the 
parameters of the chosen algorithms to optimise their performance for a 
specific context. Providing recommendations on the environmental 
contexts in which algorithms may perform best is beyond the scope of 
the package, as it would require multiple global studies that could not 
realistically be conducted by a single research team. Instead, our am-
bition in developing the package is precisely to facilitate the work of a 
community of research teams who will conduct such types of studies. As 
discussed in section 6, there is evidence in the peer-reviewed literature 
that the lidR package is already being used for such purposes. Here, 
we first describe a common processing workflow applicable to any 
forested environment. 

3.1. Classification of ground points 

The classification of ground returns from an ALS point cloud is not 
only the first step towards generating a ground surface (Evans et al., 
2009; Zhao et al., 2016), but is also one of the most critical steps of the 
workflow (Montealegre et al., 2015a; Zhao et al., 2016). Historically, 
the classification of ground returns was fundamentally important be-
cause ALS was initially used for land topography purposes, before being 
recognised as a potentially valuable tool for measuring the character-
istics of the vegetation (Nelson, 2013). Most published algorithms for 
ground return classification utilise morphological and spatial filters 
(Zhang et al., 2003; Kampa and Slatton, 2004) or slope analysis 
(Vosselman, 2000) to assess the likelihood of a subset of returns be-
longing to the ground surface. The most commonly used approach is 
probably the Progressive TIN Densification (PTD) (Axelsson, 2000), 
which is based on triangular irregular networks (TIN), but many others 
have been proposed (e.g. Kraus and Pfeifer, 1998; Vosselman, 2000;  
Kampa and Slatton, 2004; Zhang and Whitman, 2005; Evans and 
Hudak, 2007; Pirotti et al., 2013; Montealegre et al., 2015b; Zhang 
et al., 2016). The two following routines are currently implemented 
within lidR: (a) progressive morphological filter (PMF) and (b) cloth 
simulation filter (CSF). 

The progressive morphological filter (PMF) described by Zhang 
et al. (2003) is based on the generation of a raster surface from the 
point cloud. This initial raster surface undergoes a series of morpho-
logical opening operations until stability is reached. The PMF has been 
implemented in a number of software packages including the Point 
Cloud Library (PCL) Rusu and Cousins (2011) and Point Data Ab-
straction Library (PDAL) PDAL Contributors (2018), two well known 
C++ open-source libraries for point cloud manipulation. It is also re-
commended in the SPDlib software Bunting et al. (2011, 2013) and 
proposed in the Laser Information System (LIS) software (Laserdata, 
2017). The implementation of the PMF in lidR differs slightly from the 
original description because lidR is a point cloud processing software. 
Similarly to the implementation of PCL and PDAL, the morphological 
operations in lidR are conducted on the point cloud instead of a raster. 
In addition, because lidR is designed for high versatility, the package 
does not constrain the input parameters with the relationship defined in 
the original paper, so users are free to explore other possibilities. 

The Cloth Simulation Filtering (CSF) ground return selection 
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method consists of a simulated cloth with a given mass that is dropped 
on the inverted point cloud (Zhang et al., 2016). Ground points are 
classified by analysing the interactions between the nodes of the cloth 
and the inverted surface. The CSF provided in the lidR package was 
built by wrapping the original C++ source code provided by the au-
thors through the RCSF package (Roussel and Qi, 2018) and, thanks to 
the open-source nature of the original method, is thus an exact version 
of the original paper. 

3.2. Derivation of a Digital Terrain Model (DTM) 

Once the classification of ground returns is complete, a digital ter-
rain model (DTM) is derived, most commonly represented by an in-
terpolated ground surface at user-defined spatial resolution. Over the 
past few decades, a wide variety of methods have been developed to 
generate DTMs with several algorithms proposed for various terrain 
situations (Chen et al., 2017). DTMs also allow users to normalise the 
point cloud to manipulate relative elevations instead of absolute ele-
vations (Fig. 2). The derivation of a DTM involves spatial interpolation 
between ground returns and is a critical step as its errors will impact 
directly on the computed point heights, and thus on tree height or 
derived statistic estimation (Hyyppä et al., 2008). Three implementa-
tions of interpolation routines to derive the DTM are currently included 
in lidR: (a) triangular irregular network with linear interpolation 
using a Delaunay triangulation, (b) inverse-distance weighting, and (c) 
kriging. These three methods are well known spatial interpolation 

methods with decades of documentation (e.g. Mitas and Mitasova, 
1999). While these methods do not bring much novelty, their avail-
ability again demonstrates the importance we put on providing several 
state-of-the-art options to users. Because lidR is a constantly evolving 
package other methods such as bivariate interpolation (Akima, 1978) or 

Fig. 1. A selected set of outputs and displays that can be produced using the lidR package. The production of classical and more ‘unconventional’ outputs was 
facilitated by the versatility of the provided tools and the catalog processing engine. (a) management of a collection of 30000 tiles (30000 km2) displayed on top of 
ESRI world imagery. What appears as a white cloud on top of the image is in fact snow on top of mountains. (b) point density map (3 km2 subset) (c) shaded digital 
terrain model (25 km2 subset) (d) sensor tracking: position of the sensor retrieved and displayed over the 3D DTM (25 km2 subset) (e) range-normalisation of 
intensity values using the position of the aircraft (25 km2 subset) (f) map of a user-defined metric in an ABA analysis (16 km2 subset) (g) water bodies segmentation 
(1000 km2 subset) (h) individual tree delineation and computation of user-defined metrics for each tree in a eucalyptus plantation (50 ha subset). Crowns are 
coloured by a derived metric using a scale gradient from yellow to red. (i) individual tree segmentation at the point-cloud level plotted on a 3D DTM (j) powerline 
segmentation. 

Fig. 2. Graphical representation of data normalisation consisting of subtracting 
a ground surface to remove the influence of terrain on the height of above- 
ground points. Illustrated here using a Digital Terrain Model raster and the 
lidR package. 
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Multilevel B-Spline Approximation (Lee et al., 1997) could be added in 
future releases, or as third-party extensions (the package supports ad-
ditional plug-ins). 

3.3. Data normalisation 

A common third step in ALS data processing is the subtraction of the 
terrain surface from the remaining ALS returns (Fig. 2). Point cloud 
normalisation removes the influence of terrain on above-ground mea-
surements, thus simplifying and facilitating analyses over an area of 
interest. The most common approach to normalise non-ground returns 
is to subtract the derived raster DTM from all returns. This method has 
been widely used (e.g. Wang et al., 2008; van Ewijk et al., 2011; Li 
et al., 2012; Jakubowski et al., 2013; Ruiz et al., 2014; Racine et al., 
2014) and is simple and easy to implement. For each point in the da-
taset, the algorithm selects the value of the corresponding DTM pixel, 
then subtracts this value from the raw elevation value of each point. 
The approach, while simple, can lead to inaccuracies in normalised 
heights due to the discrete nature of the DTM and the fact that the DTM 
was created and interpolated using regularly spaced points, which do 
not match the actual location of the ground points in the dataset. 

A second normalisation method utilises all returns, with each 
ground point interpolated to its exact position beneath the non-ground 
return (García et al., 2010; Khosravipour et al., 2014). This approach 
therefore removes any inaccuracies attributed to the abstract re-
presentation of the terrain itself. Using this method, every ground point 
used as reference is exactly normalised at 0, which is the expected 
definition of a ground point that is independent of the quality of the 
ground segmentation. 

In lidR, spatial interpolation can be applied for any location of 
interest to generate either a DTM, or to normalise the point-cloud using 
an interpolation between each point. While normalising the point-cloud 
bears several advantages for subsequent analyses, there are also some 
drawbacks. The normalisation process implies a distortion of the point 
cloud and, therefore, of the sampled above-ground objects, such as trees 
and shrubs. Because this can be exacerbated in areas of high slope 
(Fig. 3), some authors have chosen to work with raw point-cloud to 
preserve the geometry of tree tops (Vega et al., 2014; Khosravipour 
et al., 2015; Alexander et al., 2018). In lidR, normalisation is easily 
reversible by switching absolute and relative height coordinates al-
lowing versatile back and forth representations from raw to normalised 
point clouds if desired. 

3.4. Derivation of Canopy Height and Surface Models 

The Canopy Height Model (CHM) is a digital surface fitted to the 
highest non-ground returns over vegetated areas (Popescu, 2007; Hilker 
et al., 2010; Ruiz et al., 2014). It can be interpreted as the aboveground 

equivalent of the Digital Terrain Model (DTM). It differs from the Di-
gital Surface Model (DSM), which is the non-normalised version of the 
same surface (Zhao et al., 2009; Ruiz et al., 2014). In this paper the 
term Digital Canopy Model (DCM), following Clark et al. (2004), is used 
to capture both surfaces. The two main algorithms used to create DCMs 
can be classified into two families: (a) the point-to-raster algorithms 
and (b) the triangulation-based algorithms. lidR provides both. 

Point-to-raster algorithms are conceptually the simplest and consist 
of establishing a grid at a user-defined resolution and attributing the 
elevation of the highest point to each pixel. Algorithmic implementa-
tions are computationally simple and fast, which could explain why this 
method has been cited extensively in the literature (e.g. Hyyppä and 
Inkinen, 1999; Brandtberg et al., 2003; Popescu, 2007; Liang et al., 
2007; Véga and Durrieu, 2011; Jing et al., 2012; Yao et al., 2012;  
Hunter et al., 2013; Huang and Lian, 2015; Niemi and Vauhkonen, 
2016; Dalponte and Coomes, 2016; Véga et al., 2016; Roussel et al., 
2017; Alexander et al., 2018). This is the default algorithm im-
plemented in FUSION/LDV, LAStools and ArcGIS. 

One drawback of the point-to-raster method is that some pixels can 
be empty if the grid resolution is too fine for the available point density. 
Some pixels may then fall within a location that does not contain any 
points (cf. Fig. 4(a)), and as a result the value is not defined. A simple 
solution to this issue is post-processing to fill any gaps using an inter-
polation method (cf. Fig. 4(b)) such as linear interpolation (Dalponte 
and Coomes, 2016) or inverse distance weighting (Véga and Durrieu, 
2011; Ruiz et al., 2014; Véga et al., 2016; Niemi and Vauhkonen, 2016). 
Another option, initially implemented in LAStools but seldom applied is 
to replace each point by a small circle of a known diameter to simulate 
the fact that laser beams actually have a footprint (Baltsavias, 1999) i.e. 

Fig. 3. Illustration of the effect of normalisation on the geometry of objects 
such as trees located on slopes. The effect is exacerbated by the slope of the 
terrain and the horizontal dimensions of the object (adapted from Vega et al. 
(2014)). 

Fig. 4. Four 100 × 100 m DCMs computed from the same point cloud using 
different methods from each of the two main families of algorithms. (a) 
Contains empty pixels because of the absence of points in some pixels (the 
highest point cannot be defined everywhere); (b) Empty pixels are filled by 
interpolation, but some pits remain; (c) The resolution was increased without 
empty pixels, but with many pits due to pulses that deeply penetrated the ca-
nopy before generating a first return; (d) Pit-free with high resolution. 
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they are diffuse circular rays. This option has the effect of artificially 
densifying the point cloud and smoothing the CHM in a way that has a 
physical meaning and that cannot be reproduced in post processing. All 
these options are available in lidR to improve the quality of the DCM. 

Triangulation-based algorithms most commonly use a Delauney 
triangulation to interpolate first returns (Fig. 4(c)). Use of this method 
has been reported by Gaveau and Hill (2003); Barnes et al. (2017). 
Despite being more complex than point-to-raster algorithms, an ad-
vantage of the triangulation approach is that it does not output empty 
pixels, regardless of the resolution of the output raster (i.e. the entire 
area is interpolated). However, like the point-to-raster method, it can 
lead to gaps and other noise from abnormally low pixels compared to 
neighbouring areas. The so-called ‘pits’ are formed by first returns that 
penetrated deep into the canopy (Ben-Arie et al., 2009). To solve such 
issues, Khosravipour et al. (2014) proposed a natively ‘pit-free’ algo-
rithm, as well as ‘a spike-free’ algorithm Khosravipour et al. (2016). The 
‘pit-free‘ method consists of a series of Delaunay triangulations made 
sequentially using points with values higher than a set of specified 
thresholds. All the above mentioned methods and their adjustments 
(except the ‘spike-free’ method) are available in lidR (Fig. 4(d)). 

3.5. Area-based approach 

Once ground returns have been classified and a DTM developed, the 
so-called ‘area-based approach’ is commonly used to link the 3D 
structure of the point-cloud to forest attributes. Conceptually simple, 
the ABA involves the computation of metrics that summarise the point 
cloud structure in a given area of interest, typically a 400 – 900 m2 

square or circle, congruent with that of a conventional forest plot 
(White et al., 2017). In the ABA, the grid cell represents the funda-
mental unit of measure. Metrics are then used in predictive statistical 
models to derive key ground-based inventory variables. Predictions 
from such models can then be mapped over an area of interest. 

The design of the package allows users to compute a diverse range 
of metrics including commonly applied ones derived from the vertical 
elevation of the points, as well as user-specified metrics tailored to 
particular needs (see section 4). The package does not embed any sta-
tistical models from the peer-reviewed literature because they are too 
specific to individual studies. Instead, lidR enables users to compute 
any metric so that any existing model from the literature can be re-
produced. To ensure this is the case and to facilitate their use, some 
lesser-used metrics from the literature, such as a rumple index 
(Blanchette et al., 2015), leaf area density (Bouvier et al., 2015) or 
vertical complexity index (van Ewijk et al., 2011) have been embedded 
into the package. 

3.6. Individual tree segmentation 

An alternative method to the area based approach consists of cal-
culating summaries of the point cloud at the scale of individual trees 
(Chen et al., 2006; Koch et al., 2006). An accurate segmentation of 
individual trees to extract a database of tree-level position and attri-
butes such as height, diameter, volume and biomass is a much desired 
outcome of research on the use of ALS for forestry applications (Hyyppä 
et al., 2001; Popescu, 2007; Zhang et al., 2009; Kwak et al., 2010; Yao 
et al., 2012; Gleason and Im, 2012). Individual tree detection algo-
rithms can be generally divided into two types i.e. those based on a 
digital canopy models and those utilising the point-cloud directly. The 
body of literature on individual tree segmentation is considerable, and 
has been the focus of a number of comprehensive reviews and com-
parisons (Ke and Quackenbush, 2011; Wang et al., 2016; Yancho et al., 
2019). Unfortunately, most of the peer-reviewed papers describe 
methods without any usable source code provided for the benefit of the 
users and thus cannot be used, compared or validated. 

Following widely used ITS methods, lidR provides raster-based 
watershed methods (relying on the EBimage package (Pau et al., 

2010)). But to provide easy access to other options from the literature, 
lidR also has implementations of Dalponte’s (Dalponte and Coomes, 
2016) and Silva’s CHM-based algorithms (Silva et al., 2016), as well as 
Li’s point cloud based algorithm (Li et al., 2012). As a complement to 
the main lidR project we are also developing a more experimental 
package named lidRplugins (Roussel, 2019), which implements 
additional peer-reviewed methods such as LayerStacking (Ayrey et al., 
2017), Hamraz’s algorithm (Hamraz et al., 2016) and the PTree algo-
rithm (Vega et al., 2014) using the plug-in capability of lidR. Before 
being implemented in lidR, several of these algorithms were not 
available beyond their paper-based formulation, so their performance 
could not be tested by the community. 

3.7. Others 

Beyond the common tools mentioned above, lidR also implements 
a series of additional algorithms with the intent to (a) assemble state-of- 
the-art tools, (b) help users conduct reproducible science, and (c) pro-
vide a way to take advantage of, test and compare peer-reviewed 
methods that would otherwise not be available. For example, the de-
velopers and community of lidR have implemented a snag segmen-
tation tool (Wing et al., 2015), a planar region detection method 
(Limberger and Oliveira, 2015), a local maximum filter (LMF) (Popescu 
et al., 2002), and an intensity normalisation tool (Gatziolis, 2013). The 
implementation of the LMF algorithm, which is used to locate in-
dividual trees, can serve as an example of how lidR tools provide 
flexible options to users, even when they are applying a ‘standard’ 
workflow. As per the original design from Popescu et al. (2002), the 
LMF algorithm can be run with a variable window size, and is not 
limited to some specific, hard-coded options but gives freedom to users 
for more tailored options. The versatility of the processing options is 
further developed in the next section. Fig. 5 summarises potential 
workflows that could be achieved with lidR. 

4. Versatile processing workflow in lidR 

4.1. lidR as a toolbox 

In the previous section we have shown how the lidR package has 
the capability to apply conventional ALS workflows using up-to-date 
implementations of a number of ALS methods presented in the peer- 
reviewed literature. By providing transparent and functional versions of 
published routines, they immediately become easy to use, thus ex-
tending their value beyond their publication-based formulation, which 
is commonly the only publicly available format. 

The true power of lidR however lies in its design as a “toolmaker” 
to provide users with the capability to create their own applications. In 
fact, lidR provides a programming environment intended to be used 
by R users who wish to test and explore new processing workflows. 
While it is not possible to show a complete list of functionalities, some 
examples are provided below to demonstrate the flexibility brought by 
the package. 

4.2. Development of user-defined metrics 

As expressed in previous sections, the derivation of metrics from 
ALS point clouds is inherent to processing ALS data for any forestry or 
ecology applications. Conventionally, most software solutions allow 
users to compute predefined and hard coded statistical summary me-
trics over an even-sized regular grid system. Unlike common software, 
lidR allows the computation of any user-defined metric for a wide 
variety of regularisations, and/or within user-defined objects. When 
metrics are computed at the level of individual points, they can serve 
for classification purposes i.e. to assign them to classes, such as 
building, vegetation, water, power lines, etc. When computed at the 
pixel level, metrics feed directly into conventional ABA analyses. When 
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computed at the individual-tree level, the metrics can be used to esti-
mate crown characteristics, and then to classify species. At the plot or 
stand scales, they can be useful for developing landscape-level statis-
tical predictive models. 

The versatile tools from lidR enable the extraction of any pro-
grammable metrics in two-dimensional pixels and hexagonal cells, 
three-dimensional voxels, individual trees and individual points. Fig. 6 
provides examples of outputs that can be derived from these versatile 
functions. It is designed to provide the internal tools for fast and effi-
cient mapping while users focus on defining metrics potentially re-
levant to their applications. For example, a user could define a function 
that computes a metric of planarity using an eigenvalue decomposition 
of the 3D coordinates. Such a metric does not exist in any other soft-
ware, but it may be very useful to some applications (e.g. Figs. 6d, 6g,  
6h). lidR then enables mapping of user-defined metrics at all the levels 
mentioned above i.e. on the whole point cloud (with the function 
cloud_metrics()), on each pixel (grid_metrics()), on each 
hexagonal cell (hexbin_metrics()), on each voxel (voxel_-
metrics()), on each tree, assuming that the tree segmentation has 
been performed upstream (tree_metrics()) and on each point using 
its neighbourhood (point_metrics()). 

While the output of a given function is always in the same format, 
its interpretation and usage may have multiple applications depending 
on the metrics used. For example, in Fig. 6g the function point_-
metrics() was used to design a roof segmentation algorithm, in  
Fig. 6h it was used to design a power line classification, and in Fig. 1h it 
was used to make a water body segmentation algorithm. Not shown in 
this article, we also successfully used this same point_metrics() 
function to attribute false colours to a multispectral point cloud and to 

prototype a noise filtering method. 
lidR is designed to define, implement, test, explore and utilise new 

representations of ALS data, which can ultimately lead to the devel-
opment of new methods, approaches and functions, including new 
predictive models, or to develop new applications. 

4.3. Apply user-defined routines to large coverage 

ALS data are divided into many smaller files (known as tiles) that 
together make a contiguous dataset covering an area of interest. The 
above-mentioned tools work on point-clouds loaded to memory; how-
ever, real applications require upscaling of routines to facilitate pro-
cessing of large datasets that do not fit into memory. A powerful engine 
has been developed to achieve this in lidR. Once users have designed a 
feature that works for a small point cloud, lidR offers the capability of 
applying the function over the entire coverage area using the 
“LAScatalog processing engine” (See section 2 and Fig. 7) that offers 
several features including:  

• The capability to iteratively process ‘chunks’ of any size. The chunks 
do not need to respect the original tiling pattern of the data acqui-
sition.  

• The capability to buffer each chunk on-the-fly to ensure a strict wall- 
to-wall output without any edge artifacts. This is particularly im-
portant for terrain computations and tree segmentation, for example 
(Fig. 7).  

• The capability to compute each chunk sequentially, or in parallel, 
allows lidR to take advantage of multi-core or multi-machine ar-
chitectures. 

Fig. 5. Overview of the key components of lidR that are presented in this paper. Most functions and processing avenues within lidR are designed for user-defined 
integration within a self tailored workflow. 
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• Automatically merging the outputs computed iteratively into a 
single valid object.  

• Record logs and return of partial outputs in case of a crash in the 
user-defined routine.  

• Real-time progress estimation monitoring (Fig. 7) that displays the 
processed, processing and pending areas. 

• An error-handling manager (Fig. 7) that displays if a chunk pro-
duced a warning or an error. 

In brief, the LAScatalog processing engine provides all the tools to 
apply and extend any user-defined routine to an entire acquisition, 
taking care of all the internal complexity of on-the-fly buffering, par-
allelism, error handling, and progress estimation, etc. Users have full 
access to the engine with the catalog_apply() function that is also 
heavily used internally in almost every function. Combining the ver-
satility of functions, which goes beyond the short summary provided in  
section 4.2, to the processing engine, a lot of processes that cannot be 
explored in traditional software can easily be designed by research 

teams using R. A further illustration of this point can be seen in Fig. 1d 
where an algorithm to retrieve the position of the sensor was first de-
signed and then applied to a broader area using the engine. 

In summary, the versatile functions combined with the LAScatalog 
processing engine offer an almost unlimited number of ways in which 
ALS data can be processed and analysed. This adds to several other tools 
provided in lidR to either decimate, smooth, filter or crop point 
clouds, which all contribute to furthering these possibilities for the 
benefit of users. 

4.4. Other sources of point clouds 

This paper, like the overall development of lidR, focuses primarily 
on ALS-based methods. However, there are many other sampling sys-
tems used in forestry and ecology, such as terrestrial laser scanning 
(TLS), digital aerial photogrammetry (DAP) or LiDAR sensors embarked 
on unmanned aerial vehicles (UAV), which also generate point clouds. 
One major issue with processing point clouds from these sources is their 

Fig. 6. Demonstration of the wide variety of products that can be derived using the versatile functions of the lidR package. All metrics presented here can be created 
by a user and mapped on a point cloud. 
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high point density, which requires a much more careful usage of 
memory. Considering how R is designed internally, there is very little 
flexibility in memory management, which makes point clouds from 
these alternative sources more difficult to manage. An example of the 
ALS-focused design of lidR is the use of an internal spatial index that is 
optimized for points evenly-spread on x − y axes with proportionally 
little variation on the z axis; this means that it will often process TLS 
point clouds sub-optimally. However, it does not mean that lidR 

cannot be used to process other sources of point clouds. Some examples 
of successes in these areas include the TreeLS package (de Conto, 2019), 
which is designed for TLS tree segmentation and is built on top of the 
lidR architecture. The viewshed3d package (Lecigne, 2019; Lecigne 
et al., 2020) also uses lidR and TreeLS to process TLS data and address 
ecological questions. By paying great attention to memory usage using 
the tools offered by the package, we have also succeeded in integrating 
lidR into a DAP point cloud workflow. Fig. 8 shows the result of an 
individual tree detection and measurement performed in a poplar 
plantation. Other groups have successfully used lidR to process UAV 
point clouds, such as VanValkenburgh et al. (2020);Navarro et al. 
(2020), among others. Despite not being designed for these uses, lidR 
offers a versatile point cloud processing framework that enables usage 
beyond what it was initially designed for, either by using the existing 
suite of tools or by extending them. 

5. Computational considerations 

Expansive ALS acquisitions can result in large amounts of data that 
need complex processing. As a result, ALS processing software needs to 
be as efficient as possible when reading, writing, and processing 3D 
point clouds. As discussed previously, the primary goal of lidR is to 
create a straightforward and versatile toolbox within the R ecosystem. 
This choice comes at a cost of memory usage and runtime, when 
compared to what could be achieved with specialised software. 
However, a significant part of the lidR package code that drives the 
most demanding computations is written in C++, and is natively 
parallelised at the C++ level whenever possible. Memory allocations 
are reduced by recycling the R allocated memory whenever possible 
and the reliance on third-party packages is focused on efficient tools, 
such as the data.table package (Dowle and Srinivasan, 2019). 

We have dedicated significant efforts into improving the execution 
time and memory usage of the lidR package. To illustrate some aspects 
of the package performance, we provide here some benchmarking tests 
that can serve, at least to some extent, as runtime comparisons with 
existing software. We benchmarked a selection of tools to demonstrate 
the computing efficiency of lidR. Tests were performed both on an 
Intel Core i7-5600U CPU @ 2.60 GHz with 12 GB of RAM running 

Fig. 7. An annotated screenshot of the live view of the lidR LAScatalog pro-
cessing engine applying a user-defined function on a 300 km2 collection of LAS 
files. At the end of the process, the results are stacked to make a strict wall-to- 
wall output. 

Fig. 8. A poplar plantation point cloud in RGB colour sampled with digital aerial photogrammetry (DAP). The red dots mark the position and height of each of the 
identified trees. 
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GNU/Linux and a Xeon CPU E5-2620 v4 @ 2.10GHz with 64GB of RAM 
running Windows 10. The C++ code of lidR as well as other de-
pendency packages were compiled with g++ with level 2 optimisation 
(-O2), which is the default in R packages for Microsoft Windows and 
most GNU/Linux distributions. We did not take advantage of the multi- 
core or multi-machine capabilities of the package for the results pre-
sented in this paper. To ensure the reproducibility of the benchmarks, 
we have provided supplementary materials with an extensive set of 
tests that can be run on other computers to perform time comparisons. 
These tests include a dataset of 25 1 km2 tiles at a mean density of 3 
points/m2, which was used to perform the following benchmarks and 
some extra multi-core parallelisation examples. 

For comparisons with existing R packages, we examined how fast 
the lidR package performed a simple rasterisation task compared with 
the rasterize() function available in the raster package (Hijmans, 
2019) using a set of 3 million randomly distributed points. We also 
compared how fast the lidR package performed a triangulation task 
compared to the delaunayn() function available in the geometry 
(Sterratt et al., 2019) package using the same set of 3 million points. 
Lastly, using the same data we compared how fast the lidR package 
performed a k-nearest neighbour (knn) search task compared with the 
FNN, RANN and nabor packages (Beygelzimer et al., 2019; Arya et al., 
2019; Elseberg et al., 2012). The choice of these tasks comes from the 
fact that, (1) they correspond to recurring computational tasks that 
occur internally in several analyses, (2) they are computationally de-
manding, and (3) they have comparable equivalents in existing R 
packages. Results are presented in Fig. 9 and show that lidR is 2 to 10 
times faster than other tested R packages. It is the specialisation that 
has made lidR markedly faster than other more generic equivalent 
tools available in R. 

However, the versatility of the package comes at a cost and a 
drawback is often a longer computation times and a greater memory 
usage. In lidR, versatile functions are offered to prototype new tools 
that can subsequently be implemented in pure C++, if required. For 
example, in the current version of the package a user can compute a 
simple DCM using the versatile grid_metrics() function, but lidR 
has a specialized grid_canopy() function that is faster by an order of 
magnitude (Fig. 10.a). In lidR, these ‘specialized functions’ are func-
tions that could be replaced with other versatile functions of the 
package, but that were considered to be of sufficiently high interest to 
be specialized for much faster processing, less memory usage and, 
whenever possible, native parallelisation at the C++ level. Fig. 10.a 
shows that the specialized rasterisation tool was 50 times faster than 
the versatile one, yet the versatile tool remained ∼10 times faster than 
its equivalent from the raster package, as mentioned above. 

Depending on the functions used, the reading of input files is often 
the primary processing time bottleneck. In comparison to the actual 
computation, reading LAS or LAZ files is usually slow. To demonstrate 
this, we measured the run times required to compute common elevation 
metrics in a classical ABA analysis using grid_metrics() (Fig. 10.b). 
This summary plot is divided to illustrate two sub-steps: (1) time spent 
reading the data, and (2) time spent computing metrics. The amount of 
runtime dedicated to reading the point cloud from files is particularly 

high with LAZ files which need to be uncompressed on-the-fly. The 
calculations performed after the data has been loaded are compara-
tively fast. It is worth recalling that lidR is able to utilise LAX files to 
index point clouds and dramatically speed-up on-the-fly buffering. In 
this example, the computation time is constant in each trial but the 
overall computation can be made two to four times faster if file formats 
are carefully chosen. 

Lastly, and to provide context, we compared the processing time 
required to extract ground inventories, compute an average intensity 
image and compute and rasterise a Delaunay triangulation with 
FUSION and LAStools (Fig. 11) using the same test bed of 25 tiles 
mentioned above. This selection of comparisons was driven by the 
pragmatic need to ensure comparable tasks i.e. operations that are 
performed with the same methods and return the same outputs using all 
three software alternatives. In contrast to lidR, LAStools is less ver-
satile but is designed to process very large amounts of data extremely 
efficiently (both in terms of speed and memory usage). Given the dif-
ferent focus of LAStools, we expected it to perform much faster. Fig. 11 
shows the results of these comparisons and it can be seen that lidR is 
either close to or much faster than FUSION, but always slower than 
LAStools; an outcome that was expected. 

The goal of this set of benchmarking tests is not to identify the 
fastest among a set competing software tools. LAStools will always be 
faster than lidR by design and one may find tasks that FUSION can 
perform faster than lidR, and vice versa. Moreover, most tasks can 
simply not be compared in a direct way, such as ground segmentation 
or point cloud decimation, as no two software systems use the exact 
same methods. In addition, the tests presented here are not actually 
comparable. For example, we don’t know if FUSION and LAStools 
perform the computationally-costly tests of data integrity system-
atically performed in lidR to inform users of potential errors in the 
data, which account for a non-negligible proportion of the computation 
time. Alternatively, these tests only aim to demonstrate that, despite 
being R-based, lidR performs comparably in many ways to existing 
software thanks to its C++ backend. Hence, we argue that lidR is 
suitable for both research purposes and operational processing of small 
(sub-hectare) to medium-sized (thousands of square kilometres) forest 
management units at least for common tasks where the methods are 
supported by decades of literature. However, it is important to note that 

Fig. 9. Comparison of (a) Delaunay triangulation (b) k-nearest neighbour 
search and (c) rasterisation with lidR and equivalent options from third party 
packages. 

Fig. 10. Processing times for (a) rasterisation with 1 m resolution performed 
with grid_canopy() (specialized) and grid_metrics() (versatile); (b) 
computation of common point-cloud elevation metrics using different input file 
formats with or without lax files to index the point cloud; 

Fig. 11. Computation time of (a) 30 plots extraction from 25 files, (b) image of 
the mean intensity and (c) rasterisation of a Delaunay Triangulation of the 
ground points. 
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lidR also includes some experimental tools from the literature, such as 
various tree or ground segmentation algorithms that are, where pos-
sible, based on the original source code provided by authors, such as the 
CSF algorithm (see section 3.1). Consequently, in such cases, adhering 
strictly to the authors’ implementation means that maximum efficiency 
can not be guaranteed. For example, the algorithm for tree segmenta-
tion developed and published by Li et al. (2012) has a quadratic com-
plexity meaning that the computation time is multiplied by four when 
the number of points is doubled. It can therefore not really be per-
formed on point clouds larger than a few hectares. 

6. Downloads, current and future usage 

As of August 1st 2020 the lidR package has been downloaded on 
average between 2500-3000 times per month. There have been eleven 
major updates to the package since its release in early 2017 (Fig. 12). 
Version 2.0.0, released in early 2019, made significant changes to the 
package including full integration with the R GIS ecosystem and en-
hanced large-area processing through the LAScatalog processing en-
gine. This was the starting point of a broader adoption of lidR in the 
academic community. The package has currently been referenced by 
more than 100 scientific publications mentioning the use of the lidR 
package for various purposes. Most reported uses relate to regular 
processing tasks such as DTM, CHM, ABA metrics or ground classifi-
cation (e.g. Swanson and Weishampel, 2019; Almeida et al., 2019;  
Mohan et al., 2019; Stovall et al., 2019; Navarro et al., 2020; Cooper 
et al., 2020), but sometimes beyond the scope of forestry and ecology 
applications such as in the study of VanValkenburgh et al. (2020) where 
authors classified ground points in an archaeology context to capture 
architectural complexity of lost cities in Peru. Several reported uses also 
relate to gap fraction profile estimation (e.g. Senn et al., 2020). The 
package is otherwise regularly used for simple file processing, such as 
ground plot extraction (e.g. Vanbrabant et al., 2020; Mohan et al., 
2019). Comparisons of algorithms from the literature included in the 
package are also starting to become available (Hastings et al., 2020). In 
addition, lidR was used as the supporting architecture for the devel-
opment of new packages such as TreeLS (de Conto, 2019; de Conto 
et al., 2017) and viewshed3d (Lecigne, 2019; Lecigne et al., 2020), 
two packages dedicated to TLS processing. Overall, reported uses show 

that the package has been used in a large range of ecological contexts, 
such as tropical rain forest (Almeida et al., 2019), subtropical forest 
(Sothe et al., 2019), boreal forest (Tompalski et al., 2019a), savanna 
(Zimbres et al., 2020) and many others. 

The latest stable release of lidR can be downloaded from CRAN 
and is shipped with a 150-page comprehensive user-manual that con-
tains hundreds of reproducible examples simply by copy-pasting a few 
lines of code and can be installed with the command in-
stall.packages("lidR"). The user can reproduce most of the ex-
amples shown in this paper using only this user-manual. In addition to 
the user-manual (which is the only official source of comprehensive and 
consistent documentation), some extra and often more user-friendly 
sources of information, usually in the form of tutorials can be found on 
Internet. The lidR book, which can be found at https://jean- 
romain.github.io/lidRbook/ is a guide that contains tutorials for 
both new and advanced users. Users can also find help from the com-
munity at https://gis.stackexchange.com/ using the lidr tag 
that currently hosts more than 100 questions. 

The package being in constant evolution, new features are already 
in development, such as support for full waveform data, processing 
speed improvements, additional methods from the peer-reviewed lit-
erature, new methods for mapping water bodies, forest roads segmen-
tation, power line and transmission tower segmentation, and versatile 
tools for mesh processing. We also aim to provide better support for 
processing TLS data by implementing a 3D spatial index that is suitable 
for this type of point cloud. 

7. Conclusion 

The use of ALS data for forestry and ecological applications, in-
cluding the derivation of highly detailed and accurate terrain models, 
canopy height model development, and forest inventory estimation at 
both the plot- and individual tree-scale, is well established, with many 
researchers and managers regarding ALS as a mature and im-
plementable technology that can be applied in an operational context. 
Considering the rapid integration of the technology globally, ALS pro-
vides a key success story of the evolution of a new technology from 
research and development to production. 

A simple scan of the available software platforms to process ALS 
data, however, demonstrates that while the technology is mature, the 
use of validated, repeatable, transparent and readily available tools is 
not. 

In this context, the lidR package provides a significant set of al-
gorithms implemented from the peer-reviewed research literature. We 
showed that lidR always provides at least two options for any given 
task to enable users to rely on potential alternatives when one method 
does not suit a given scenario. Also, lidR aims to provide a space 
where new algorithms can be tested. By making the methods from the 
literature available within the package, we intend to enable the com-
munity to figure out their strengths and weaknesses across various 
contexts, which may (or not) eventually lead to wider adoption. In 
other words, lidR is designed as a laboratory software. 

This design choice makes lidR different to other existing software 
but its open-source and cross-platform nature, its ease of use and its 
versatility already make it broadly accepted by the research commu-
nity, as evidenced by the numerous citations of the package in the peer- 
reviewed literature, as well as some newly developed tools based on the 
lidR architecture not only focused on ALS point clouds but also TLS, 
UAV and DAP point clouds. 
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Fig. 12. Monthly and total downloads of the lidR package since its release. 
Data obtained from the cranlogs package (Csárdi, 2019) in R. The red line 
indicates monthly downloads, while the blue dashed indicates cumulative total 
downloads. 
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