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A B S T R A C T   

Study region: The Bas-Loukkos catchment, a Mediterranean catchment in northern Morocco 
exposed to growing water withdrawal caused mainly by agricultural development. 
Study focus: For adaptation to climate change, water managers have to consider the high and 
various uncertainties. To assess impacts of climate change on projected water resources, this 
study aimed to develop a smart analysis framework to provide scientific information by exploring 
the complexity of many projections combined with hydrological models. Uncertainties were 
quantified using 13 pair-wise combinations of 5 regional climate models forced by 4 global 
climate models under two emissions scenarios (RCP4.5 and RCP8.5), data with and without bias 
correction (using empirical quantile mapping), and two sets of GR2M hydrological model pa-
rameters corresponding to different precipitation conditions. The Budyko hypothesis was used to 
analyse combined effects of climate change on water resources according to water-withdrawal 
scenarios. Climate and hydrological projections have been analyzed over three periods: short- 
term [2020–2040], medium-term [2041–2060] and long-term [2081–2100]. 
New hydrological insights for the region: Results from all simulations indicate that, in the long term 
(2081–2100), precipitation and discharge will decrease by ca. 21–38% and ca. 50–71%, 
respectively, compared to the reference period (1981–2005). Consequently, this decline in water 
resources will require water management strategies to adapt to the future climatic conditions and 
water demand.   

1. Introduction 

Water resources are facing increasing pressure throughout the world. Agriculture consumes an average of 70% of all freshwater 
withdrawals (Rosegrant et al., 2009) and up to 95% in some arid and semi-arid countries (Misra, 2013). Water resource availability is 
strongly limited by the high natural spatio-temporal variability in precipitation and evapotranspiration. Mediterranean regions are 
highly vulnerable to climate change; almost all models predict that they will experience increased temperatures and decreased 
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precipitation by the end of the 21st century (García-Ruiz et al., 2011). It is now broadly recognized that the water resources of the 
Mediterranean region have already been strongly altered by climate change (Balhane et al., 2022; De Girolamo et al., 2022; 
Senent-Aparicio et al., 2023). Some negative trends have been observed in discharge (El Moçayd et al., 2020; Hrour et al., 2022), while 
other studies have shown that droughts, more intense and frequent since 1980, have decreased water supplies, agricultural produc-
tivity, and electricity production (Verner et al., 2018). According to climate projections, this observed decrease in precipitation and 
increase in temperature will extend over the 21st century in the Mediterranean region (Tramblay et al., 2020), specifically in Morocco 
(Balhane et al., 2022; El Khalki et al., 2021a; El Moçayd et al., 2020; Tramblay et al., 2013), with negative effects on water-resource 
availability (Ayt Ougougdal et al., 2020; Lespinas et al., 2014). Of note, most prospective studies on Mediterranean water resources 
under climate change were conducted at the regional scale, while water managers have to develop adaptation strategies at the 
catchment scale. 

In Morocco, promotion of irrigated agriculture and improvement of irrigation techniques have led to the expansion of irrigated 
areas, and the repeated short-term concerns about overexploitation of groundwater are clear (Kuper et al., 2017). The combination of 
demographic growth, accelerated urbanization, and improved living standards leads to a continuous increase in domestic and in-
dustrial water demand (Boretti and Rosa, 2019). Climate models are frequently coupled with hydrological models, including physi-
cally based land surface models (Fisher and Koven, 2020), conceptual hydrological models (Pulido-Velazquez et al., 2021), machine 
learning algorithms (Jimeno-Sáez et al., 2017), in order to propagate hydrological impacts to predict future water resources and 
develop adaptation strategies, despite multiple sources of uncertainty (Adloff et al., 2015; Lee et al., 2021; Lemaitre-Basset et al., 2021; 
Senatore et al., 2022). These uncertainties arise from a wide range of sources and propagate throughout impact assessment. They stem 
first from greenhouse gas (GHG) emission scenarios (i.e. “Representative Concentration Pathways” (RCPs)), then global climate 
models (GCMs) and their downscaled versions (i.e. regional climate models (RCMs)), followed by bias-correction methods, and finally 
the hydrological models used to study impacts of climate change on catchment water resources (Adloff et al., 2015; Lee et al., 2021). 
The main sources of uncertainty are related to climate scenarios (Lee et al., 2021) and the GCMs, which are the main issues hindering 
the use of climate projections and downscaling procedures (Her et al., 2019; Lee et al., 2021). Therefore, it is recommended to use as 
many combinations of GCMs, RCMs, and RCP scenarios as possible to better represent multiple sources of uncertainty. Additional 
sources of uncertainty are the necessarily simplified structure of hydrological models and inaccuracy of the input data used to calibrate 
them (Lemaitre-Basset et al., 2021; Maraun et al., 2017; Tramblay and Somot, 2018). Uncertainties related to hydrological models are 
often addressed by using several models that have different structures (Chauveau et al., 2013; Zhou et al., 2021). However, it is now 
well established that, under non-stationary conditions, additional uncertainties arise from parameter instability caused by changes in 
climatic conditions of calibrating periods (Coron et al., 2012), unrepresented physical characteristics of catchments, and prevailing 
processes (Brigode et al., 2013; Lee et al., 2021). Those uncertainties must be taken into account when assessing the impacts of climate 
change on water resources, in order to develop more appropriate management strategies. However, considering multiple climate and 
hydrological models, bias-correction methods, and climate scenarios creates a huge number of flow projections. Analysing these 
abundant projection results thus remains a challenge, and even more so when using such prospective results in management (Carroget 
et al., 2017). Consequently, the development of a smart analysis framework is needed to provide scientific information by exploring the 
complexity of many projections. This study aims to propose such a framework for assessing the impacts of climate change on water 
resources projections in the Bas-Loukkos catchment, a Mediterranean catchment in northern Morocco. 

The aim of this study was to develop and evaluate a framework to assess climate change impact on water-resource availability. The 
first objective was to quantify future changes in precipitation and evapotranspiration and their uncertainties. The second objective was 

Fig. 1. (a) The Bas-Loukkos catchment studied (outlined in red) and the digital elevation model of topography. The catchment is located west of the 
Rif Mountains. RCM model grids are indicated with the grey cells. (b) The common EURO-CORDEX analysis domain (Jacob et al., 2014) indicating 
the location of Bas-Loukkos catchment (red point). 
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to simulate discharge at the catchment scale using climate data from 13 models’ outputs and two RCP scenarios according to two 
parametrizations of the hydrological lumped model. The third objective was to analyse the set of simulated discharge as a function of 
different agricultural and demographic growth scenarios using the Budyko hypothesis (Budyko, 1974). We thus developed a frame-
work combining data from 13 climate models and two scenarios as input for a lumped hydrological model with two sets of parameters 
according to two water-withdrawal scenarios. 

2. Material and methods 

2.1. Study area 

The Bas-Loukkos catchment (3750 km2) is located in north-western Morocco. The eastern part of the catchment is mountainous, 
with a maximum elevation of 1683 m a.s.l., while the western part is the flat plain of the Bas-Loukkos valley. Loukkos is the main 
perennial river, running 180 km from the Rif Mountains to the Atlantic Ocean (Fig. 1). Luvisols (39% of the total area) and Vertisols 
(49% of the total area) dominate the Bas-Loukkos. The climate is sub-humid Mediterranean, with a hot and dry season from May to 
September and a cool and wet season from October to April, with more than 70% of precipitation occurring during this season. Mean 
annual precipitation ranges from 616 mm.yr-1 in the plain (west) to 1014 mm.yr-1 in the Rif Mountains (east). Agriculture is the main 
economic activity, covering 57% of the area. The agricultural council ORMVAL (Office Régional de Mise en Valeur Agricole du Loukkos) is 
in charge of the development of agriculture in the region. The water agency ABHL (Agence du Bassin Hydraulique du Loukkos) is in 
charge of water distribution and management (dams and irrigated areas). See Hrour et al. (2022) for more detailed description of 
morphological and climatic characteristics of the catchment. 

2.2. Observed hydrometeorological data 

Precipitation was collected from 10 precipitation stations, while discharge was calculated from three gauging stations which define 
three sub-catchments: SC3, SC4, and SC5.1 (Fig. 1). Monthly time series data were provided by ABHL and ORMVAL. See Hrour et al. 
(2022) for more information on the dataset. Potential evapotranspiration (PET) was calculated using the Thornthwaite method 
(Thornthwaite, 1948) based on temperature data measured at one station (Fig. 1) from 1981 to 2008. As the Bas-Loukkos catchment is 
not gauged at its outlet, its total discharge was estimated by summing discharge measured at the outlet of the three upstream 
sub-catchments and the discharge produced in the ungauged downstream section surrounded by the plain. This latter discharge was 
estimated using transposition (i.e. the drainage area ratio method) (Archfield and Vogel, 2010) (Appendix 1 in the Supplementary 
material). The discharge (mm) was calculated by dividing the discharge measured at each gauging station by the upstream 
sub-catchment area. 

2.3. Future climate projections: climate simulations from EURO-CORDEX 

GCMs are used to simulate the global climate system in response to increasing GHG concentrations (Allen et al., 2018; IPCC, 2013) 
at a coarse resolution (100–500 km) (D’Oria et al., 2017). Impact studies and adaptation strategies, usually developed at the local 
scale, require much higher resolutions and the use of RCMs. In this study, climate models from the EURO-CORDEX domain (Fig. 1) 
(http://www.euro-cordex.net) were used, with a spatial resolution of 0.11◦ (ca. 12 km). This resolution is more appropriate for 
simulating precipitation of the Euro-Mediterranean region (Fantini et al., 2018; Tramblay et al., 2013). Several studies (i.g. Philipp 
et al., 2016, 2010; Tramblay et al., 2012) recommend using many models to consider uncertainties arising from the GCMs and the 
RCMs. To do so, four GCMs (CNRM-CM5, ICHEC-EC-EARTH, MOHC-HadGEM2-ES and MPI-ESM-LR) and five RCMs (CCLM4–8–17, 
HIRHAM5, RACMO22E, RCA4, REMO2015) were selected. Due to the unavailability of all RCP scenarios, only 13 RCM/GCM com-
binations (CM01-CM13 in the present study) were used (Table 1). Precipitation and temperature were extracted at a daily time step 
and then aggregated to a monthly time step. PET was calculated using the Thornthwaite method based on simulated temperature from 
2006 to 2099. 

Two RCP scenarios from EURO-CORDEX were used (Taylor et al., 2012): RCP4.5 and RCP8.5. The RCP4.5 is the scenario of 
low-level stabilization, in which radiative forcing is limited to ca. 4.5 W.m-2 at the end of the 21st century (IPCC, 2013). The RCP8.5 
(business as usual) is the scenario with higher GHG emissions that leads to radiative forcing greater than 8.5 Wm-2 (IPCC, 2013). 

Table 1 
The 13 combinations of regional climate models and global climate models used.  

Global climate model Regional climate models 

CCLM4-8–17 HIRHAM5 RACMO22E RCA4 REMO2015 

CNRM-CM5 CM01 - CM02 CM03 - 
ICHEC-EC-EARTH CM04 CM05 CM06 CM07 - 
MOHC-HadGEM2-ES CM08 CM09 CM10 CM11 CM12 
MPI-M-MPI-ESM-LR CM13 - - - -  
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2.4. Bias correction 

Climate model outputs are generally biased (Teutschbein and Seibert, 2012, 2010) due to systematic errors associated with the 
conceptualization of the models, their spatial discretization, and the averaging of their climate parameters across grid cells. Hence, 
many authors strongly recommend correcting the biases of GCM and RCM outputs before using them in a hydrological model (Maraun 
et al., 2017; Smitha et al., 2018; Teutschbein and Seibert, 2012; Willkofer et al., 2018). However, bias-correction methods are based on 
the strong assumption that the bias in climate model outputs does not change over time (Maraun, 2012). It is impossible to verify this 
for future climates or regions with arid to semi-arid climates, where precipitation is low and concentrated. In addition, in a climate 
such as Morocco’s, weather fluctuations strongly influence the bias of climate models (Driouech et al., 2010; Tramblay et al., 2013). In 
addition, bias corrections can introduce artificial trends in climate model outputs, especially for extreme events and precipitation 
(Maraun, 2013; Themeßl et al., 2012). Therefore, some authors used raw climate model outputs directly in hydrological models 
(Prudhomme et al., 2010). In the present study, both climate model outputs (with and without bias correction) were used. 

Among the several bias-correction methods described in the literature, three methods were tested: linear scaling, gamma quantile 
mapping, and empirical quantile mapping (EQM) (Cannon et al., 2015; Ivanov and Kotlarski, 2017; Li et al., 2010). When we applied 
the methods to our model outputs, all three yielded identical results for precipitation, but EQM was clearly the best for temperature; 
thus, only results from EQM were used (Appendix 2). 

The distribution of output simulated by climate models is corrected to match the distribution of observed data (Teutschbein and 
Seibert, 2012). Means, standard deviations, quantiles, frequencies, and intensities are bias-corrected in a non-linear manner, while 
extremes remain preserved (Themeßl et al., 2012). For precipitation and temperature, bias correction was performed for the three 
sub-catchments and each climate model at a monthly time step. The common period for observed and simulated data for precipitation 
and temperature was 1981–2005, which was considered as the reference period. 

2.5. GR2M Hydrological modelling 

The monthly lumped hydrological model GR2M was used to simulate discharge (Mouelhi et al., 2006). GR2M has two free pa-
rameters: X1 (mm), which represents the maximum storage capacity of the soil reservoir (S), and X2 (dimensionless), which represents 
a coefficient of exchange between surface water and groundwater (see Mouelhi et al., 2006 for more details). Monthly input variables 
included precipitation (P) and PET. The GR2M model was calibrated and validated for the three gauged sub-catchments SC3, SC4 and 
SC5.1 (Fig. 1) from 1981 to 2008. The selected calibration-validation period (1981–2008) was split into two non-overlapping periods 
of equal length. The model was calibrated for period P1 (1981–1994) and P2 (1995–2008) separately, which produced two parameter 
sets (Parm.01 and Parm.02, respectively). The performance of the model calibrated for each period was then assessed by running the 
model over the other period. For each calibration period, a 12-month warm-up period was used to initialize internal variables. GR2M 
was run using the airGR package (Coron et al., 2017) of R software (R Core Team, 2021). Based on the standardized precipitation index 
(Hrour et al., 2022), period P1 was considered very dry, while period P2 had average precipitation conditions with more frequent 
extreme events. To evaluate the performance of GR2M, the first step was to assess the agreement between simulated and observed high 
flows using the Nash-Sutcliffe efficiency criterion (NSE) (Nash and Sutcliffe, 1970) (Eq. 5, Appendix 3). High flows were calculated 
from October to April for each year, as low-flow records contain many null values considered erroneous, as the Loukkos River is 
perennial. The second step assessed the agreement between simulated and observed discharge (for the entire time series). To do so, 

Fig. 2. Mean water withdrawals by projection period for the two water-withdrawal scenarios studied.  
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cumulative error (CE, in %) of simulated and observed discharge was calculated for the entire time series (Eq. 6 in Appendix 3). In 
addition to the NSE, three other criteria were used to evaluate model performance from 1981 to 2008: the Kling-Gupta Efficiency score 
(KGE) (Gupta et al., 2009), which combines correlation, variability and bias error (Eq. 7, Appendix 3); root mean square error (RMSE) 
(Eq. 8, Appendix 3); and percent bias (Pbias) (Eq. 9, Appendix 3). 

2.6. Statistical analyses 

Descriptive statistics (mean, median, standard deviation, inter-quantiles) were used to summarize uncertainties in climate and 
hydrological projections (Verfaillie et al., 2018), which were analysed over three periods defined in the IPCC’s Sixth Assessment Report 
(Pörtner et al., 2022): near term [2020–2040], mid-term [2041–2060], and long term [2081–2100]. The modified Mann-Kendall trend 
detection test (M-K test), which considers auto-correlations in time series (Hamed, Ramachandra Rao, 1998; Kendall, 1975; Mann, 
1945), and Sen’s slope estimator (Sen, 1968) were applied to the annual continuous time series of climate and hydrological model 
output from 2006 to 2099 to assess potential temporal trends. The trends were considered statistically significant at p ≤ 0.05. The M-K 
test and Sen’s slope estimator were applied using the function mk.test of the TREND package (Libiseller and Grimvall, 2002) of R 
software. 

2.7. Future water resource availability 

2.7.1. Water demand: two water-withdrawal scenarios 
Two water-withdrawal scenarios that summarized changes in water demand were developed based on assumptions about the 

climate, agricultural development, and population growth (Fig. 2). Due to a lack of data, water withdrawals for industry, currently low 

Fig. 3. Annual time series of multi-model median (solid lines) and 90th percentile interval (shaded area) of precipitation in the Bas-Loukkos 
catchment projected under RCP4.5 or RCP8.5 (a) without or (a’) with bias correction. Black dashed line: mean observed precipitation from 
1981 to 2005. Box-plots of multi-model annual precipitation projected in the near term (2021–2040), mid-term (2041–2060), and long term 
(2081–2100) under RCP4.5 or RCP 8.5 (b) without or (b’) with bias correction compared to the reference period (1981–2005). Whiskers represent 
the 90th percentile. 

Y. Hrour et al.                                                                                                                                                                                                          



Journal of Hydrology: Regional Studies 48 (2023) 101465

6

in the study catchment, were not considered. In the Bas-Loukkos catchment over the reference period (1981–2005), ABHL and 
ORMVAL estimated water demands equal to 150 Mm3.yr-1 for agriculture (averaged over 1985–2005) and 5 Mm3.yr-1 for domestic 
water supply, based on estimates available from 2002 to 2005. In 2020 these demands were estimated at ca. 247 Mm3.yr-1 for agri-
culture and 27 Mm3.yr-1 for domestic water supply. 

Scenario S1 was built from these data and assumed that agriculture and domestic water supply demands would remain constant. 
This scenario assessed the catchment’s ability to support the current water demand in the future, constrained only by climate change. 
In scenario S2, current demographic trends in the distribution of water use by category in urban and rural areas were extrapolated. 
Water demand for agriculture was assumed to increase from 247 Mm3 in 2020 to 397 Mm3 in 2030 (ORMVAL and ABHL), and to 
remain constant from 2030 to 2099. The demand for domestic water supply was assumed to increase linearly from 27 Mm3 in 2020 to 
51 Mm3 in 2099. 

2.7.2. Budyko hypothesis 
The Budyko hypothesis (Budyko, 1974) is a dimensionless graphical representation that describes the annual hydrological cycle 

based on the relationship between the mean evaporative index (ratio of actual evapotranspiration (AET) to P) and aridity index (ratio 
of PET to P) in the long term (≥ 10 years). Over the past two decades, the Budyko hypothesis has been widely used in hydrology 
research (Andréassian et al., 2016; Krajewski et al., 2021; Porporato, 2022) to characterize catchments’ water balance and delineate 
their water and energy limits in order to quantify impacts of climate change and human activities on water availability (Gbohoui et al., 
2021). See Appendix 4 for more detailed description. 

In the current study, the Budyko hypothesis was used to assess future water availability and characterize the water potential of the 
Bas-Loukkos catchment under climate change. Mean annual AET was calculated assuming that water storage in the catchment would 
not change (ΔS = 0) in the long term; thus, AET = P-Q, where Q is the annual discharge at the catchment’s outlet. We calculated Q 
using mean projected discharges in the near, mid- and long term for the RCP4.5 and RCP8.5 scenarios and subtracting the amount of 
water demanded for agriculture and domestic water uses according to the two water-withdrawal scenarios (S1 and S2). 

3. Results 

3.1. Projected inputs 

3.1.1. Projected changes in precipitation 
The projected annual precipitation time series showed a decreasing trend from 2006 to 2099 under RCP4.5 and RCP8.5 (Fig. 3). 

However, the trend significance and Sen’s slope value depended on the RCPs and climate models (Table 2). The M-K test (Table 2) 
revealed a significant (p < 0.05) decreasing trend in annual precipitation for 8 (RCP4.5) or 13 (RCP8.5) of the 13 climate models (with 
or without bias correction). The non-significant trend for the remaining five models under RCP4.5 was decreasing for four models 
(CM01, CM02, CM03, and CM13) and increasing for one model (CM05) (with a Sen’s slope of +0.55 mm.yr-1 (+0.57 mm.yr-1 without 
bias correction)). Sen’s slopes ranged from − 3.13 to − 1.98 mm.yr-1 (− 4.24 to − 1.84 mm.yr-1 without bias correction) under RCP4.5 
and from − 4.32 to − 1.73 mm.yr-1 (− 6.14 to − 1.64 mm.yr-1 without bias correction) under RCP 8.5. 

Temporal changes in annual precipitation varied in the near, mid-, and long term (Table 3 and Fig. 3). Compared to the reference 
period (1981–2005), under RCP4.5, the mean annual precipitation of all models in the near, mid-, and long term decreased by 4%, 
14%, and 21%, respectively. Without bias correction, the variation was ca. +11%, -0.5%, and +8%, respectively. With RCP8.5 it 
caused larger decreases: 9%, 21%, and 38%, respectively. Without bias correction, the variation was ca. +5%, -8%, and -27%, 
respectively in the near, mid-, and long term. The uncertainty in these changes was ca. 30% with bias correction and ca. 40% without 
bias correction (Table 3). 

Table 2 
Sen’s slopes (mm.yr-1) of projected annual precipitation trends in the Bas-Loukkos catchment for each climate model from 2006 to 2099. Bold values 
are statistically significant (Mann-Kendall trend detection test p ≤ 0.05).  

Model Without bias correction With bias correction 

RCP4.5 RCP8.5 RCP4.5 RCP8.5 

CM01  -0.53  -3.00  -0.47  -3.24 
CM02  -0.42  -4.00  -0.54  -3.39 
CM03  -0.97  -4.21  -0.76  -3.16 
CM04  -1.93  -1.64  -2.46  -2.01 
CM05  0.57  -2.01  0.55  -1.98 
CM06  -1.84  -2.06  -1.98  -1.97 
CM07  -2.29  -1.82  -2.12  -1.73 
CM08  -2.08  -3.15  -2.28  -3.45 
CM09  -3.17  -3.93  -3.01  -3.86 
CM10  -3.24  -4.26  -2.77  -3.82 
CM11  -3.2  -4.34  -3.03  -4.32 
CM12  -4.24  -6.14  -3.13  -4.32 
CM13  -1.75  -3.49  -1.14  -2.33  
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3.1.2. Projected changes in evapotranspiration 
The M-K test revealed significant increases in annual PET from 2006 to 2099 for all climate models and both RCPs (Table S1, 

Fig. S1). Under RCP4.5, Sen’s slope ranged from + 1.21 to + 2.70 mm.yr-1 (+1.38 to +4.01 mm.yr-1 without bias correction). Under 
RCP8.5, Sen’s slope ranged from + 3.27 to + 5.3 mm.yr-1 (+3.65 to +8.34 mm.yr-1 without bias correction). Temporal changes in 
annual PET varied (Table 3): under RCP4.5, the mean annual PET of all models in the near, mid-, and long term increased by 9%, 16%, 
and 21%, respectively (7%, 15%, and 21%, without bias correction). Under RCP8.5, the mean annual PET increased by 3% 12%, and 
33%, respectively (0%, 11%, and 39%, without bias correction). The uncertainty in this change was ca. 10% with bias correction (20% 
without bias correction) (Table 3). 

3.2. Projected discharges 

3.2.1. Performance assessment of the GR2M model 
Monthly discharges simulated by GR2M varied (Fig. 4). The resulting model parameters and performance criteria for calibration 

and validation periods also varied (Table 4). In general, calibration was satisfactory accoding to the KGE, RMSE and Pbias performance 
criteria. The NSE exceeded 80% for sub-catchments SC3 and SC5.1 for both calibration and validation periods. For sub-catchment SC4, 
the NSE was ca. 72% for validation period P2 (Table 4). Model parameters varied little between the two periods (X1 by 9% and X2 by 
12%), except for sub-catchment SC5.1, for which X1 (i.e. maximum storage capacity of the soil reservoir), increased by 80 mm (i.e. 
37%). For calibration periods, the CE ranged from 97.2% to 101.2%, indicating that GR2M simulated discharge correctly. For vali-
dation periods, the CE for sub-catchment SC3 equalled 85% and 121% for period P1 and P2, respectively (Table 4), showing that the 
model calibrated for P1 or P2 underestimated or overestimated, respectively, the discharge over P2 or P1 by ca. 21% or 15%, 
respectively. For sub-catchment SC4, the CE equalled 70% and 105% for P1 and P2, respectively, showing that calibration for P1 
greatly underestimated discharge over P2 (Table 4). For sub-catchment SC5.1, simulated discharge over the validation periods 
remained close to observations, with a CE of 96% and 95% (Table 4) for P1 and P2, respectively. In general, performance criteria of the 
two calibration periods differed slightly. The hydrographs showed good agreement between simulated and observed discharges for the 
three sub-catchments (Fig. 4). In general, GR2M failed to simulate some high-peak events, such as the those observed in all three sub- 
catchments around December/January in 1984, 1990, 1991, 1996, and 1997 and in sub-catchments SC4 and SC5.1 around March/ 
April in 2003 and 2004. 

3.2.2. Projected changes in discharge 
Projected annual discharges (Fig. 5) and trends in projected discharge varied (Table 5). Like for precipitation, trends were 

significantly decreasing for most climate models and RCPs regardless of the parameter set. Like for precipitation as well, all trends were 
significant under RCP8.5, while under RCP4.5, four models (CM01, CM02, CM03, and CM13) showed a non-significant decreasing 
trend for both parameter sets (with and without bias correction), and one model (CM05) showed a non-significant increasing trend. 
Sen’s slopes of all significant trends ranged from − 1.64 to − 0.96 mm.yr-1 (− 3.06 to − 0.98 mm.yr-1 without bias correction) under 
RCP4.5 and from − 2.12 to − 0.80 mm.yr-1 (− 4.32 to − 1.14 mm.yr-1 without bias correction) under RCP8.5. 

In general, projected discharges decreased throughout the period of projection (Fig. 5). Compared to the reference period, the mean 
annual discharge from the 13 climate models under RCP4.5 in the near, mid-, and long term, decreased by 27%, 41%, and 50% 
respectively. Under RCP8.5, this decrease was larger: 35%, 51%, and 71%, respectively in the near, mid-, and long term. Without bias 
correction, the variation was ca. +21%, +1%, and -13% under RCP4.5 and ca. +11%, -13%, and -46% under RCP8.5, respectively in 
the near, mid-, and long term. The uncertainty in this change was similar for the two RCPs: ca. 40% with bias correction (ca. 70% 
without bias correction) (Table 3). Thus, discharges simulated from data with or without bias correction, while lower or higher than 
those observed during the reference period, respectively, were projected to decrease greatly in the mid- and long term. 

Table 3 
Absolute (mm) and relative (%) changes and their uncertainty intervals (standard deviation) in mean annual precipitation (P), evapotranspiration 
(PET), and discharge (Q) in the near term (2021–2040), mid-term (2041–2060), and long term (2081–2100) compared to those of the reference 
period (1981–2005).   

Period Without bias correction With bias correction 

RCP4.5 RCP8.5 RCP4.5 RCP8.5 

(mm) (%) (mm) (%) (mm) (%) (mm) (%) 

P Near term + 69 ± 282 + 11 ± 44 + 30 ± 256 + 5 ± 39 -23 ± 212 -4 ± 33 -60 ± 192 -9 ± 29 
Mid-term -3 ± 263 -0.5 ± 41 -54 ± 257 -8 ± 40 -90 ± 203 -14 ± 31 -134 ± 193 -21 ± 30 
Long term -51 ± 268 -8 ± 42 -170 ± 229 -27 ± 35 -131 ± 207 -21 ± 32 -240 ± 172 -38 ± 27 

PET Near term + 59 ± 116 + 7 ± 13 + 2 ± 118 + 0 ± 13 + 85 ± 61 + 9 ± 7 + 32 ± 72 + 3 ± 8 
Mid-term + 132 ± 129 + 15 ± 14 + 95 ± 128 + 11 ± 14 + 141 ± 63 + 16 ± 7 + 111 ± 68 + 12 ± 8 
Long term + 185 ± 145 + 21 ± 16 + 347 ± 194 + 39 ± 22 + 184 ± 71 + 21 ± 8 + 293 ± 87 + 33 ± 10 

Q Near term + 52 ± 193 + 21 ± 78 + 28 ± 172 + 11 ± 70 -67 ± 115 -27 ± 47 -87 ± 96 -35 ± 39 
Mid-term + 3 ± 177 + 1 ± 71 -32 ± 172 -13 ± 70 -102 ± 102 -41 ± 42 -125 ± 100 -51 ± 41 
Long term -32 ± 170 -13 ± 69 -113 ± 134 -46 ± 55 -123 ± 98 -50 ± 40 -176 ± 70 -71 ± 30  

Y. Hrour et al.                                                                                                                                                                                                          



Journal of Hydrology: Regional Studies 48 (2023) 101465

8

Fig. 4. Monthly precipitation, observed discharge, and discharge simulated using parameter sets Parm.01 and Parm.02 (mm month-1) for the three 
sub-catchments SC3, SC4, and SC5.1 over the simulation period (1981–2008). 

Table 4 
Parameters X1 (mm) and X2 (dimensionless) and performance criteria of the GR2M model calibrated for period P1 (1981-1994) or P2 (1995–2008) 
after calibration (i.e. run for the same period; Cal.) or validation (i.e. run for the other period; Val.), for each sub-catchment simulated.  

Sub-catchment Calibration period X1 X2 NSE RMSE KGE CE (%) Pbias (%) 

Cal. Val. Cal. Val. Cal. Val. Cal. Val. Cal. Val. 

SC3 P1  224.43  0.87  0.80  0.85  16.13  25.41  0.72  0.69  97.29  85.36  -2.71  -14.64 
P2  214.4  1.00  0.91  0.81  24.76  20.36  0.88  0.74  101.20  121.24  1.20  21.24 

SC4 P1  250.13  0.65  0.84  0.72  7.99  24.91  0.77  0.52  100.40  70.35  0.40  -29.65 
P2  280.41  0.71  0.9  0.85  15.08  10.00  0.91  0.8  98.53  104.90  -1.47  4.90 

SC5.1 P1  218.29  0.88  0.89  0.91  14.11  20.80  0.78  0.79  98.88  96.41  -1.12  -3.59 
P2  291.98  0.96  0.94  0.88  21.1  18.62  0.85  0.77  100.44  94.73  0.44  -5.27  
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Fig. 5. Annual time series of multi-model median (solid curves) and 90th percentile interval (shaded area) of GR2M simulated discharge in the Bas- 
Loukkos catchment (a) and (a’). Black dashed line: observed annual discharge averaged over 1981–2005. Box-plots of multi-model simulated annual 
discharge, in the near term (2021–2040), mid-term (2041–2060) and long term (2081–2100), compared to the reference period (1981–2005) (b) 
and (b’). Whiskers represent the 90th percentile. 

Table 5 
Sen’s slopes (mm.yr-1) of trends in projected annual discharges in the Bas-Loukkos catchment for each climate model from 2006 to 2099. Bold values 
are statistically significant (M-K test p ≤ 0.05). Parm.01 and Parm.02 indicate discharges simulated with the GR2M model calibrated for period P1 or 
P2, respectively.  

Model Without bias correction With bias correction 

RCP4.5 RCP8.5 RCP4.5 RCP8.5 

Parm.01 Parm.02 Parm.01 Parm.02 Parm.01 Parm.02 Parm.01 Parm.02 

CM01  -0.55  -0.66  -2.02  -2.32  -0.52  -0.60  -1.71  -1.96 
CM02  -0.74  -0.89  -3.32  -3.78  -0.53  -0.60  -1.88  -2.12 
CM03  -1.10  -1.23  -3.34  -3.76  -0.62  -0.65  -1.54  -1.76 
CM04  -0.88  -1.00  -0.88  -0.99  -1.10  -1.29  -1.14  -1.29 
CM05  0.20  0.23  -1.43  -1.63  0.09  0.12  -0.91  -1.03 
CM06  -1.32  -1.56  -1.42  -1.63  -1.03  -1.19  -0.86  -0.99 
CM07  -1.42  -1.64  -1.31  -1.45  -0.96  -1.10  -0.80  -0.90 
CM08  -0.98  -1.13  -1.14  -1.30  -1.02  -1.15  -1.32  -1.51 
CM09  -1.64  -1.84  -1.97  -2.18  -1.10  -1.27  -1.22  -1.40 
CM10  -2.00  -2.26  -2.63  -2.90  -1.13  -1.30  -1.34  -1.53 
CM11  -1.82  -2.06  -2.44  -2.76  -1.11  -1.31  -1.39  -1.59 
CM12  -2.72  -3.06  -3.84  -4.32  -1.46  -1.64  -1.87  -2.07 
CM13  -1.04  -1.17  -2.08  -2.36  -0.35  -0.42  -0.86  -0.96  
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3.3. Effects of uncertainty sources 

Effects of the sources of uncertainty considered in this study varied (Fig. 6). For precipitation, PET, and discharge without bias 
correction (Fig. S2). 

3.3.1. Bias corrections 
The precipitation and temperature with bias correction best matched the observed data over the reference period. The range of 

Pbias in precipitation, which was (− 24%)–(46.1%) without bias correction ((− 17%) - (− 1.3%) for temperature), was reduced to 
(− 7.5%)–(4.6%) ((0.1%)–(0.2%) for temperature) by bias correction. Bias correction also significantly decreased intra- and inter- 
model variability (Fig. 5 and S2). For example, precipitation had lower variability and narrower box-plots with bias correction 
than without. In the long term, mean precipitation with bias correction decreased more than that without bias correction, by 13% 
(80 mm) for RCP4.5 and 11% (70 mm) for RCP8.5. Like for precipitation, bias correction considerably decreased the variability in 
simulated discharge. For the reference period (1981–2005), the discharge simulated using data with bias correction was lower than the 
observed discharge. In the long term, discharge simulated using data with bias correction was lower than that simulated using data 
without bias correction, by ca. 37% (91 mm) for RCP4.5 and 25% (63 mm) for RCP8.5. The results of the MK test show that bias 
correction did not suppress the trends observed in the raw data (without bias correction), but it did slightly change the magnitude of 
that trend. In general, after bias correction, the trends represented by the Sen slope become weaker. 

3.3.2. Climate models 
The near-, mid-, and long-term projections indicated that interannual variability decreased over time for precipitation and 

discharge but increased for PET, for all climate models (Fig. 6). In contrast, projections of precipitation, PET, and discharge varied 
significantly among models (Fig. 6). However, all models projected similar trends: a decrease in precipitation and discharge, and an 
increase in PET. The uncertainty related to the GCMs exceeded that of RCMs, and this contrast tended to increase over time, as shown 
in the near-, mid-, and long-term projections. Under RCP4.5, changes in long-term mean precipitation with bias correction varied from 
− 34% to − 25% (− 27% to +25% without bias correction) for GCMs and from − 31% to − 9% (− 24% to +15% without bias 

Fig. 6. Comparison of sources of uncertainty in annual precipitation, potential evapotranspiration and discharge projected using data without bias 
correction over the Bas-Loukkos catchment by climate model. Black dashed line: observed mean annual discharge during the reference period 
[1981–2005]. Whiskers indicate the 90th percentile. 
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correction) for RCMs. Similar results were found under RCP8.5 for PET and discharge. 

3.3.3. GHG scenarios 
RCP4.5 and RCP8.5 yielded clearly different precipitation and PET projections, and the difference between the two RCPs increased 

over time. These differences were also reflected in discharge projections. For precipitation, RCP8.5 yielded a stronger decrease than 
RCP4.5 for all models (by a mean difference of 30 ± 15 mm in the near and mid-term, and ca. 100 ± 16 mm in the long term). For PET, 
this difference was larger, especially in the long term (Fig. 6), for which RCP8.5 projected a PET 140 ± 120 mm higher than that of 
RCP4.5. Similarly, annual discharges simulated using RCP8.5 precipitation and PET data decreased more clearly and strongly than 
those using RCP4.5 (the mean annual difference of 19 ± 7, 23 ± 8, and 52 ± 5 mm in the near, mid-, and long term, respectively). 

3.3.4. GR2M parametrization 
Due to hydrological uncertainty during the two calibration periods, parameter sets Parm.01 and Parm.02 differed little (ca. 10 

± 7%), and the difference remained relatively constant over time. The same relative difference between them had previously been 
observed over the reference period. 

3.4. The Budyko hypothesis as a tool to assess water availability 

For the unchanging water-withdrawal scenario (S1), projections indicated that the water situation in the Bas-Loukkos catchment 
will become more critical. The evaporative index would increase from 0.63 (reference period) to 0.80 ± 0.16 (near term), then to 0.85 
± 0.18 (mid-term), and to 0.90 ± 0.18 (long term) under RCP4.5, or to 0.81 ± 0.17 (near term), then to 0.89 ± 0.20 (mid-term), and 
to 1.10 ± 0.22 (long term) under RCP8.5 (Fig. 7). This result suggests that in the mid-term, even maintaining current water demands, 
the catchment water limit would be reached (evaporative index > 1), with an uncertainty of 15% and 11% under RCP4.5 and RCP8.5, 
respectively. In the long-term, the catchment water limit would likely be reached for RCP8.5 and with an uncertainty of 1% for RCP4.5. 

For trend-based water-withdrawal scenario S2, the Bas-Loukkos catchment would reach its water limit more quickly. The evap-
orative index would increase from 0.63 (reference period) to 0.84 ± 0.18 (near term), then to 0.93 ± 0.21 (mid-term), and to 1.00 
± 0.22 (long term) under RCP4.5, and to 0.91 ± 0.21 (near term), then to 1.00 ± 0.24 (mid-term), and to 1.18 ± 0.29 (long term) 
under RCP8.5 (Fig. 7). Thus, the water limits would be reached in the mid-term and exceeded by 18% in the long term under RCP8.5, 
and would be reached between the mid- and long term under RCP4.5. 

For both water-withdrawal scenarios (S1 and S2), the difference between the aridity index under RCP4.5 and RCP8.5 was larger in 
the long term (1.7 ± 0.85 and 3.6 ± 2.14, respectively), in which the catchment became more arid (Fig. 7). The aridity index increased 
more than the evaporative index based on the RCPs tested, indicating that the largest change was the increase in water demand and 
that the catchment would become more arid. Nevertheless, the coefficient of variation was large in the long term, representing 70% of 
the mean aridity index under RCP8.5 and 55% under RCP4.5. 

4. Discussion 

4.1. Simulated discharge from a large set of climate data 

The results highlight that, due to climate change, availability of water resources will significantly decrease in the future in the Bas- 
Loukkos catchment. By the end of the 21st century (2081–2100), discharge will decrease much more (by ca. 50% (RCP4.5) to 71% 
(RCP8.5)) than precipitation did (by ca. 21% (RCP4.5) to 38% (RCP8.5)) compared to the reference period (1981–2005). This was 

Fig. 7. The Budyko hypothesis for the two water-withdrawal scenarios in the Bas-Loukkos catchment under RCP4.5 or RCP8.5. Horizontal error 
bars represent the standard deviation of the aridity index for all climate models both with and without bias correction. Vertical error bars represent 
the standard deviation of the evaporative index for all climate models and the two GR2M parameterizations both with and without bias correction. 
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likely due to the strong increase in temperature, which will cause evapotranspiration to increase. These results agree with other 
projections for the 21st century in other Moroccan catchments (El Moçayd et al., 2020; Marchane et al., 2017; Tramblay et al., 2013). 
In particular, El Moçayd et al. (2020) predicted that discharge of the Bas-Loukkos and two neighbouring catchments will decrease by a 
mean of 44% under RCP4.5 and 90% under RCP8.5 by the end of the 21st century. Their projected decreases may be higher than ours 
due to the climate or hydrological models chosen and the projected time horizons. Similarly, Marchane et al. (2017) predicted a 
decrease in surface discharge in the Rheraya catchment (High Atlas, Morocco) of 19–63% depending on the RCP scenario and hy-
drological model for the horizon 2049–2065. This range of decrease in discharge is similar to those in our mid-term horizon 
(2041–2060) projection. The discharge decreases projected by these studies, including ours, are relatively high in this region, which is 
consistent with global climate projections that identify the Mediterranean region as highly vulnerable (Cos et al., 2022). Overall, our 
results are in line with previous findings in others regions with arid to semi-arid climates. For instance, various studies have reported a 
decrease in future discharge between 40% and 80% by the end of the 21st century in different regions of Australia (Al-Safi and 
Sarukkalige, 2018; Usman et al., 2021). Despite the uncertainty, future decreases in discharge are expected to be larger than those 
observed during the reference period, which experienced severe and prolonged droughts (Hrour et al., 2022). One perspective for this 
study would be to refine the projections by predicting the seasonality of future discharge (Li et al., 2020). 

4.2. Future water availability 

Future projections provide crucial information for long-term management of water resources and agricultural planning in the 
region. The Budyko hypothesis analyses combined effects of climate change (discharge trend in response to precipitation and tem-
perature changes) and the two water-withdrawal scenarios, thus capturing all uncertainties. Results suggest that the catchment will 
likely reach its water limit, with a mean deficit of 1–18% in the long term, depending on the RCP and water-withdrawal scenarios. In 
the long term, mean total discharge will decrease by ca. 351 Mm3 (RCP4.5) or 584 Mm3 (RCP8.5), while water withdrawal will in-
crease by 119 Mm3 (scenario S1) or 290 Mm3 (scenario S2), compared to those of the reference period, suggesting that the decrease in 
discharge is the main reason for a water deficit in the catchment in both water-withdrawal scenarios tested. This would result in a 
shortage of water supply to local users. This is even more crucial as the 86 × 107 m3.yr-1 expected to be transferred to arid catchments 
by a planned “water highway” was not considered in the water-withdrawal scenarios. El Moçayd et al. (2020) indicated that trans-
ferring water from this catchment to other catchments would be unlikely, as the supply would be too low to satisfy local demand. It is 
therefore necessary to develop optimal strategies and adapt water-use plans to the future water situation in this catchment. For 
example, reducing water consumption by limiting the expansion of irrigated areas, adopting other agronomic practices and/or 
alternative cropping systems (e.g. crops that consume less water, varieties that are more tolerant to water stress and drought). 
Retaining water and storing it in soils or increasing groundwater recharge may also be considered, but they will likely be insufficient. 
Technological solutions to increase the effectiveness of water management should be encouraged, but developing adaptation strategies 
based on understanding the socio-technical functioning of agrosystems and organizations is crucial. In many countries, technology 
does not reduce social inequality but instead increases pressure on groundwater and may even aggravate problems if applied without 
considering the socio-economic context (Fischer et al., 2022). In Pakistan, an experiment involving farmers, policy makers, and sci-
entists highlighted the importance of using a multi-stakeholder approach to design interventions and incentives to increase farmers’ 
adaptation to climate change (Javed et al., 2020). This study demonstrated that when farmers are not sensitized to climate change, 
market-related factors remain the main drivers of agricultural practices. Including climate data in a wide-scale approach to design 
climate services and decision-making in agriculture is one of the main challenges for disseminating adaptation strategies (Born et al., 
2021). 

4.3. Limitations and perspectives 

The perspectives identified to improve the methodological framework developed in this study are related to the bias-correction 
method, the choice of hydrological model, and the water-withdrawal scenarios. As expected, bias correction successfully reduced 
biases in projected precipitation and temperature, as well as inter- and intra-model variability. However, discharges projected using 
data with or without bias correction were lower or higher, respectively, than those observed during the reference period, which 
highlights the utility of using both data sets (with and without bias correction) to capture uncertainty. This uncertainty may be due to 
the inability of climate models to represent the seasonality of precipitation in arid and semi-arid regions well, with bias-correction 
methods correcting only the mean bias well (Meyer et al., 2019; Pierce et al., 2015; Tramblay et al., 2013). Therefore, additional 
correction methods would be needed to improve projections of climate variability, especially in arid and semi-arid regions. 

In this study, only one hydrological model, the conceptual lumped GR2M model, was used, since it requires few input data 
(Lespinas et al., 2014). However, it does not explicitly represent all hydrological processes that could change in response to climate 
change (e.g. land use, vegetation uptake, water withdrawal, runoff-infiltration distribution, groundwater-stream water exchange) 
(Alifujiang et al., 2021; Cristea et al., 2014; Gulahmadov et al., 2021). However, using a unique hydrological model is often the case in 
studies of the impact of climate change on water resources, particularly in contexts of scarce data (El Khalki et al., 2021b; Ouhamdouch 
et al., 2019; Tramblay et al., 2013). Therefore, using several hydrological models and different formalisms would provide a good 
perspective to supplement assessment of hydrological uncertainties, such as by using an approach with more detailed spatial and 
physical representations (Chauveau et al., 2013; Sharafati and Pezeshki, 2020; Szczypta et al., 2015) or consider the structural un-
certainties considering different hydrological conceptual approaches (Pulido-Velazquez et al., 2021). However, these models cannot 
be applied when data are scarce, as for the Bas-Loukkos catchment. The use of satellite data and remote-sensing products can help 
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address a lack of data in such cases (Hulsman et al., 2020; Ogilvie et al., 2016). 
However, climate change has significant impacts, not only on surface water but on many aspects such as groundwater recharge 

(Jyrkama and Sykes, 2007), melting ice (Salim et al., 2021), sea-level rise (Mimura, 2013), etc. Furthermore, falling groundwater 
levels due to overexploitation (Kuper et al., 2017), combined with rising sea levels in coastal areas, are leading to salinization of 
groundwater. This could further limit available resources (Baena-Ruiz et al., 2020). These effects need to be analyzed using other 
models, including management models, for enabling the development of really appropriate adaptation strategies (Llopis-Albert and 
Pulido-Velazquez, 2015; Pulido-Velazquez et al., 2022). 

The water-withdrawal scenarios used in this study are simple and do not consider feedback between water-resource availability and 
water demand. Interactions and feedback between human activities and the water cycle is the subject of current initiatives to develop 
socio-hydrological models (Blair and Buytaert, 2016; Genova and Wei, 2023) to simulate in a dynamic and realistic way the change in 
demand according to future water availability. 

5. Conclusion 

Prospective analyses of future water-resource availability at the catchment scale are subject to many and high uncertainties. We 
were able to quantify these uncertainties using a multi-model approach with 13 climate-model outputs, 2 RCP scenarios, and 2 
parameter sets for the GR2M lumped model. Despite these uncertainties, our results project a significant decrease in discharge in the 
studied catchment by ca. 50–71% by the end of the 21st century, due to a decrease in precipitation and a large increase in evapo-
transpiration. The Budyko hypothesis indicates that the catchment will reach its water limit; thus, local water demand will be difficult 
to satisfy in the future, which highlights the need to develop adaptation strategies. This framework was relevant for summarising the 
projections and their associated uncertainties and then comparing them to potential dynamics of water demand. Thus, such a 
framework could help guide water-management strategies. Future socio-hydrological studies would be useful to consider dynamic 
feedback between the water cycle and human uses. 
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