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Abstract

Background: Yam (Dioscorea alata L.) is the staple food of many populations in the intertropical zone, where it is grown.
The lack of phenotyping methods for tuber quality has hindered the adoption of new genotypes from breeding programs.
Recently, near-infrared spectroscopy (NIRS) has been used as a reliable tool to characterize the chemical composition of the
yam tuber. However, it failed to predict the amylose content, although this trait is strongly involved in the quality of the
product.

Results: This study used NIRS to predict the amylose content from 186 yam flour samples. Two calibration methods were devel-
oped and validated on an independent dataset: partial least squares (PLS) and convolutional neural networks (CNN). To eval-
uate final model performances, the coefficient of determination (R2), the root mean square error (RMSE), and the ratio of
performance to deviation (RPD) were calculated using predictions on an independent validation dataset. The tested models
showed contrasting performances (i.e., R2 of 0.72 and 0.89, RMSE of 1.33 and 0.81, RPD of 2.13 and 3.49 respectively, for the
PLS and the CNN model).

Conclusion: According to the quality standard for NIRS model prediction used in food science, the PLS method proved unsuc-
cessful (RPD < 3 and R2 < 0.8) for predicting amylose content from yam flour but the CNNmodel proved to be reliable and effi-
cient method. With the application of deep learning methods, this study established the proof of concept that amylose content, a
key driver of yam textural quality and acceptance, can be predicted accurately using NIRS as a high throughput phenotyping
method.
© 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of
Chemical Industry.
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INTRODUCTION
Yam (Dioscorea spp.) is the staple food of many populations in the
intertropical zone where it is grown. With an annual production of
72 million tons in 2019, it is the second most cultivated root and
tuber crop in Africa, after cassava.1 Yam is a starchy plant, which
contains 20–40% dry matter,2 of which about 80% is starch.3,4 It
also provides other nutritional benefits such as proteins, lipids,
vitamins, and minerals.5

Yam contributes to the food security of more than 60 million
people,6,7 in west Africa,1 where it is preferably consumed
pounded, boiled, as a thick paste prepared from dried yam flour
(amala), or fried.8-11 Each type of yam food product requires
specific quality attributes but texture attributes are important
for any products. For boiled yam, friability is the most important
criteria,12 while for pounded yam, it must be stretchable, mold-
able, smooth, and friable for the fingers and mouth,8-11,13,14 and
for amala, it should be elastic, soft, and non-sticky.15 Several
studies have shown a link between starch structure and compo-
sition and the texture of the product. For amala, stickiness was
associated with soluble amylose, starch gelatinization tempera-
ture and enthalpy changes.16 For pounded yam, its firmness
could be explained by the dry matter, soluble starch, and amy-
lose content.17

However, although we are beginning to have a clear idea of the
traits involved in yam product quality,12,14,15 their measurement is
often tedious and costly.18 It is critical for breeding programs to
integrate quality traits into their selection scheme, so there is an
urgent need to develop high-throughput phenotyping methods.
Recently, near-infrared spectroscopy (NIRS) has been used as a
reliable tool to characterize the chemical composition of roots
and tubers.19 It has been used to calibrate the content of starch,
sugar, protein, cellulose, ash and minerals in their flour.19-22 How-
ever, these studies could not establish a successful predictive
model for amylose content in root and tuber plants.23 Only
Masithoh et al. (2020)24 established a multi-product model to pre-
dict amylose content in canna, cassava, sweet potato, taro, and
arrowroot, but not for yam.
The difficulty in predicting amylose content in starchy plants

may arise because the vibrational spectrum of saccharides is sig-
nificantly less specific than that of other biomolecules and their
identification is therefore more complex.25 The reference method
used in NIRS chemometrics (the science of extracting information
from chemical systems by data-driven means) is called the partial
least squares (PLS) regression. This method relies on dimension
reduction and focuses on a linear relation between spectral data
and the variable of interest (e.g., amylose), which implies the loss
of part of the information carried by the spectrum. Moreover, this
linear method fails to model non-linear relationships. Recently,
the convolutional neural network (CNN) has been introduced as
a new method for spectral calibration.26 A CNN is a type of
deep-learning algorithm that has been used widely for image
classification tasks but can also be applied to signal-processing
problems.27 The architecture of a CNN consists of multiple layers
of artificial neurons that perform convolution operations on the
input signal to extract and learn relevant features. The final layer
of a CNN typically makes a prediction based on the learned fea-
tures. Originally designed for image classification, CNNs have also
been successful in various signal-processing tasks such as speech
recognition, time series analysis, audio classification, and NIRS
model calibration.28 Convolutional neural networks allow all
dimensions (i.e., wavelength absorbance) to be retained; it has

been demonstrated to be robust to noise, and it exhibits a perfor-
mance gain in comparison with PLS.26,28-30 Thus, this study aims
to develop a NIRS model to predict yam amylose content by com-
paring respective PLS and CNN performance.

MATERIALS AND METHODS
Plant material and sample preparation
The diversity panel used in this study consisted of 186 yam flour
samples from 21 different Dioscorea alata genotypes grown in
Guadeloupe, France, in the 2016–2017 cropping season. After
harvest, 2–5 tubers from each genotype were peeled, washed,
and coarsely diced into 2 cm pieces. The fresh material was
placed in an oven maintained at 60 °C for 5 days before being
used to prepare the flours. The dry material was ground to
0.25 mm using an SM100 knife grinder (Retsch GmbH, Haan,
Germany). A total of 93 tubers of 21 genotypes were harvested.
The determination of amylose content by chemical analysis
was carried out on three subsamples of flour from each yam
tuber. The mean value was then taken as the amylose content
per tuber. The NIRS measurement (collection of raw spectra)
was carried out on two independent subsamples of flour per
tuber in order to be representative of its heterogeneity, giving
186 (93 × 2) near infrared spectra.

Chemical analysis
The amylose content was determined by the ISO 6647 reference
method adapted by Mestres et al. (1997)31 without defatting the
flour. A test portion of the flour was dispersed in a sodium hydrox-
ide solution to an aliquot portion, to which an iodine solution was
added. The absorbance of amylose and amylopectin from the col-
ored complex formed was then determined using a UV–visible
spectrophotometer (Cary 100, Agilent Technologies, Santa Clara,
CA, USA) at 620 nm and 545 nm respectively. The mass fraction
of amylose in the sample was then read from a calibration graph,
prepared using a simple solution of potato amylose and amylo-
pectin to account for the effect of amylopectin on the color of
the amylose-iodine complex in the test solution.
The standard error of the laboratory (SEL) was defined as the

standard error of variance between duplicates analyzed by
the reference method:

SEL=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n
∑
i
x1−x2ð Þ2

s

ð1Þ

where x1 − x2 is the difference between duplicate measure-
ments by the reference method on sample i.

Near infrared spectroscopy measurement
The NIR spectroscopy measures were carried out in the food pro-
cessing laboratory of INRAE's Tropical Animal Research Unit,
UR143, in Guadeloupe. Two replicates of yam flour samples were
scanned with a FOSS-NIRSystems model 6500 scanning mono-
chromator (FOSS-NIRSystems, Silver Spring, MD, USA) equipped
with an auto cup. The spectroscopic procedures and data record-
ing were conducted with ISIscan (TM) software (FOSS, Hillerød,
Denmark). Each flour was placed in a small ring cup 36 mm in
diameter and 9.7 mm in height, and reflectance spectra from
400 to 2500 nm were recorded at 2 nm intervals. Each spectrum
represented the average of 32 scans.
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Statistical analysis
Before modeling, the yam tuber flour samples were separated
into a calibration set (75%, i.e., 140 samples) and a validation set
(25%, i.e., 46 samples) using the Kennard–Stone algorithm.32

The calibration set was used to train themodels and the validation
set to evaluate their accuracy and robustness. Prior to calibration,
the raw spectra (output of the NIRS instruments) underwent some
preprocessing, which involved mathematical transformations
aiming to reduce noise associated with the spectrometer
(e.g., model, age), environmental conditions (e.g., temperature),
and sample preparation (e.g., particle size, humidity). Preproces-
sing of near-infrared (NIR) spectra is an essential part of improving
the prediction performance or interpretation of multivariate cali-
brations. The main preprocessing methods,33 were then applied
to the raw spectra: the standard deviation for Gaussian kernel of
orders 1–4 (Gaussian), the Savitzky–Golay transformation of
orders 1–4 (SavGol), the multiplicative scatter correction (MSC),
the standard normal variate (SNV), and the discrete forward and
inverse wavelet transform of orders 1 and 2 (Haar). These transfor-
mations and their pairwise combinations allowed the generation
of 157 different data sets.
For PLS, cross-validation was first used on the calibration set to

identify the best combination of preprocessing and the optimal
number of components that minimize the root mean square error
(RMSE). The best model architecture was then calibrated again on
the whole calibration set. This procedure was implemented using
Python language (v3.8.5, https://www.python.org) with the scikit-
learn 0.23.2 library.34

The CNN model was implemented using Python language
(v3.6, https://www.python.org) with a Keras framework (v2.1.5,
https://keras.io/) and a TensorFlow backend (v1.6.0, https://
www.tensorflow.org). For this model, the raw spectra, the

12 datasets from individual preprocessing, and those from their
second-order combination were all merged and kept together
for calibration as input data (i.e., 157 datasets). The convolutional
neural network was composed of three convolutional layers fol-
lowed by two dense layers. Mean squared error was used as the
loss function. A 20% feature dropout was used between layers to
prevent overfitting. Threefold cross-validation was used to cali-
brate the model.35

The coefficient of determination (R2), root mean square error
(RMSE), and the ratio of performance to deviation (RPD) were
computed to assess the performances of both models using the
following equations:

R2=1−
∑n

i=1 yi−byið Þ2
∑n

i=1 yi−yð Þ2 ð2Þ

where yi and byi are respectively the observed and the predicted
amylose content of the i-th sample, and y is the average observed
amylose content

RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
i=1 y−byið Þ2

n

s

ð3Þ

RPD=
SD

RMSE
ð4Þ

where SD is the standard deviation of the observed amylose
content in the calibration set.
According to Sinnaeve et al. (1994)36 and Williams (2001),37 RPD

≥3 was considered to be successful for analytical purposes in NIRS
applications for agricultural products.

Table 1. Amylose content of the 21 Dioscorea alata L. genotypes

Amylose content (%)

Genotypes Number of tuber used Number of samples Average Standard deviation Minimum Maximum

Divin 5 15 21.21 1.78 16.45 24.11
Dou 4 12 21.76 1.99 18.57 25.65
Florido 5 15 28.47 1.86 26 32.52
H2X14M 5 15 27.6 1.53 24.16 30.34
H2X74F 2 6 23.54 0.66 22.49 24.24
H4X172 5 15 25.47 1.19 22.75 26.56
Kabusa 5 15 19.33 2.22 12.62 21.85
Kinabayo 3 9 19.12 0.75 18.21 20.61
Marchande 5 15 22.28 2.03 20.29 26.74
Noulelcae 5 15 23.11 3.11 19.18 29.91
Nureangdan 3 9 22.6 0.32 21.95 23.13
Pacala 5 15 24.56 0.82 23.06 25.56
Peter 4 12 24.76 0.75 23.97 26.76
Plimbite 5 15 25.21 2.04 23.01 30.65
Ptris 5 15 24.11 0.98 22.78 26.6
Roujol 5 15 22.69 1.16 20.46 24.91
Sinoua 5 15 21.68 0.81 20.02 22.95
St Vincent 2 6 20.4 1.31 19.18 22.5
Tagabe 5 15 26.29 4.52 21.29 39.75
Tiviolet 5 15 24.01 1.4 20.85 25.95
ToufiTetea 5 15 26.81 0.86 25.35 27.8
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RESULTS
Table 1 presents the variation in the amylose content in the
21 D. alata L. genotypes. The amylose content of our samples var-
ied from 12.62 to 39.75% for Kabusa and Tagabe respectively. The
SEL of the amylose content reference method was 1.05%.
The mean standard deviation within genotypes was 1.52% while
the standard deviation of the mean amylose content between
genotypes was 2.6%.
The descriptive statistics of the calibration and validation data

are presented in Table 2. The calibration and validation datasets
exhibited similar ranges, means, and standard deviations
(Table 2).
Figure 1 illustrates the performance of each preprocessing

combination after the optimal number of components had been
identified. The best combination of preprocessing includes a
first-order Gaussian (Gaussian 1) followed by a fourth-order Sav-
Gol (SavGol 4) and retains 24 components. Globally the standard
normal variate (SNV) filter seems to give good stable results as a
first pretreatment.

Table 3 shows the performance of the two model types during
the calibration and validation steps. The results show a coefficient
of determination of 0.89 for the CNN model, which is better than
those of the PLS approach (i.e., 0.72). The RMSE of validation of
CNN and PLS are respectively 1.33 and 0.81. Their ratio of perfor-
mance to deviation (RPD) are 2.13 and 3.49, respectively.
Figure 2 presents the measured and predicted values of the two

modeling methods during the validation step. Sample scattering
and regression line slope deviation from 1 (i.e., bias) is higher for
the PLS model than the CNN model.

DISCUSSION
The amylose content varies considerably from one genotype to
another (Table 1) and the variation between genotype is higher
than the mean variation within genotype. This suggests the exis-
tence of genetic variation, which is essential for the success of
breeding programs. In contrast with the variation in amylose con-
tent found by Lebot and Malapa (2013)38 (37.3–68.9%), this study
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Figure 1. Root mean square error (RMSE) of the partial least square (PLS) models calibrated over the 157 preprocessing combinations.

Table 2. Descriptive statistics of calibration and validation data

Model step Standard error of the laboratory Mean Standard deviation Minimum Maximum Sample size

Calibration 1.23 23.8 2.8 17.4 31.29 140
Validation 0.85 23.9 2.5 19.5 31.27 46
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(12.62–39.75%) exhibited values corresponding to the range com-
monly found in the literature for yam.4,18,39-42

The calibration results show that the preprocessing combina-
tion had a significant effect on the performance of the PLS
(Fig. 1). Identification of the best preprocessing and the optimal
number of components is thus essential for the performance of
the PLS model. The use of CNNs makes it possible to overcome
the limitations of PLS, namely the reduction in dimension, which
often results in a loss of information, and the linearity of the
model, which does not allow non-linear relationships between
variables to be captured.
This study allowed us to predict the amylose content of yam

starch with much higher accuracy than was obtained by Lebot
and Malapa (2013)38 (R2 = 0.18) and Alamu et al. (2019)19

(R2 = 0.27). The results also show better performance for the
CNN (R2 = 0.89) than the PLS model (R2 of 0.72). The CNN model
allowed the prediction of yam amylose content with great accu-
racy. Indeed, the RMSE of the CNN model was 0.81%.
The ratio of performance to deviation (RPD) can be used to qual-

ify the usefulness of NIRS predictive models in breeding pro-
grams: a RPD above 3 is considered suitable for analytical
purposes in NIRS applications for agricultural products.36,37 With
an RPD of 3.49, the deep learning model provides a reliable and

efficient method for predicting amylose in yam. Near-infrared
spectroscopy modeling with CNN offers a high-throughput phe-
notyping method for yam amylose content, which is considered
as a key compositional trait linked to textural quality. However,
external validation is still recommended to increase the devel-
oped models' accuracy and robustness. It should also be possible
to apply the CNNs to other starch flours (cereals and root and
tuber crops), either individually or within a meta-model such as
that proposed by Masithot et al. (2020).24 The complex architec-
ture of the CNN, with multiple layers of non-linear transforma-
tions, allows it to capture complex relationships between inputs
and outputs in heterogeneous data, such asmulti-species models.
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