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A B S T R A C T

Non-active agricultural land (NAAL) mapping in West Africa is essential to accurately assess agricultural
systems and its contribution to food security and agro-ecological sustainability of current practices, and yet the
available mapping methodologies are not adapted to the environmental and cropping conditions encountered
when addressing tropical smallholder agriculture. In this study we present a strategy that makes use of Sentinel-
2 image time series, CHIRPS monthly rainfall data and multiple years of in-situ data obtained from the JECAM
database to map NAAL in a Soudanian site in Burkina Faso (Koumbia) between the years 2016 and 2021. In
a first step we generated annual land use maps in four broad classes (managed, unmanaged, evergreen and
non-vegetated) to detect fields being actively cultivated in a given year, and in a second step, we used these
annual land use maps to differentiate non-active agricultural land by identifying shifts from one year to another.
For the validation part, we analyzed the sensitivity of classification accuracy to in-situ data pre-processing by
building 5 experimental validation data sets. The unmanaged classes F1-scores of the land use maps ranged
between 0.86 and 0.98, depending on the year, whereas NAAL classes F1-scores ranged from 0.75 to 0.92
when validated against the most restrictive data set (pixels with no missing reference data for the period
considered). NAAL represents between 7% to 14% of the study site cropland depending on the year. The
higher class probabilities are in areas where data was available, whereas the low probabilities are localized
and linked to transition areas on the outskirts of the department. Our results indicate that a multi-annual
approach can allow NAAL mapping under challenging environments, yet efforts are to be made to develop
more cost-efficient unsupervised solutions.
1. Introduction

Sub-Saharan agriculture is composed by a large proportion of small-
holders where small cropping fields are common, often less than 1
hectare, defining a highly fragmented agricultural land, characterized
by a high heterogeneity at the field level and where soil degradation,
as well as a reduced and financially unaffordable access to mineral
inputs and mechanization, limit crop production (Ruthenberg, 1974;
Snapp et al., 2018; Tittonell and Giller, 2013). West African cropping
systems have traditionally relied on long uncultivated periods of time
to restore natural soil fertility, in some instances surpassing a decade
between two periods of cultivation after which, the next cropping
cycle is triggered by a removal and burning of all natural vegetation
that has regrown during this idle period (slash-and-burn) (Ruthenberg,
1974; Manlay et al., 2000; Samaké et al., 2005; Faye et al., 2021;
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Zoungrana, 1993). However, the necessity to enhance the agricultural
production, driven by a growing population (Vollset et al., 2020), has
promoted a shift in cropping systems, which has been characterized by
a reduction of fallow land and hence an increase of soil degradation.
Quantification of the available active and non-active agricultural land
(NAAL) is therefore not only key for a better estimation of the potential
production in the region, but also for monitoring the sustainability,
from an agro-ecological point of view, of the current intensification
trends in local cropping practices.

Non-active agricultural land is often used as synonym of ‘‘fallow’’,
which according to FAO’s definition accounts to ‘‘the cultivated land
that is not seeded for one or more growing seasons. The maximum
idle period is usually less than five years’’ (FAO, 2022). Following
this definition, what describes a fallow land is (a) the land has been
vailable online 18 July 2023
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previously cultivated, (b) the land is not currently being cultivated and
(c) it is a temporary state that ends with a recultivation of land. This
implies that the fallow land is actually defined by its past, current
and future use rather than its sole current observable ‘‘land cover’’.
However, more strict definitions also assume that (d) fallow fields
exist as an agricultural practice within a cropping system as described
in Bégué et al. (2018), which in turn implies that other abandoned
agricultural land, due to reasons unrelated to cropping practices such as
soil exhaustion, sociopolitical instability or simply manpower shortage
should not be included within a strict sense ‘‘fallow’’ class. We could
therefore establish that the idle period between two moments of ob-
servable active cropping is a necessary condition for validating a NAAL
as ‘‘fallow’’ based exclusively on land cover data.

Satellite imagery has been proved to be a useful tool for generating
land cover over broad regions such as GlobCORINE (Bontemps et al.,
2009), CGLS-LC100 (Buchhorn et al., 2020), or Dynamic World (Brown
et al., 2022), allowing for a relatively economic solution and covering
much larger areas compared to in situ surveys, and with continuous
improvements in its spatio-temporal resolution. Nevertheless, NAAL
mapping (or fallow land for that matter) has been, for the most part,
disregarded by considering it an implicit part of a generic ‘‘cropland’’
class. Indeed, few studies propose specific methodologies for mapping
and quantifying non-active agricultural land through the analysis of
satellite imagery. These works are quite varied in terms of the spatial
scale, from regional level in California (Wallace et al., 2017) or in
China (Zhang et al., 2014), to entire countries (Qiu et al., 2022),
continental scale (Estel et al., 2015, 2016) or target specific agro-
climatic zones such as the Sahel in Africa (Tong et al., 2020). Almost
all these attempts for differentiating non-active agricultural land are
based on the hypothesis that fallow land exhibits a significantly dif-
ferent spectral signature during the growing season with respect to
active cropland, and then implement a classification strategy based on
machine learning algorithms (Tong et al., 2020, 2022; Estel et al., 2015;
Rufin et al., 2022) or a rule-based system at an annual scale (Wallace
et al., 2017; Qiu et al., 2022; Zhang et al., 2014). To the best of our
knowledge, only few studies have implemented strategies using input
data which exceed a single growing season for determining whether a
field is being actively cropped or not. In these cases (Yin et al., 2018;
Dara et al., 2018), decades of Landsat data are used for determining a
cropland probability, and land use classes are subsequently determined
by inflection points of this probability through time. Moreover, in more
recent studies (Rufin et al., 2022; Tong et al., 2022) a complementary
verification is performed for ‘‘fallow’’ fields, requiring them to being
cultivated once on previous years. A particularly interesting approach is
proposed in Zhao et al. (2023) to estimate the proportion of abandoned
cropland (hence not targeting fallow land) in Yunnan province in China
using long time-series of Landsat imagery and a trajectory analysis
based on long term land use annual mapping. Thus, establishing a
multi-year temporal relationship as a strategy for NAAL identification,
either for generating reliable reference data sets or as part of their map-
ping methodology, appears to be a point of convergence for scientific
community. Regardless of the strategy implemented, these approaches
often rely on the use of a cropland mask to focus the analysis on arable
land only : GlobCORINE map cropland class in Estel et al. (2015, 2016),
USDA-CDL in Wallace et al. (2017) and Wu et al. (2014), or CGLS-
LC100 in Tong et al. (2020). Moreover, data acquisition for training
and/or validation is based for the most part on photo-interpretation of
high resolution imagery or relying on the availability of a single season
in situ data collection.

Summarizing, most of the remote sensing-based methods require
either (a) prior knowledge of cropland, (b) a crop/fallow reference
data set obtained from ground surveys or through photo-interpretation,
and (c) contrasted seasonal spectral signatures among the land cover
and land use (LCLU) classes. The first requirement usually implies
the use of accessible global cropland products. In West Africa, the
2

accuracy of such products is generally low to moderate, depending
on the farming system in place (Leroux et al., 2014) with below
70% user accuracy on best cases (Samasse et al., 2018; Xu et al.,
2019). The second requirement must cope with the lack of reliable
ground truth data, which is often insufficient in both time and space,
or available imagery does not allow the visual recognition of small
and heterogeneous crop/fallow fields. The third requirement is rarely
verified in tropical West Africa, since most of crops are rainfed, hence
exhibiting a phenological development during a period where optical
remote sensing imagery is unlikely to be fully exploitable due to cloud
coverage.

Thus, in this study we propose a NAAL mapping strategy that
implements a series of methodological adaptation that can both (a)
cope with technical limitations linked to tropical agriculture in West
Africa, and (b) adapt to the multi-year nature of idle cropland, subject
to either proper fallow practices or occasional short-term abandonment.

1.1. Proposed NAAL mapping strategy

Out of the described context, the purpose of this work is to inves-
tigate the issues for the design of a suitable methodology for mapping
NAAL surfaces in areas where climate conditions, landscape fragmen-
tation and heterogeneous cropping practices do not allow a thorough
identification of agricultural land use/land cover. We start from the
assumption that recent satellite missions such as ESA’s Sentinel-2, de-
livering high-resolution and high frequency acquisitions in the optical
multi-spectral domain over the globe, may indeed provide enough
information to tackle some of these issues : (i) decametric spatial
resolution can suitably address the spatial scale of the average field
size in most of West African agrosystems, thus coping with landscape
fragmentation issues, (ii) 5-day revisit time generally guarantees the
acquisition of a sufficient number of images over a cropping season
for tracking vegetation growth stages at field scale to some limited
extent. Nonetheless, the diversity of cropping practices (sowing dates,
cropping patterns, etc.) in conjunction with the local variability of the
cropping conditions (soil, rainfall) may prevent the identification of
specific agricultural land uses based on the sole image-derived spectral
and temporal signatures (Inglada et al., 2015).

However, we are willing to tackle the identification of a specific
agricultural land use (NAAL) which has an intrinsic multi-annual na-
ture, since as stated before such use is determined by the fact that a
given surface has been actively cultivated in past years. Matter of fact,
rather than attempting to differentiate NAAL from other types of uses
based on annual land cover data, a way to trigger the identification
of NAAL is to detect, over multiple cropping seasons and over areas
exhibiting seasonal vegetation life cycle (cropland-like), transitions
between periods in which vegetation growth is managed, i.e. a cropping
activity is actually performed, and periods in which it exhibits an
unmanaged condition, which may happen for both NAAL and areas
with natural deciduous/herbaceous vegetation. Based on the hypothesis
that an annual time series of optical multi-spectral images may enable
the accurate identification of these two states (managed/unmanaged
vegetation over a cropping season), our approach relies on such annual
LULC mapping and the subsequent analysis of these maps over multiple
years to provide a consistent, field-level accurate mapping of NAAL.

More specifically, we propose to exploit the potential of Sentinel-2
time series for detecting non-active agricultural land, following a super-
vised approach that relies on several consecutive years of ground truth
data registered at field scale, and classical machine learning algorithms.
This exploratory study is carried out in South-West Burkina Faso,
on a site representative of the sub-humid cereal-based West African
farming systems in order to give a thorough insight into the feasibility
and potential of the proposed methodology in high-resolution NAAL
mapping. We take advantage of an actually available multi-annual

in-situ reference data base that will be introduced in the next section.
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Fig. 1. Location of the Koumbia study site in Burkina Faso (top left), JECAM ground data set polygons (Jolivot et al., 2021) and Sentinel-2 sub-image in 2017 (right), and a
zoom-in (bottom left).. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
2. Data description

2.1. Study site

Our study site locates in the commune of Koumbia, Tuy Region,
in South-Western Burkina Faso (see Fig. 1), covering an area of over
2500 km2. In this area, rainfall distribution over a year is uni-modal
and averaging between 900–1200 mm, which corresponds to typical
values in the Sudanese agro-climatic zone (Abdoulaye et al., 2017).
Cropping season begins on late April–May and extends till November–
December, in concordance with the rainy season. As in most part of the
Sahelian area, the study area is characterized by a tree-based cropping
system, where multipurpose trees have been deliberately preserved and
managed by farmers on agricultural land (Boffa, 1999). The cropping
system is rainfed, relying mainly on maize–cotton rotations where
cotton is used as cash crop. Other crops include sorghum, millet, oilseed
(groundnuts, sesame) and leguminous (e.g. cowpea) crops. Predomi-
nant soil textural types are sandy clay loam and sandy loam, accounting
for 44% and 54% respectively in the region of study (Miller et al.,
2021).

2.2. Reference data set

As reference data, we used the Burkina Faso subset of the recently
published JECAM (Joint Experiment for Crop Assessment and Monitor-
ing) harmonized in-situ data set (Jolivot et al., 2021). This ground data
set includes land cover and agricultural land use in-situ observations
collected annually over the Koumbia site during the 2013–2021 period
(on average, c.a. 840 observations per year). More precisely, each
object (a polygon) is annotated at both a land cover level, using a
general nomenclature including the agricultural land in a single class
(cropland, which includes also ‘‘fallow’’ land), and a set of classes
related to natural areas (discriminating herbaceous savannah and natural
pastures from shrubby and woody savannah and forests), water bodies
3

and non-vegetated areas (built-up surfaces and mineral soils). In the
JECAM data set, information on the crop type is also available for each
polygon within the cropland class. We used this information to build an
intermediate-level nomenclature named ‘‘Crop group’’, to keep fallow
fields and active agricultural land (cash crop, cereals, leguminous, oilseed)
separated. Details on the final nomenclature along with the surface
covered by each class are given in Table 1.

Information for year 2019, originally missing from the published
data set, was collected in 2020 by a local agent who carried out a
delayed field survey, during which details on fallow land could not be
collected.

2.2.1. Satellite and environmental data
On this study we employed L2 A Sentinel-2 (S2) image time series.

The Copernicus Sentinel-2 mission includes a constellation of 2 satel-
lites carrying a single multi-spectral instrument (MSI) with 13 spectral
channels distributed in the visible/near infrared (VNIR) at 10 m spatial
resolution, in short-wave infrared (SWIR) at 20 m spatial resolution,
and in complementary bands at spatial 60 m resolution for cloud
screening and atmospheric corrections (Drusch et al., 2012). All avail-
able images between 2016 and 2021 were downloaded from Theia1

Land repository, and pre-processed using the open access MORINGA
processing chain Gaetano et al. (2019). Image pre-processing includes
resampling the SWIR 20 m bands to 10 m resolution, and image time
series gap filling of cloudy pixels using multi-temporal linear interpo-
lation as explained in Inglada et al. (2017). Gap-filled images were
generated at a 10-day frequency and six vegetation-related radiometric
indices (see Table 2) were calculated and appended to the reflectance
bands for each timestamp.

1 THEIA is the French Land Surface Pole gathering academic and public
institutions to facilitate the use of Earth observation for monitoring continental
surfaces. See https://theia-land.fr for more information.

https://theia-land.fr
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Table 1
JECAM Koumbia data set area (ha) at land cover and crop group levels.

Land cover Crop group 2015 2016 2017 2018 2019 2020 2021

Bare soil 1.60 1.41 0.66 1.33 0.00 3.40 1.90
Built-up surface 6.59 11.48 8.21 8.59 5.98 9.50 9.79

Herbaceous savannah 85.70 102.02 110.90 111.58 62.58 64.45
Natural pastures 11.25 18.68 12.52 16.88 0.00 43.42 23.26
Shrubby savannah 214.43 229.51 241.94 231.96 214.43 219.04 235.59
Woody Savannah 0.00 21.84 17.10 35.67 0.00 0.00 7.44
Forest 133.70 130.88 142.32 139.77 115.61 155.02 142.67

Water bodies 12.24 12.24 12.24 12.24 12.24 12.24 12.24

Cropland Cash 73.71 105.78 212.01 94.22 102.59 81.16 114.78
Cereals 171.53 179.51 232.07 159.50 161.14 109.74 172.20
Leguminous 34.94 39.40 27.33 36.00 17.37 71.90 96.71
Oilseed 50.04 42.60 35.22 15.63 8.52 28.69 34.08
Fallow 32.13 20.64 21.79 7.69 0.00 8.74 9.41

Total 865.61 917.49 1077.30 872.65 700.92 809.10 924.28
Table 2
List of the radiometric indices used. Provided bands refer to Sentinel-2 nomenclature (𝐵2 is the blue band, 𝐵3 is green, 𝐵4 is red, 𝐵5, 𝐵6 and 𝐵7 are red-edge bands (700–800 nm),
8 is near infrared and 𝐵9, 𝐵10, 𝐵11 and 𝐵12 are short-wave infrared bands (950–2200 nm)). The first group corresponds to the multi-temporal indices computed at 10-day

requency over a whole year; The second group refers to the soil indices computed for the January–June period.

Annual time-stamp Index Formula Reference

10-day Normalized Difference Vegetation Index 𝑁𝐷𝑉 𝐼 = 𝐵8−𝐵4
𝐵8+𝐵4

Rouse et al. (1974)

Normalized Difference Water Index 𝑁𝐷𝑊 𝐼 = 𝐵3−𝐵8
𝐵3+𝐵8

McFeeters (1996)

Brightness Index 𝐵𝑅𝐼 =
√

𝐵22 +⋯ + 𝐵122 Inglada et al. (2017)

Modified NDWI 𝑀𝑁𝐷𝑊 𝐼 = 𝐵3−𝐵11
𝐵3+𝐵11

Xu (2006)

Short-wave NDVI 𝑆𝑊𝑁𝐷𝑉 𝐼 = 𝐵11−𝐵8
𝐵11+𝐵8

Gao (1996)

Normalized Difference Red Edge Index 𝑁𝐷𝑅𝐸 = 𝐵8−𝐵5
𝐵8+𝐵5

Barnes et al. (2000)

Seasonal (Jan–Jun) Redness Index 𝑅𝐼 = 𝐵42

𝐵33
Mathieu et al. (1998)

Color Index 𝐶𝐼 = 𝐵4−𝐵3
𝐵4+𝐵3

Mathieu et al. (1998)

Brilliance Index 𝐵𝐼 =
√

𝐵32+𝐵42

2
Mathieu et al. (1998)

Brilliance Index II 𝐵𝐼2 =
√

𝐵32+𝐵42+𝐵82

3
Escadafal et al. (1989)

Normalized Burn Ratio 𝑁𝐵𝑅 = 𝐵8−𝐵11
𝐵8+𝐵11

García and Caselles (1991)
The soil type being a possible driver in the occurrence and duration
f fallow practices (Samaké et al., 2005), we also computed for each
ear the median values of several soil indices using images acquired
uring the dry season (January–June) when the vegetation has not
et grown and the soil is visible. Four soil indices have been chosen,
long with the Normalized Burn Area ratio as a variable describing
he occurrence of fires, potentially related to slash-and-burn practices
appening during the dry season prior to cultivation. A table resuming
he computed indices used in this study, and their formula, is reported
n Table 2.

Finally, in order to take into account rainfall in our analysis, we also
cquired CHIRPS (Funk et al., 2014) monthly rainfall data reprojected
ver the S2 grid, at 10 m resolution, using bicubic interpolation (see
ig A.5 in supplementary material.). Besides the fact that a significant
ownscaling error is likely, rainfall is known to be highly spatially
ariable in West Africa (Graef and Haigis, 2001; Lebel and Le Barbé,
997), we make the assumption that these data may relate to the site-
cale rainfalls. The assessment of the contribution of each input variable
n model decision is part of our analysis.

. A multi-year land use approach for NAAL mapping

.1. A multi-year land use approach for NAAL mapping

The main constraint of our approach is the availability of a proper
eference data set covering multiple consecutive years, which provides
4

information, for each year and with no ambiguities, on whether a
labeled surface belongs to the active cropland, and hence to a managed
agricultural land class, or to an unmanaged class, which can in turn
include both non active cropland and natural herbaceous vegetation.
Information might also be provided for land cover classes which are
more resilient in terms of seasonal variations in vegetation dynamics,
information which can be useful to detect and mask out such areas
which are less related to the purpose of NAAL mapping. Needing no
specific details on these classes, we could complete our annual land
cover model by grouping them all under two classes, namely evergreen
and non-vegetated, to address respectively the constant presence and
absence of green vegetation.

As already mentioned in the data description section, the JECAM
data set provides annual information on both land cover and crop
group classes, and it can easily be used to comply to the 4-class model
(managed, unmanaged, evergreen, non-vegetated) and allow the produc-
tion of the annual base maps used for multi-annual NAAL identification.

On these premises, the method we intend to propose here is quite
straightforward, composed of three stages tackling respectively : (a) the
production of annual base maps inferring the 4-class land cover model
to the entire area, (b) the application of transition rules for the analysis
of land cover trajectories allowing the identification of NAAL, and (c)
a suitable processing of the original reference data set to provide a
reliable and fair validation of NAAL detection. An overall scheme of the
proposed three-stage method is depicted in Fig. 2, a detailed description
of each processing block is provided in the following subsections.
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Fig. 2. NAAL mapping general workflow: (a) annual land use mapping and generation of 4-class maps; (b) Trajectory analysis of land use maps and NAAL detection; (c) Reference
data set processing for the validation of the NAAL maps.. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
Fig. 3. Average seasonal NDVI profiles calculated with gap-filled Sentinel-2 data and JECAM’s Koumbia subset. Rainfall data obtained from CHIRPS monthly data (Funk et al.,
2014). Vertical lines represent standard deviation for each LCLU class.. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
Source: Adapted from Castro Alvarado (2022).
3.1.1. Sentinel-2 based annual land use mapping

Our first step consists in training a set of annual supervised classifi-
cation models using the corresponding time series of Sentinel-2 images
as a main input. A first straightforward possibility could have been to
simply perform a supervised classification directly using the JECAM
data set as-is to train the classifier. However, it is clear from Table 1
that a strong class imbalance is present in terms of annotated surface,
which may lead to poor performances on less represented classes. This
is particularly true for the fallow class which, as arguably deductible
observing the entangled NDVI profiles shown in Fig. 3 (for year 2017,
without loss of generality), is likely to be confused with some active
5

crop class and hence erroneously detected as managed, in contradiction
to the provided definition of NAAL.

Hence, we here decide to pre-process the JECAM data set prior
to the supervised classification process, by relabeling samples of the
active crop classes into a single managed class (namely the cash crops,
cereals, leguminous and oilseed classes), and grouping fallows with other
deciduous vegetation classes (namely herbaceous, shrubby savannah and
pastures) into the unmanaged class. Woody savannah and forest fall into
the evergreen class, while the non-vegetated class includes all constantly
non-vegetated areas (bare soil, built-up, water bodies). We report in
Fig. 4 the final number of pixels per class after the proposed class
grouping and the rasterization of the source vector layer using the
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Fig. 4. Number of data points in pixels (after rasterization using the Sentinel-2 10-m grid as spatial reference) for all years and separated by management land use classes. Bar
splits represent the proportion of pixels employed in each cross validation fold, see Section 3.2.1.. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
Sentinel-2 10 m grid. As expected, the final result shows a much
more balanced configuration of class samples, especially between the
managed and unmanaged classes whose transitions through subsequent
years are susceptible to trigger the detection of NAAL areas. The overall
classification problem is simplified, the least represented classes being
the non-vegetated and evergreen areas which are in turn the easiest to
discriminate using radiometric information.

Following an ensemble classification strategy based on the Random
Forest algorithm, we decide to use the whole gap-filled time series,
along with the derived indices (vegetation-related and soil) as well as
rainfall data as predictor variables. A detailed description of the exper-
imental setting of this phase along with an insight on the importance
of such variables is provided in the experimental section.

3.1.2. Trajectory analysis for NAAL mapping
Annual 4-class maps provided in previous step over the available

time span, say 𝑋𝑡 with 𝑡 ∈ {1,… , 𝑛}, are then employed for the
analysis of trajectories implying classes managed (𝑀) and unmanaged
(𝑈) at pixel level to derive the set of 𝑛 − 1 NAAL (𝑁) maps 𝑌𝑡 over
𝑡 ∈ {2,… , 𝑛} (as a consequence of our causal inter-annual analysis,
NAAL identification for the first year of available reference data cannot
be computed). Our trajectory hypothesis is quite simple, and based on
the following two main rules (see the right-upper part of Fig. 2):

1. any transition from managed to unmanaged over two subsequent
years on a pixel in a location (𝑢, 𝑣), say 𝑋𝑖−1(𝑢, 𝑣) = 𝑀 and
𝑋𝑖(𝑢, 𝑣) = 𝑈 , implies ‘‘flagging’’ a pixel as NAAL on year 𝑖, say
𝑌𝑖(𝑢, 𝑣) = 𝑁 ;

2. if a pixel is flagged as NAAL for a given year, any subse-
quent unmanaged label on the same pixel is automatically clas-
sified as NAAL on the output to maintain temporal and spatial
consistency, say:

𝑌𝑖(𝑢, 𝑣) = 𝑁,𝑋𝑗 (𝑢, 𝑣)|𝑗∈𝑖+1,…,𝑛 = 𝑈 ⇒ 𝑌𝑗 (𝑢, 𝑣) = 𝑁

In order to reduce possible ambiguities, and on the hypothesis that
classes which are less reliant on vegetation dynamics are usually more
accurately discriminated, occurrences of either the evergreen and non-
vegetated class on a pixel over time lead to the automatic classification
of this pixel as non-NAAL (𝑂) for the whole period. This is done
under the implicit hypothesis that no significant changes (such as
artificialization or tree plantations) have taken place over the period.
6

3.1.3. NAAL validation and assessment
In the proposed NAAL classification workflow, a major issue is

represented by the necessity to work out a test reference data set to
validate the methodology and assess the accuracy of the NAAL maps
output by the multi-year trajectory analysis. Matter of facts, we do
not dispose of a multi-annual data base of properly annotated NAAL
fields. In principle, we could limit our validation to the original JECAM
data set and consider the fallow class for NAAL assessment. Yet, only
relying on this would be unfair, since much more of the arable land
could be de facto included into the wider NAAL class, including a part
of the fallow land which has been annotated as belonging to another
deciduous vegetation class because of missing explicit information on
cropping practices.

However, it is possible to derive some NAAL-specific validation set
from the original JECAM data set by applying the same rules that we
use for trajectory analysis on land cover maps, using objects from the
data base instead of map pixels, and the intersection of objects over
multiple years to track transitions between the managed and unmanaged
classes. This is made possible by the fact that the field survey protocol
for the Koumbia site was enforced by taking annotations over the same
fields year-by-year to the extent possible. Still, this process is more
subtle than it may appear, since a sufficiently large quantity of surface
which is overlapping over time and may be labeled as NAAL (which
appears to be a small percentage of the area according to the JECAM
data set) is needed. Moreover, field boundaries are not static across
years, which may lead to a dramatic reduction of usable surface if a
simple intersection rule is applied, and in particular a single missing
annotation for a given field will make all the data from the relative
field unusable.

Thus, we decided to provide several versions of the validation
data set, each obtained with a different set of rules for the analysis
of the overlaps over time. This goes from a data set obtained by a
rigorous intersection of polygons, which is very precise in term of NAAL
identification but with a possibly insufficient surface for a reliable
assessment, to progressively admitting extrapolation of missing data in
space and time, in order to extend the total validation surface, and
hence the statistical sufficiency, at the price of some ‘‘noise’’ in the
resulting data set.

The different processing approaches over the reference data set,
rendered so as to comply to our 4-class model for trajectory analysis,
are described below and summarized on Fig. 5. All these processes
start with a rasterization of the reference polygons, available in vector
format, using the Sentinel-2 grid as geometric reference. As already
mentioned, all proposed strategies aim at the relabeling of the whole
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Fig. 5. Illustrative scheme of validation data set processing through 3 examples over 3 consecutive years: Case 1 with no missing years, Case 2 with first year missing, and Case
3 with no stable field boundaries across years considered. Data set A corresponds to the rasterized version of the original JECAM data set, relabeled to fit to the 4-class model
(managed, unmanaged, evergreen, non-vegetated).. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
set of reference pixels from the 4-class nomenclature used for annual
mapping to a binary (NAAL vs. non-NAAL) nomenclature based on
the same transition rules applied for trajectory analysis. This means
that all reference pixels that, for a given year, are not concerned by
a relabeling to NAAL are grouped in the unique antagonist non-NAAL
class. Obviously, the resulting data sets are expected to be strongly
unbalanced (NAAL accounts only for a small percentage of the whole
area), but in this case the unbiased assessment of the detection of NAAL
areas will eventually be possible using per-class figures (precision, recall
and F1-score).

Data set A : Original JECAM data set. This validation set is simply made
up of the original JECAM Koumbia data set in which the objects are
relabeled to fit the 4-class trajectory model. No spatial or temporal
modification is applied on the source data. This represents the original
data set where only ‘‘fallow’’ fields are considered as NAAL data. There
is no data alteration on this case.

Data set B : Strictly reliable surfaces. This is the case when the rigorous
multi-annual intersection of reference objects is performed, basically
retaining only the most reliable surfaces. In other words, only those
pixels where data is available in all consecutive years are considered
for trajectory analysis and NAAL relabeling. Any point with missing
data for a given year is dropped out of the data set.

Data set C : Locally reliable surfaces. In this scenario, we make the
implicit assumption that the validity of a surface for a given year
only depends on its past validity. This means that, for a given year,
the intersection is only performed with the surface of the overlapping
object in the previous year. In this way, all pairs of pixels from two
consecutive years that are eligible to be relabeled to NAAL are taken
into consideration, regardless of what happened before or after, while
the portion of object which is non comparable is discarded. Compared
to data set B, this data set do not guarantee that a comparable set
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of surfaces are used for validation year-by-year, leading to possible
discrepancies in the multi-annual assessment strategy.

Data set D : Sub-field NAAL relabeling. Here, we basically propose the
same logic than for data set C at pixel level, with the exception that
the portions of objects which are left out from an intersection between
two consecutive years are not discarded, and can still be used for NAAL
relabeling in subsequent years. Alternatively said, relabeling can occur
at sub-field level.

Data set E : field-level NAAL extrapolation. Based on the observation
that field boundaries can move through time, and considering how
densely cultivated the area is, for this data set we make the underlying
hypothesis that, if a certain field is known to have been actively
cropped on year 𝑌𝑖, a newly annotated unmanaged field on 𝑌𝑖+1 whose
surface is only partly overlapping with the past year’s field is probably
a whole NAAL field. Hence, similarly to data set D, in this case we still
consider pairwise overlaps between consecutive years and no data is
lost from the source objects after processing. However, relabeling to
NAAL can be propagated to an entire object if the intersection of the
given object with the one from the previous year is larger than a given
threshold in terms of area percentage, here heuristically fixed to 30%.

A resume of the total number of NAAL pixels for each validation
data set and per-year is reported in Fig. 6, along with the percentage
it represents with respect to the full data set (including non-NAAL
pixels). Note that, by only retaining the strictly reliable surfaces, data
set B systematically provide a severe selection of NAAL pixels w.r.t. the
total samples, but the other strategies which try to extrapolate NAAL
areas at the plot scale progressively tend to first restore the original
amount and ratio observable in the data set A (actual Fallow fields w.r.t.
the total annotated surface), then add some potential NAAL surface in
reasonable measure (within a factor of 2). The slight drop in the amount
of NAAL pixels in 2020–21 is due to the absence of Fallow annotated
polygons in the original JECAM data base in 2019.
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Fig. 6. Total number of NAAL Sentinel-2 pixels in the validation data sets before (A) and after (B to E) processing. The validation data set A corresponds to the JECAM original
data set in which the NAAL data pixels correspond to the ‘‘Fallow’’ polygons. For the record, only the cropped fields were registered for year 2019. Values on top of bars show
the proportion of NAAL pixels over the total amount of available pixels for that given validation data set and year.. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
3.2. Implementation of the approach

3.2.1. Annual LULC maps
For the production of annual 4-class land use maps reliable enough

to enable trajectory analysis for NAAL detection, we carried out a
strategy based on multiple per-year Random Forest (RF) classifica-
tions. Such solution deemed necessary to cope with the relatively
low quantity of available annotated surface, especially if compared
to the complexity of the landscape and the dimensionality of the
input variables (593 variables per pixel in total), as well as to ensure
comparability among the different maps.

More precisely, for each available year (2016–2021, no full Sentinel-
2 time series was available before 2016), we opted for a 5-fold cross
validation approach by dividing the 4-class reference data set derived
by the original JECAM Koumbia subset (see Section 3.1) into 5 ran-
domly selected subsets of equal size. To avoid spatial auto-correlation
biases in the validation process (Ploton et al., 2020), the sampling
of data for the generation of folds happens at the polygon level,
following a stratified approach to ensure that the percentage of selected
polygons is preserved in each class to the extent possible. We hence
make the underlying assumption that, within each class, polygons have
comparable areas (same order of magnitude), i.e. the distribution of
samples across folds at pixel level will not differ significantly. Bar splits
in Fig. 4 show how the polygon-level fold sample selection translates
into numbers of reference pixels in per fold/class/year.

As a reminder, cross validation consists in training the same classi-
fier over 𝑘 different training sets, each one being a unique combination
of 𝑘 − 1 out of 𝑘 folds, and validating its performances using the
corresponding spare fold. 𝑘 being equal to 5 in our case, we dispose
of 5 RF models per year. Concerning the parametrization of the RF
classifiers, for all of them we set the number of trees in forest to 400,
and the minimum number of samples required to split an internal node
to 25 (with no limit to the depth of the trees). For each year, the
resulting RF models have been used to provide 5 different membership
probability maps, containing each the probability assigned by one
model to any given pixel to belong to any of the 4 land use classes
considered, (managed, unmanaged, evergreen or non-vegetated). We then
generated an annual 4-class map by averaging the probability maps of
the 5 models and labeling pixels according to the class with the highest
probability. Variable importance (averaged over folds as well) was also
computed for each year in order to identify the main predictors and
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check for consistency across years. Additionally, maximum per-pixel
class probability was used as a proxy for identifying zones of lower
model certainty.

3.2.2. NAAL mapping
Once 4-class maps were generated we perform the trajectory anal-

ysis as described in Section 3.1.2 via custom scripts written on Python
3.8.

4. Experimental results

4.1. Annual LULC maps

The Random Forest trained models were employed for generating
4-class land use maps for the entire study site (see example in Fig. 7 for
2017). The average overall accuracy (OA) across all years considered
(2016–2021) was of 91.4%, whereas the average user accuracy (UA)
and producer accuracy (PA) across period considered and all classes
was 91.7% and 87.3% respectively (full report of map accuracies is
provided in Table A.1 in supplementary material). Classwise minimum
F1-scores values are 0.91, 0.86, 0.80 and 0.75 for managed, unmanaged,
evergreen and non-vegetated class respectively, and with managed and
unmanaged classes being consistently the classes with the best scores
across all the considered period (Fig. 8).

Per-year variable importance averaged across models is shown in
Fig. 9. In order to simplify the reading of such list, the importance for
all multi-temporal variables has been averaged over time (e.g. B4 is
the average importance of every 10-day Sentinel-2 red bands), but the
maximum value of these variables over time is also depicted in red. We
here observe that the ‘‘hierarchy’’ of such importance is globally stable
over the years, with bands from the red and SWIR spectrum, along with
some vegetation indices (NDVI, NDRE) steadily occupying the highest
places in the list. Noticeably, both soil indices (RI and CI in particular)
and rainfall data have a relatively high importance compared to the
large number of spectral variables. Of course, maximum values show
that if we consider individual timestamps for each variable, the abso-
lute importance is higher for several spectral bands and indices, but still
both external sources of information have a significant and systematic
impact in all years’ model decisions. For rainfall data in particular,
which varied significantly across years considered (see Fig A.5 in sup-
plementary material), band importance results support the hypothesis
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Fig. 7. Annual 4-class resulting land use map for Koumbia site in 2017. On the right, zoom-in and corresponding SPOT 6 ©Airbus DS 2017.. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 8. Average and standard-deviation (error bars) F1-score of annual management land use class, calculated for the five trained Random Forest model’s predictions.. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
that even at low resolution such information may impact the quality
of annual mapping of managed/unmanaged surfaces, independently of
inter-seasonal variations.

Some interesting elements also come out watching at the maximum
class probability map in Fig. 10, which has also been averaged over
years. As one might expect, classifier confidence is higher in areas close
to the location of reference polygons, even if the average membership
probability can also be high in areas where the reference data density
is low. However, a pattern of confidence drop is observed across the
administrative boundaries of the Koumbia commune. This spatial pat-
tern may be related to shifts in the landscape outside of the commune,
in which reference data loses part of its representativeness.

4.2. NAAL mapping and validation

Once the 4-class annual maps have been produced for the 2016–
2021 timespan, the trajectory analysis described in Section 3.1.2 was
applied to provide NAAL maps over the 2017–2021 period. NAAL map
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for 2017 is depicted in Fig. 11 where, for sake of clarity, the non-NAAL
class (𝑂 in Fig. 2) has been split in two classes, respectively the active
agricultural land (AAL) and the non-agricultural land, by simply marking
as the latter all pixels that have occurrences of either the evergreen or
non-vegetated classes in the annual land use map time series. Observa-
tions made for this year remain valid for other years’ NAAL maps as
well, which are reported in Fig A.1, A.2, A.3, A.4 in supplementary
material, with major instabilities only over the low-confidence area of
the annual mapping.

At a first glance, it seems evident that the areas corresponding to
low classification confidence for annual land use mapping (Fig. 11)
present larger portions detected as NAAL, which are more likely to be
due to errors in the base maps than to a true switch in agricultural
land use in these areas. Things seem more plausible in the area within
the Koumbia commune boundaries, also considering prior knowledge
on the study site (NAAL accounts in average for c.a. 10% of the total
arable land). However, the zoom in the right-upper part of Fig. 11
highlights that, apart from some expected salt-and-pepper artifacts, two
different spatial contexts emerge concerning NAAL detection, either (a)
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Fig. 9. Per-year average and importance of variables for the Random Forest land use classification models. The importance values of the 10-day variables averaged over the year
are represented in blue, and the annual maximum values are reported in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
in the form of suitably shaped fields within AAL (red regular patches
surrounded by yellow), or (b) in transition areas between the AAL and
the non-agricultural class (red irregular patches along black patches).
Some details on field-scale NAAL detection are depicted in Fig. 12,
where it is possible to appreciate, in different years and spatial contexts,
the correspondence between sets of connected pixels (field-like shaped)
detected as NAAL in a given year (right column) and the corresponding
field appearance on a very high resolution scene (left column) acquired
the same year, at the peak of the growing season. In contrast, artifacts
on transition areas may be partly caused by errors in the base mapping
due to mixed or misaligned pixels in S2 time series. All this makes
reasonable the hypothesis of a significant commission error on these
results, and motivates the efforts done in further numerical assessment.

Accuracies (F1-scores) relative to the detection of the NAAL class
using the different validation data sets (see Section 3.1.3) are reported
in Fig. 13(a) for each year (2019 is skipped since no fallow samples are
available for data set A), and averaged over the period in Fig. 13(b),
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along with uncertainties. A full summary of indicators is reported in
Table A.1 in supplementary material. Note that due to the large class
unbalance in the all reference data sets (NAAL only accounts for 5
to 10% of the annotated surface) we only present per-class accuracy
metrics for the NAAL class, since the non-NAAL class achieves always
a very high score (close to 1).

First of all, non surprisingly, data set A is the one providing the
poorest accuracy figures, with a F1-score over NAAL averaged over the
period of analysis around 0.53, with the exception of 2017 when a
satisfying score of 0.76 is reached. One may think that this may be due
to the missed detection (omission error) of older fallows, which would
in principle require a ‘‘bootstrap’’ period of five years (according to the
agreed-upon definition) to be properly covered by our trajectory model.
However, looking at Table 3 it is clear how the low F1-score is mainly
due to a systematically low user’s accuracy, hence to a high commission
error. Indeed, in the JECAM database a field is annotated as fallow only
if a history of active cropping is explicitly known, otherwise non-active
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Fig. 10. Average annual maximum Random Forest land use class probability for the 2016–2021 period. Pixel value represents the maximum probability among the four classes
considered. The white polygons correspond to all available years of data from JECAM reference data overlapped and with a 200 m buffer. (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)
Fig. 11. Annual non-active land (NAAL) map for Koumbia site in 2017. On the right, zoom-in and corresponding SPOT 6 image ©Airbus DS 2017.. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
cropland fields fall back into the herbaceous vegetation class. This again
seems to confirm the hypothesis that not all of the NAAL are correctly
represented in the original reference database as fallow land, making it
necessary to validate NAAL mapping with a different strategy.

Accuracies improve significantly when validating using data set B
(strictly reliable surfaces), with an average score of more than 0.8
over the period. However, looking at the number of available reference
data points in Fig. 6, we must face the evidence that this value might
not be statistically sufficient, as testified by the larger uncertainty.
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Moreover, this validation potentially suffers from a positive bias due
to the fact that, although the two data sets have a different nomencla-
ture (managed/unmanaged vs. NAAL/non-NAAL) and data distribution
among classes, the validation data points belong to the training surface
used for annual land use classification. As expected, accuracy values
progressively drop when validating over the augmented validation data
sets C/D/E, attaining average F1-scores ranging from 0.68 to 0.59, but
since they rely on a greater number of validation samples (Fig. 6) the
uncertainty is reduced as well.
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Fig. 12. Multiple samples of NAAL mapping at field scale and different years. For each sample, the image on the left is a very high resolution acquisition (SPOT6/7) which
has also been used for field delineation in the JECAM data set (Jolivot et al., 2021); Dotted blue lines have been added to highlight photo-interpreted fields for which NAAL
reference data was available for that given year. Dotted green lines represents fields for which no reference data was available that given year. All the fields shown here for which
a reference polygon existed was correctly labeled as ‘‘NAAL’’. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
Table 3
Annual NAAL maps accuracy metrics (UA, PA and OA stand for user’s accuracy, pro-
ducer’s accuracy and overall accuracy respectively) calculated with the five validation
data sets.

Validation Yeara UA PA OA F1-score Kappa

A 2017 0.86 0.67 0.99 0.76 0.75
2018 0.44 0.81 0.99 0.57 0.57
2020 0.23 0.72 0.97 0.35 0.34
2021 0.39 0.71 0.99 0.50 0.49

B 2017 1.00 0.60 1.00 0.75 0.75
2018 0.99 0.80 1.00 0.89 0.89
2020 1.00 0.61 1.00 0.76 0.76
2021 0.99 0.85 1.00 0.92 0.92

C 2017 0.96 0.50 0.98 0.65 0.65
2018 0.97 0.56 0.99 0.71 0.71
2020 0.99 0.57 1.00 0.72 0.72
2021 0.38 0.79 0.99 0.52 0.51

D 2017 0.79 0.51 0.98 0.62 0.61
2018 0.65 0.55 0.99 0.59 0.58
2020 0.50 0.79 0.98 0.61 0.60
2021 0.40 0.79 0.99 0.53 0.52

E 2017 0.86 0.50 0.98 0.63 0.62
2018 0.68 0.50 0.98 0.58 0.57
2020 0.50 0.77 0.98 0.61 0.60
2021 0.44 0.78 0.99 0.56 0.56

aNotice that for year 2016 no validation as a result of NAAL detection approach
employed (see Section 3.1.2).
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4.3. Discussion

The results presented above confirm that the multi-annual strategy
proposed in this paper may be a viable way to provide the reliable
mapping of NAAL surfaces based on Sentinel-2 image time series in
the sub-humid West African agrosystems. This is especially true if
compared with previous trials of direct annual mapping of NAAL on
the same area, even if in a larger land cover mapping scenario, in
which the fallow class was mostly missed (average F1-scores lower
than 0.2) (Gaetano et al., 2019). An extensive validation has been
provided using multiple versions of the reference data set, showing that
if we keep the most reliable information available on NAAL reference
surfaces the measured accuracy is very high (> 80%) considering the
fine scale targeted. However, coping with possible biases in such data
set, results also show that, enabling different amounts of reference
data augmentation based on suitable hypothesis on spatial correlation
at field level, performances still remain significantly higher (F1-score
ranging from 0.5 to 0.8) if compared with results achieved using
an annual supervised classification approach on the same study area.
Although this assessment obviously does not yet allow an operational
transfer of the proposed method as a decision support tool, we may
legitimately state that trajectory-based model proposed here achieve
promising results.

Spatial analysis of NAAL maps also confirms that (i) many areas
detected as NAAL are compatible to agricultural fields in shape and size
(see Fig. 12) and (ii) the overall occurrence of NAAL surfaces, which
amounts in average to around 11% of the total arable land (with peaks
of 14% years 2019 and 2021) is coherent with the occurrence of fallow
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Fig. 13. Sensitivity of the NAAL class accuracy to the validation data set used (A, B, C, D or E) ; (a) The annual average F1-score; (b) Box plot of the mean F1-score calculated
over the 2017–2021 period (2019 excluded, see text).. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
fields in the JECAM data set across the period. We can hence consider
that the proposed methodology is keen to provide locally significant
NAAL maps up to the plot scale, contrarily to recent works in fallow
mapping (Tong et al., 2020; Dara et al., 2018; Rufin et al., 2022) which,
although mainly focusing on large-scale assessment, do not provide
evidences of such local significance at the scale of pixel aggregates.
Some room for improvement in spatial accuracy could be achieved by
post-processing NAAL maps based on prior information on the location
and shape of the detected fields. We are currently carrying on some
experiments involving field-scale segmentation and object-based NAAL
field validation to prove this point.

Despite the mentioned promising outcomes, some limitations have
to be pointed out especially concerning the up-scaling potential of this
approach. First of all, the availability of a suitable reference database,
which must be both precise at field scale and annually updated, is far
from standard for the targeted region, and may be costly to produce,
also considering that field boundaries are not static in time (Castro Al-
varado, 2022). In addition, as shown, even when a proper reference
data set is available, ensuring its representativity outside the local scale
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(e.g. robustly with respect to changes in climate, soil types, vegetation
cycles, and all the changes in the captured radiometric information that
all this imply) may be hard, making the availability of a broad and
extensive data set an absolute necessity.

One may argue that the building of such data base could be
addressed through the use of high resolution imagery and photo-
interpretation. Yet the feasibility of this strategy relies on the ability
of discriminating (i) NAAL from other types natural vegetated spaces
and (ii) clear optical differences between NAAL and AAL. These two
conditions are rarely met in sub-humid West Africa due to a mainly
rainfed-based agriculture and a lack of reliable cropland mapping
products (without mentioning the limited availability of exploitable ac-
quisitions during the rainy season). Any improvement in image spatial
resolution or temporal frequency within the current range of available
products are therefore unlikely to provide substantial improvements in
the construction of an extensive enough reference database.

Nonetheless, in this work we provide a first evidence that for a
quantification, at least a rough one, of NAAL surfaces the regular
(e.g. annual) detection of active cropland vs. other kinds of non-
managed deciduous vegetation may suffice, since that would enable the
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application of a trajectory model like the one proposed here. Hence,
a possibility that we consider worth exploring to address the issue of
large-scale NAAL identification is to resort to unsupervised classifica-
tion techniques for managed vs. unmanaged LULC mapping, eventually
adapted to specific agro- and eco-systems. One way to proceed could
be to exploit the proposed supervised classification workflow to deeply
inspect the combination of image-derived variables allowing for the
discrimination between these two classes, and design a proper unsuper-
vised methodology to provide such discrimination. In this setting, the
deployment of field work for gathering reference data may be based
on an agrosystem-scale sampling in representative areas, moving the
whole workflow within the range of feasibility.

Further investigation are also being carried out to explore the
space of deep-learning based classification methods and assess their
performances w.r.t. the legacy Random Forest classifier used here, in
particular the methods that explicitly consider the temporal correlation
of variables. This could be another way to enhance the robustness of the
managed vs. unmanaged classification, but could also constitute the base
for a direct NAAL discrimination through the analysis of multi-annual
satellite images time-series (SITS).

5. Conclusions

Quantification of non-active agricultural land in West Africa is
essential to accurately assess agricultural systems on food security and
agro-ecological sustainability of current practices.

In this study we proposed a pixel-based methodology that makes
use of freely available remote sensing data, multiple years of ground
truth data registered in situ, and implements a simple 4-class LCLU
typology and a multi-annual trajectory model that allows the mapping
of Non Active Agricultural Land (NAAL). Our approach showed positive
results, improving mapping accuracy of NAAL in the area compared to
previous trials and illustrating the importance of the reference data set
preprocessing, in time and space, to correctly identify this land use class
that is multi-annual in nature. Future works are being put in place to
improve annual LULC maps via deep learning techniques and address
the issue of the upscaling of the method to larger extents (e.g. the whole
sub-humid West Africa).
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