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Abstract

BACKGROUND: Roots, tubers and bananas (RTB) play an essential role as staple foods, particularly in Africa. Consumer accep-
tance for RTB products relies strongly on the functional properties of, which may be affected by the size and shape of its gran-
ules. Classically, these are characterized either usingmanual measurements onmicroscopic photographs of starch colored with
iodine, or using a laser light-scattering granulometer (LLSG). While the former is tedious and only allows the analysis of a small
number of granules, the latter only provides limited information on the shape of the starch granule.

RESULTS: In this study, an open-source solution was developed allowing the automated measurement of the characteristic
parameters of the size and shape of yam starch granules by applying thresholding and object identification on microscopic
photographs. A random forest (RF) model was used to predict the starch granule shape class. This analysis pipeline was success-
fully applied to a yam diversity panel of 47 genotypes, leading to the characterization of more than 205 000 starch granules. Com-
parison between the classical and automatedmethod shows a very strong correlation (R2 = 0.99) and an absence of bias for granule
size. The RF model predicted shape class with an accuracy of 83%. With heritability equal to 0.85, the median projected area of the
granules varied from 381 to 1115 ∼m2 and their observed shapes were ellipsoidal, polyhedral, round and triangular.

CONCLUSION: The results obtained in this study show that the proposed open-source pipeline offers an accurate, robust and
discriminating solution for medium-throughput phenotyping of yam starch granule size distribution and shape classification.
© 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of
Chemical Industry.

Supporting information may be found in the online version of this article.
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INTRODUCTION
Roots, tubers and bananas (RTB) such as yam crops are the main
staple food in the diets of people in parts of sub-Saharan Africa,
Asia and Latin America, making it vital for food security.1 Yam
plays an important role as a source of calories, nutrients and fiber
in local diets, helping to ensure food security for people in pro-
duction areas.2,3 Once prioritizing yield, dry matter, and disease
and pest resistance, breeding programs must now focus on end-
product quality characteristics linked to processor and consumer
preferences.4 However, high-throughput phenotyping of RTB
quality is still a challenging task and up to now has relied on
indirect measures of composition or functional properties related
to it.
Starch is the main component (60–90% of dry matter) of RTB5

and the quality of food products is strongly correlated with its
composition6 and functional properties.5,7-9 Padonou et al.10 have
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shown that mealiness, an important acceptance criteria for boiled
cassava, could be predicted from starch functional properties
such as apparent viscosity after pasting. Similarly, the higher the
viscosity of the starch, the better the boiled and pounded
yam,11 while the gelatinization and retrogradation behavior of
potato starch influences the textural changes occurring during
thermal processing and cooking of products.12

The size distribution and shape of starch granules play a signif-
icant role in various functional properties such as viscosity, swell-
ing power, retention capacity, mealiness, gelatinization and
behavior during acid and enzymatic hydrolysis.13-15 Starch gran-
ule size differences have been observed to impact the functional
properties of sweet potato and banana.16,17 According to Kouadio
et al.,18 mealy-cooking yam varieties typically have small starch
granules (10–30 μm in diameter), while hard-cooking yam varie-
ties have larger starch granules (35–40 μm in diameter). Addition-
ally, Kang et al.19 demonstrated that the shape of starch granules
significantly affected the properties of rice flour and the quality of
gluten-free bread made from it. The Seolgaeng rice variety, with
its round starch structure, exhibits low granule hardness and dam-
aged starch content, enabling the production of gluten-free rice
bread with a well-built structure.19 Therefore, to understand the
relationship between starch biosynthesis, structure and proper-
ties, it is crucial to investigate the size and shape distributions. This
is particularly important for nutritional and industrial applications
of starch, as well as for understanding its digestibility and its asso-
ciation with nutritional disorders like diabetes and obesity.20

The most common method in the literature for characterizing
starch granules of RTB products relies on microscopic photo-
graphs of flours or isolated starch colored with iodine. The charac-
teristic parameters of granule size are then measured manually
with software such as ImageJ and their shapes are estimated visu-
ally.21 These measurements are tedious and only allow the analy-
sis of a small number of granules while there is a large granule size
and shape variability even within a given genotype.22,23 Alterna-
tively, the use of a laser light-scattering granulometer (LLSG) can
hasten the characterization of starch granules.24,25 This method
is fast and accurate as it allows evaluation of more than 100 000
granules and measures those with a diameter as small as
0.1 μm.26,27 However, it requires undamaged granules and is
affected by the shape of the granules.24 Non-spherical granules
often have slightly smaller diameters than those obtained by
image analysis techniques.27 In addition, this method does not
provide information on the shape of the granules apart from
major and minor axis ratio.
Therefore, the objective of this study was to develop an open-

source analysis pipeline that allows the automated and fast char-
acterization of large number of yam (Dioscorea alata L.) starch
granules providing size distribution and shape classification from
microscopic imagery.

MATERIALS AND METHODS
Materials
Starch granules from 47 different yam (Dioscorea alata L.) geno-
types produced in Guadeloupe in three locations (Duclos, Godet
and Roujol) during 3 years (2016, 2017 and 2018) were used to
develop the pipeline. After harvesting, two to six tubers of each
genotype were peeled, washed and cut into 2 cm cubes. The
cubes were then placed in an oven for a minimum of 48 h at a
maximum temperature of 65 °C, allowing to preservation of the
starch granule structure.28 The dry material was ground to

0.25 mm with an SM100 knife grinder (Retsch GmbH, Haan,
Germany). An optimal dilution suspension of 30 mg yam flour
mixed in 1.5 mL of a 5% Dermal Betadine solution was found to
maximize the number of starch granules observed for each pic-
ture, while avoiding granule overlaps (preliminary experiment,
involving eight alternative dilution levels described in Supporting
Information Appendix S1). A drop of the suspension was placed
upon microscopic slide. The slides were then mounted on a light
microscope (AxioScope A1, Carl Zeiss, Jena, Germany) for obser-
vation of the granules at a magnification of 100×. The microscope
was equipped with a camera (AxioCam, ERc 5S, Carl Zeiss) con-
nected to a computer for image acquisition. For each tuber, three
to five microscopical images were taken. Details of images taken
by year, site and genotype are given in Supporting Information
Appendix S2.

Methods
Image segmentation and starch granule recognition
Image segmentation and starch granule recognition were done
using R statistical language29 with the EBImage library.30 All image
processing was done using an HP portable computer equipped
with an Intel Core i7-6700HQ CPU 2.60 GHz with 16 GB RAM.
First, the raw image was converted to grayscale using the lumi-

nance weight.31 Denoising was then applied in order to remove
image speckle noise (i.e., isolated particles or small holes inside
the granules) by operating a morphological closing.32 After
denoising, the image was converted into a binary image based
on a gray threshold automatically detected by the Otsu segmen-
tation method.33

Second, the algorithm looked for the region of interest (i.e., the
starch granules). This step involved removing the background
and separating overlapping starch granules. Granules were sepa-
rated by calculating the distance map34 of each pixel of the binary
image. The distance map contained the distance to the nearest
background pixel of each pixel. The granules were then separated
using the watershed algorithm.35,36 Once all starch granules were
identified and isolated, a post-processing step was applied
excluding objects touching the border of the image.
Supporting Information (Appendix S3) provides detailed steps

of the pipeline and the corresponding R scripts.

Starch granule shape metrics
Prior to analysis, the images needed to be properly calibrated
using an optical micrometer. A Thoma hemocytometer slide with
100 μm graduation was used to measure the field of view of the
camera while keeping constant the microscope magnification
and the camera zoom and resolution. This method enabled an
accurate size calibration for each pixel. In this experiment, the
image definition was 2560 × 1920 pixels and the pixel size corre-
sponded to 0.44 μm.
After starch granule recognition, the functionalities of the

EBImage package allowed us to extract some shape and size
metrics:37,38

• the projected surface area (Aproj), which is the rectilinear projec-
tion of the starch granule onto the microscopic slide
plane (μm2);

• the estimated perimeter (P), which is the length of the bound-
ary of the starch granule (μm);

• the minimum (rmin), maximum (rmax), average (rmean) and stan-
dard deviation (rsd) radius, which are respectively theminimum,
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maximum, average and standard deviation of the distances
between the granule center and the outer border (μm);

• the minor (⊔min) and major (⊔max) axis (μm) and the eccentricity

of the ellipse, which is defined by E=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1− ⊔2min

⊔2max

r
;

• the ratio (Rr) between the minimum and maximum
radius: Rr= rmin

rmax
;

• the ratio (R⊔) between the minor and major axis R⊔= ⊔min
⊔max

;

• the shape factor 1 defined by SF1= π*⊔min *⊔max
4Aproj

;

• The shape factor 2 defined by SF2= π*⊔min *⊔max
4 −Aproj.

Shape classification model
The different classes of granule shape commonly observed in yam
crops are ellipsoidal, polyhedral, round and triangular.39-41 The
shape of 512 starch granules of our dataset were classified accord-
ingly. Shape classification examples are provided in Supporting
Information (Appendix S4). The calibration and validation samples
of the model contain data from 96 and 32 granules of each shape
class, respectively. A random forest (RF) classification model was
used to predict granule shape. The model was fit using the ran-
domForest package,42 with the 13 starch granule shape metrics
defined previously as explanatory variables. In order to ensure
model parsimony, the relative importance of each metric was cal-
culated based on the mean decrease Gini.43 The model was then
simplified by discarding the least important variables as long as
their removal did not impact model performance. The detailed
procedure is provided in Supporting Information (Appendix S4).
Finally, six parameters were kept (i.e., rsd, E, Rr, R⊔, SF1 and SF2).
The selected parameters then were used to calibrate the final
model and test it using the independent validation dataset.

Pipeline performance
Granule size can be expressed as the average diameter, the aver-
age length of the major and minor axes, the mean maximum
diameter, the mean granule volume or mean surface area.24 In
order to ensure accuracy of the starch granule size measurements
provided by the pipeline, the Aproj of 100 starch granules were
hand-measured using ImageJ44 and compared to the estimations
provided by the automated method.
To evaluate the possible effect of overlapping starch granules

on size, we carried out robust analysis of variance (ANOVA) and
a post hoc comparison test45 with the R package walrus46 using
the median as estimator. The dependent variable was Aproj and
the explanatory one was a categorical variable stating whether
starch granules were isolated (i.e., not overlapping).
The performance of the shape classification model was evalu-

ated on an independent validation set and quantified with the
global accuracy and class-specific false positive (FP) and false neg-
ative (FN) rates.

Genotypic effect size and broad sense heritability
To assess the genotypic effect and the broad heritability of Aproj,
we retained 20 common genotypes repeated over three years
(2016, 2017 and 2018) at the Roujol site. The list of selected geno-
types can be found in the Supporting Information (Appendix S5).
Because Aproj distributions differ from the normal, the genotypic
effect was tested using a robust ANOVA using the median as
estimator.
The broad sense heritability of the median starch granule pro-

jected area (H2
Cullis) was calculatedusing the formula of Cullis etal.,47

as recommended by Covarrubias-Pazaran48 using the inti package49

with threeyears and three replicates (i.e., corresponding to the three
tubers used per genotype):

H2
Cullis=1−

υBLUPΔ

2⊞2g
=1−

PEV
⊞2g

where ⊞2 refers to variance, g to genotype, υBLUPΔ to the average
BLUP (best linear unbiased predictor) difference or pairwise pre-
diction error variance, and PEV refers to the average prediction
error variance from genotypes.

Sample size
In order to guide future studies, two types of sample size were
estimated. The first sample size allows the determination of the
number n of starch granules that should be measured to have a
statistically acceptable estimation of the median of Aproj. To
achieve this, we calculated the median absolute deviation
(MAD) of Aproj from every image. With 1214 samples
(i.e., images), the central limit theorem50 allowed us to approxi-
mate the MAD distribution to a normal distribution. Then, we
determined n as follows:51

n=
Z2×⊞2

d2

where Z is the value of standard normal deviation corresponding
to the level of confidence. Here, we fixed the confidence level to
95%, which is equivalent to the value of Z equal to 1.96; d is the
margin of error, fixed to 10% of the mean of MAD of Aproj; ⊞ is
the expected value of standard deviation, fixed here to be the
mean of MAD of Aproj.
The second sample size corresponded to theminimumobserva-

tions allowing to detect the mean difference between genotype
Aproj median. In consequence, the effect size was calculated from
the robust ANOVA by dividing the mean absolute value of the dif-
ference between the genotype medians by the pooled standard
deviation.52,53 This mean effect size was used to calculate the
sample size (i.e., the number of granules per genotype) required
to have a 95% chance of detecting a statistically significant differ-
ence at the 0.05 alpha level. Sample size was calculated using the
R package pwr.54

RESULTS
Pipeline description and performances
Figure 1 illustrates the different steps in the analysis pipeline. The
first step allows us to remove raw image noise through the closing
morphology operation and to remove the image background
(Fig. 1 (A–D)). The second step aims to recognize and isolate the
starch granules using the watershed algorithm (Fig. 1 (E,F)).
The third step removes granules located close to the border of
the image (Fig. 1 (G,H)). Once isolated, the entire granules were
characterized by their size and shape metrics. Thanks to the
medium-throughput phenotyping pipeline developed, all of the
1214 previously acquired images were processed in less than
12 min, allowing the characterization of 205 256 starch granules.
The projected surface area of starch granules (Aproj) measured

with ImageJ software was compared with those obtained with
the developed automated pipeline. The coefficient of determina-
tion between the pipeline estimated and the ImageJ measured
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starch granules size was 0.99 (Fig. 2). The root mean square error
was 86.62 μm2, demonstrating the low difference between the
two methods.
The results of the robust ANOVA show a significant difference

(P-value < 0.001) between the Aproj of isolated and overlapping
granules. The median Aproj of isolated granules was, on average,
74.5 μm2 smaller than that of overlapping granules.
Among the characteristic parameters of starch granule size and

shape, the six most contributing to granule shape prediction were
rsd, E, Rr, R⊔, SF1 and SF2. Figure 3 presents the confusionmatrix for
the calibration and validation steps of the RF model. The model
shows good accuracy of, respectively, 80% and 82.81% of correct
class prediction. Specifically, the model correctly predicted
93.75% of ellipsoidal shapes, 62.50% of polyhedral shapes,
96.88% of round shapes and 75% of triangular shapes during
the validation step.

Starch granule size distribution and sample size
The distribution of starch granule size of all genotypes is mono-
modal and positively skewed (Fig. 4). Indeed, the coefficient of
asymmetry of the genotype size distribution varies between
0.32 and 1.74 (Fig. 5). Moreover, the distribution is heavy-tailed,
exhibiting high median absolute deviation from 229 to 541 μm2.
The median of Aproj of the granules varies between 381 μm2

(KL21) and 1115 μm2 (Plimbite).

The results of the robust ANOVA showed a highly significant
effect (P-value < 0.001) of the genotypes on Aproj. The mean dif-
ference between two genotypes was 190 μm2. Finally, Aproj was
found to be highly heritable, with a broad-sense heritability of
0.85 for the 20 genotypes over three years of cultivation
(Supporting information Appendix S4). To have a 95% chance of
detecting a difference corresponding to the mean genotypic dif-
ference with an alpha threshold of 0.05, it is necessary to observe
at least 122 starch granules per genotype. As there are, on aver-
age, 165 starch granules per image, this sample size corresponds
to one image acquisition. However, in order to correctly estimate
the median value of the projected granule surface with less than
10% error in 95% of cases, the number of granules to be observed
per experimental unit is 385, which corresponds to around two
images.

Starch granule shape
The calibrated RF model was used to predict the shape of the
205 256 phenotyped granules. Figure 6 shows the proportion of
each shape class by genotype. The main shape class varies
between round (e.g., Pacala) and oval (e.g., Divin). Ellipsoidal
shape proportion varied between 15.25% (Ptris) and 66.58%
(Peter); polyhedral shape proportion varied between 11.16%
(Peter) and 36.41% (H4X14M); round shape proportion per geno-
type varied between 3.53% (Divin) and 42.46% (Pacala); and trian-
gular shape proportion varied between 7.77% (Roujol) and
43.68% (Tahiti).

DISCUSSION
The development of an open-source pipeline allowed us to seg-
ment an image, identify individual objects and extract the charac-
teristic metrics of starch granules precisely in less than 1 s per
image (0.53 s). Starch granule size seemed to vary widely across
genotypes. Because all observed distribution of granules size
were skewed, the median and median absolute deviation should

Figure 1. Proposed workflow for an automated image analysis pipeline
to characterize the size and shape of yam starch granules.

Figure 2. Regression analyses comparing the projected surface of starch
granules estimated using the ImageJ reference method versus the pro-
posed pipeline.
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be preferred over the mean and standard deviation to character-
ize the position and dispersion of starch granules from each geno-
type. Also, we will need a sample size of approximately
385 granules to estimate the median with a precision of 10%
and a confidence level of 95%. With 165 granules per picture, this
corresponds to approximately two pictures (Supporting Informa-
tion, Appendix S5). In addition, one image acquisition is sufficient
to capture the differences between the genotypes in the study.
The presence of overlapping granules suggests that there is a

bias underestimating the size of these granules. In fact, attributing
overlapping pixels to just one of the two granules reduces the
median size estimate. However, the results of the robust ANOVA
show the opposite; that is, the overlapping granules are signifi-
cantly larger than the isolated granules. This could be explained
by the fact that large granules have a greater tendency to aggre-
gate than small ones. Under these conditions we recommend
keeping the overlapping granules for size estimation.
Using low-angle LLSG, Farhat et al.55 found similar sizes of

D. alata starch granules (10–35 and 25–40 μm, for minor and
major axis respectively) compared to this study (18–32 and 29–
43 μm; Supporting Information, Appendix S6). Amani et al.56

reported lower values (18.6–29.3 μm, for major axis). This discrep-
ancy may be due to impurities, which can be considered as parti-
cles using low-angle LLSG.55 Image analysis can visually verify that
only starch granules are counted, whereas LLSG does not allow
this distinction. This is why the literature refers to particle size
rather than granule size.
According to Fauziah et al.,9 who distinguish three types of

starch depending on the size of the granules, every studied yam
genotype has predominantly type A starch granules (Supporting
Information, Appendix S6). This is in accordance with a previous
study from Emiola and Delarosa8 but in contradiction to Fauziah
et al.,9 who found type B granules for D. alata.
In previous studies, quantification of the shape of starch gran-

ules relies on only one parameter, called the form factor,57,58

which equals 1 for a circle and tends to 0 for more irregular
shapes. However, as Russ59 explained, there is more than one
way to deviate from the notion of ‘circle’, since a shape can be
stretched into an ellipse but have an irregular edge or become
angular like a polygon or star. The numerous metrics derived in
the developed pipeline characterize the shape of starch granules
better than the single form factor. As shown in Fig. 3, these param-
eters were able to properly discriminate the class of the starch
granule shapes. This method thus offers the possibility to accu-
rately and rapidly study the shape diversity between genotypes.
The shapes of the starch granules of the studied D. alata geno-

types were ellipsoidal, polyhedral, round or triangular, as was the
case in previous studies.25,40 Because human perception is some-
times subjective and shape covers a continuous spectrum with-
out a clear distinction between classes, we had difficulty
classifying some granules into one of the four granule shape clas-
ses. These difficulties becamemore important with triangular and
polyhedral shapes, explaining the higher false positive and false
negative rates for these two classes (Fig. 3). However, these diffi-
culties also demonstrate the advantage of a stable algorithm
based on quantitative shape metrics compared to an often sub-
jective visual classification.
The most dominant starch granule shapes of D. alata vary from

study to study. According to Riley et al.,40 they were the ellipsoidal
and triangular shapes. For Fauziah et al.,9 they were the triangular
and polyhedral shapes. As for our study, the most dominant
starch granule shapes are ellipsoidal and polyhedral. On the other
hand, the proportion of shapes varies considerably from one
genotype to another.
A satisfactory size determination technique should evaluate all

granules, avoid missing small granules, prevent aggregation, dis-
tinguish between starch granules and non-starch particles, and
include an intrinsic allowance for granule shape.24,60 The results
obtained in this study show that the proposed method for
measuring physical parameters of starch granules is sufficiently

Figure 3. Confusion matrix of random forest model calibration (A) and validation (B).
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accurate, robust and discriminating to be adopted in medium-
throughput phenotyping studies. The application of this method
reveals both similarities in monomodal distribution and differ-
ences in average size and shape proportions of starch granules
present in yam flours, depending on genotype. The projected
area of starch granules offers good prospects for effective

selection, with a heritability of 0.85. These characteristics should
now be linked to functional properties of the yam product. As sug-
gested by Kang et al.19 the gelatinization of round-shaped gran-
ules of rice occurs more rapidly than other shape classes and
results in higher viscosity. Moreover, Kouadio et al.18 proposed a
possible link between starch granule size, proportion of

Figure 4. Starch granule size distribution of 47 selected yam (Dioscorea alata L.) genotypes.
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yam-resistant starch and product quality (i.e., mealiness). Further
studies should be conducted to assess how the most contrasting
genotypes in this study compare in starch functional properties
(e.g., visco-amilograms) and, more importantly, cooking quality.
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