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ABSTRACT
In this paper, we report an ongoing work on exploring the ability
of Triadic Concept Analysis to provide a framework for analyzing
products evolution in time and space, and highlight possible usages
in the lifecycle of a product line.
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1 INTRODUCTION
Software Product Line Engineering (SPLE) [16] is currently an estab-
lished paradigm in software engineering. The existing product lines
face various challenges, including their evolution and maintenance.
Recent work highlighted the importance of proposing conceptual
foundations and tools for simultaneously supporting variability
in space (i.e. modeling and development of alternative products)
and variability in time (i.e. developing versions) [1]. The focus can
be put on the evolution of the product line itself and its main ele-
ments (i.e. features, feature model, assets, reference architecture),
or on the independent evolution of products once derived from
the product line, by selecting features that were implemented with
assets in different manners according to the adopted mechanism,
i.e. annotative, compositional, or transformational [21].

In this paper, we focus on the independent evolution of products
in terms of features, assuming that this evolution remains in the
context of an evolving product line. Each product can acquire or lose
features along its lifetime, knowing that a feature can result from a
revision of other features. We call a snapshot the set of features of a
product observed at a specific date. We aim to analyze the evolution
of various products through snapshots at several dates, with the
objective to formulate recommendations to the product developers
(in selecting features during application engineering) or to product
line developers (e.g. by suggesting feature constraints not identified
in the current feature model, to consolidate domain engineering).
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Observing the relationships between products and features has
already been made in the context of variability in space. This anal-
ysis is, for instance, part of the process of feature model synthesis
[3, 14, 19]. It has been done using specialized algorithms highlight-
ing particular relationships, such as binary implications, mutex, and
groups [19], or using Formal Concept Analysis (FCA) as a global
approach to produce a canonical structure including all the logical
relationships [5, 12, 18].

To analyze the variability in date and space of products from
a product line, we therefore need to consider not only the two
dimensions of products and features, but also a third dimension, i.e.
the snapshots’ dates. In this paper, we report an ongoing work on
exploring the ability of an extension of FCA, i.e. Triadic Concept
Analysis (TCA) to provide a framework for analyzing products
evolution in the three dimensions, and highlighting possible usages
in the lifecycle of a product line.

In Section 2, we introduce basics for FCA and TCA using a
short working example, and focus on the implications provided
by each of these methods. Then, in Section 3, we elaborate on the
interpretation and usage of the obtained triadic implications. We
conclude and give future directions of this work in Section 4.

2 POLYADIC CONCEPT ANALYSIS
Formal concept analysis (FCA), also called dyadic concept analysis,
is a mathematical framework based on lattice theory that aims
at structuring the information contained in the relation between
objects and their attributes [8]. This structuring takes the form of
concepts, i.e. groupings of objects that share the same attributes,
or implications, i.e. regularities in the description of objects by
attributes. In this paper, we are interested in implications as they
encode knowledge on variability into logical relationships.

Binary relations are represented as binary tables called formal
contexts. For instance, Table 1 illustrates the presence of features
(attributes) in software systems, i.e. products (objects).

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5
𝑝1 × × ×
𝑝2 × × ×
𝑝3 × × × ×
𝑝4 × ×

Table 1: Example of formal context between products 𝑝𝑖 , 1 ≤
𝑖 ≤ 4 and features 𝑓𝑗 , 1 ≤ 𝑗 ≤ 5.

Implications are regularities of the form 𝐴 → 𝐵, where 𝐴 and
𝐵 are sets of attributes, meaning that all objects described by at-
tributes𝐴 are also described by attributes 𝐵. We name support of an
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𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓1 𝑓2 𝑓3 𝑓4 𝑓5
𝑝1 × × × × ×
𝑝2 × × × ×
𝑝3 × × × × × × × × ×
𝑝4 × × × ×
𝑝5 × × × × × ×
𝑝6 × × ×

𝑑1 𝑑2 𝑑3
Table 2: Example of triadic context between products 𝑝𝑖 , features 𝑓𝑗 , and snapshots’ dates 𝑑𝑘 , where 𝑑1<𝑑2<𝑑3.

implication the set of objects described by𝐴 (and, thus, by𝐴∪𝐵). For
instance, in Table 1, the following implications may be observed:

• ∅ → {𝑓5} (support {𝑝1, 𝑝2, 𝑝3, 𝑝4})
• {𝑓2} → {𝑓1} (support {𝑝1, 𝑝2})
• {𝑓4} → {𝑓1, 𝑓3, 𝑓5} (support {𝑝3})
• {𝑓1, 𝑓3} → {𝑓4, 𝑓5} (support {𝑝3})
• {𝑓3} → {𝑓5} (support {𝑝3, 𝑝4})

The first implication, ∅ → {𝑓5}, means that all products have
the feature 𝑓5. The set of all the implications that can be observed
in this formal context is clearly redundant, e.g. {𝑓3} → {𝑓5} can be
inferred from ∅ → {𝑓5}. Thus, one is often interested in subsets
of implications called implication bases that minimize redundancy
while still retaining all the information. One such implication base
is made of the implications of the form 𝐴 → {𝑏}, where 𝐴 is a
cardinality-minimal set of attributes such that the implication is
valid. 𝐴 is then called a proper premise [17]. In the SPLE domain,
the proper premises implication base has been used in [18] to add
missing dependencies to a feature diagram extracted from the at-
tribute concept graph (excerpt of the concept lattice). The proper
premises implication base of the Table 1 context is:

• ∅ → {𝑓5}
• {𝑓2} → {𝑓1}
• {𝑓4} → {𝑓1}
• {𝑓4} → {𝑓3}
• {𝑓1, 𝑓3} → {𝑓4}
• {𝑓2, 𝑓3} → {𝑓4} (support ∅)

A natural extension of FCA, TCA [11], is aimed at analyzing
ternary relations, such as the one presented in Table 2 depicting
a ternary relation between three object kinds: products (software
systems), features, and snapshots’ dates. As FCA, TCA computes
concepts and implications. In TCA, a set of implications holds for
each subset of dimensions [2, 7], such as the implications between
sets of snapshots’ dates, implications between sets of features, and
implications between pairs of dimensions e.g. (feature, snapshots’
date). An implication 𝐴 → 𝐵 holds if and only if for every 𝑥 such
that there is a triple 𝑥 ∪ 𝑎 for all 𝑎 ∈ 𝐴, there is also a triple 𝑥 ∪ 𝑏

for all 𝑏 ∈ 𝐵. The support of the implication is then the set of
such 𝑥 . Regarding Table 2 for instance, the support of implication
{𝑓2} → {𝑓1} is {(𝑝1, 𝑑2), (𝑝1, 𝑑3), (𝑝2, 𝑑2), (𝑝2, 𝑑3)} and the support
of implication {(𝑝5, 𝑑1)} → {(𝑝5, 𝑑2), (𝑝5, 𝑑3)} is {𝑓3, 𝑓5}. Some
implications have empty supports, i.e. their premise never appears
in the dataset. These are interesting as they can be interpreted as
impossibilities or mutual exclusions.

The next section presents examples of such implications together
with their interpretation and potential usage by product line devel-
opers.

3 INTERPRETATION OF TCA RESULTS
Table 2 contains diverse product evolution patterns. Product 𝑝1
aggregated feature 𝑓2 with 𝑓1 at date 𝑑2. Product 𝑝2 included fea-
tures 𝑓1 and 𝑓2 at date 𝑑2, and remained unchanged. Product 𝑝3
included features 𝑓3 and 𝑓5 at 𝑑1, then included 𝑓4 at 𝑑2, and 𝑓1 at
𝑑3. Product 𝑝4 included features 𝑓3 and 𝑓5 at date 𝑑2, and remained
unchanged. Product 𝑝5 was developed using features 𝑓3 and 𝑓5 at
date 𝑑1, and remained unchanged. Finally, Product 𝑝6 included 𝑓4
at 𝑑2, that was replaced by 𝑓3 and 𝑓5 at 𝑑3. These patterns of fea-
tures adding/losing/remaining unchanged at various dates can be
observed in the development of products from a product line.

This section presents some of the implications computed, as the
proper premise base for Table 2, per subset of dimensions using TCA.
An interpretation and a potential usage for product line developers
of some implications is also proposed.

Implications between features.

• Example of implications:
FI1 {𝑓2} → {𝑓1}
• Interpretation of [FI1]: This implication means that when a
product 𝑝𝑖 has feature 𝑓2 at date 𝑑 𝑗 it also has feature 𝑓1. It
is held by {(𝑝1, 𝑑2), (𝑝1, 𝑑3), (𝑝2, 𝑑2), (𝑝2, 𝑑3)}.

• Potential usage: When the feature {𝑓2} is included in the
development of a product, then it can be recommended to
add {𝑓1}. This recommendation can be strong if the support
of this implication is a significant part of pairs (𝑝𝑖 , 𝑑 𝑗 ), and
more particularly if they correspond to recent versions of
products. In such case, this recommendation could be added
as a constraint in the feature model.

Implications between dates.

• Example of implications:
DI1 {𝑑1} → {𝑑2, 𝑑3} (support {(𝑝1, 𝑓1), (𝑝3, 𝑓3), (𝑝3, 𝑓5),

(𝑝5, 𝑓3), (𝑝5, 𝑓5)}, i.e. all relations in the sub-context 𝑑1
(left part of the table)).

• Interpretation of [DI1]: All features present in products at
date 𝑑1 are also present at dates 𝑑2 and 𝑑3.

• Potential usage: if dates 𝑑1, 𝑑2, and 𝑑3 are successive, this
may indicate that all product features present at date 𝑑1 are
a basis for products already developed, and that 𝑑1 may be
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the date of the foundational step of the products or of a main
release.

Implications between products.

• Example of implications:
PI1 {𝑝5} → {𝑝3}
PI2 {𝑝6} → {𝑝3}
PI3 {𝑝5, 𝑝6} → {𝑝4, 𝑝3}
• Interpretation of [PI1]: At all dates, if 𝑝5 has some feature,
𝑝3 has also this feature. Thus 𝑝3 is an extension of 𝑝5, i.e.
always has more features than 𝑝5.

• Potential usage of [PI1]: This may be used to recommend
to developers of 𝑝5 to complete their feature set, to be up to
date. Alternatively, this can be used to recommend a lighter
product.

Implications between pairs (𝑝𝑟𝑜𝑑𝑢𝑐𝑡, 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒).
• Example of implications:
PFI1 ∅ → {(𝑝1, 𝑓1), (𝑝3, 𝑓3), (𝑝3, 𝑓5), (𝑝5, 𝑓3), (𝑝5, 𝑓5)} (support

{𝑑1, 𝑑2, 𝑑3})
• Interpretation of [PFI1]: product 𝑝1 always has feature 𝑓1,
and products 𝑝3 and 𝑝5 always have features 𝑓3 and 𝑓5.

• Potential usage of [PFI1]: These implications may indicate
what is sometimes called “core features". Here, they are not
the core features of the product line, but the core of a product,
or of a set of products. E.g. 𝑝3 and 𝑝5 may be considered to
have common foundations.

Implications between pairs (𝑝𝑟𝑜𝑑𝑢𝑐𝑡, 𝑑𝑎𝑡𝑒).
• Example of implications:

PDI1 {(𝑝5, 𝑑1)} → {(𝑝6, 𝑑3), (𝑝4, 𝑑2), (𝑝4, 𝑑3)}
• Interpretation of [PDI1]: all features, possessed by product
𝑝5 at date 𝑑1, are also possessed by product 𝑝4 at date 𝑑2 and
𝑑3 and by product 𝑝6 at date 𝑑3.

• Potential usage of [PDI1]: This implication may address the
relative versioning of products from a product line, where
some features are included in specific versions or products
(e.g. testing product or early release product) before being
integrated in others.

Implications between pairs (𝑓 𝑒𝑎𝑡𝑢𝑟𝑒, 𝑑𝑎𝑡𝑒).
• Example of implications:

FDI1 {(𝑓4, 𝑑2)} → {(𝑓5, 𝑑3)} (support {𝑝3, 𝑝6})
• Interpretation of [FDI1]: all products that have features 𝑓4 at
date 𝑑2 have feature 𝑓5 at date 𝑑3.

• Potential usage of [FDI1]: This implication may inform on
specific feature needs induced by the time, either required
by the users or technical. In addition, a technical need could
be induced by the user need, such as securing exchanges in
a version, that requires enabling password management, a
feature appearing only from the next version.

Making concrete the example. We assume that the products 𝑝𝑖 ,
𝑖 = 1 . . . 6, have been derived using an hypothetical e-commerce
product line. Dates are 𝑑1 = 2020/12/12, 𝑑2 = 2021/12/12 and
𝑑3 = 2022/12/12, meaning that the product evolution has been ob-
served at the end of three consecutive years. Table 3 presents the fea-
tures. Two features allow comment management: 𝑎𝑑𝑑 𝑐𝑜𝑚𝑚𝑒𝑛𝑡 and

𝑢𝑝𝑑𝑎𝑡𝑒 𝑐𝑜𝑚𝑚𝑒𝑛𝑡 . Two features support purchase:𝑚𝑎𝑛𝑎𝑔𝑒 𝑎 𝑏𝑎𝑠𝑘𝑒𝑡

and 𝑝𝑎𝑦 𝑏𝑦 𝑐𝑟𝑒𝑑𝑖𝑡𝑐𝑎𝑟𝑑 . One last feature (𝑚𝑎𝑛𝑎𝑔𝑒 𝑎 𝑤𝑖𝑠ℎ𝑙𝑖𝑠𝑡 ) allows
users to keep track of their choices.

𝑓1 add comment
𝑓2 update comment
𝑓3 manage a basket
𝑓4 manage a wishlist
𝑓5 pay by credit card

Table 3: Example of e-commerce website features

The implications presented above can therefore be interpreted
as follows.

FI1 {𝑢𝑝𝑑𝑎𝑡𝑒 𝑐𝑜𝑚𝑚𝑒𝑛𝑡} → {𝑎𝑑𝑑 𝑐𝑜𝑚𝑚𝑒𝑛𝑡}: regardless of the
date and version, when a product allows to update comments,
then it allows to add comments.

DI1 {2020/12/12} → {2021/12/12, 2022/12/12}: this implica-
tion highlights that there are persistent features in a product
by the time, e.g. features that were present in a product at
the end of 2020 have been kept in 2021 and 2022.

PI1 {𝑝5} → {𝑝3}: 𝑝3 may be (over the years) viewed as an ex-
tension of 𝑝5, corresponding to the addition of a wish list
management feature to the purchase features.

PFI1 ∅ → {(𝑝1, 𝑎𝑑𝑑 𝑐𝑜𝑚𝑚𝑒𝑛𝑡), (𝑝3,𝑚𝑎𝑛𝑎𝑔𝑒 𝑎 𝑏𝑎𝑠𝑘𝑒𝑡),
(𝑝3, 𝑝𝑎𝑦 𝑏𝑦 𝑐𝑟𝑒𝑑𝑖𝑡 𝑐𝑎𝑟𝑑), (𝑝5,𝑚𝑎𝑛𝑎𝑔𝑒 𝑎 𝑏𝑎𝑠𝑘𝑒𝑡),
(𝑝5, 𝑝𝑎𝑦 𝑏𝑦 𝑐𝑟𝑒𝑑𝑖𝑡 𝑐𝑎𝑟𝑑)}: this indicates essential fea-
tures for the mentioned products as they persist in these
products over the time.

PDI1 {(𝑝5, 2020/12/12)} → {(𝑝6, 2022/12/12), (𝑝4, 2021/12/12),
(𝑝4, 2022/12/12)}: what is provided by 𝑝5 at the end of 2020
appears in 𝑝4 at the end of 2021 and 2022, and in 𝑝6 at the end
of 2022. The set of purchase features (i.e.𝑚𝑎𝑛𝑎𝑔𝑒 𝑎 𝑏𝑎𝑠𝑘𝑒𝑡

and 𝑝𝑎𝑦 𝑏𝑦 𝑐𝑟𝑒𝑑𝑖𝑡 𝑐𝑎𝑟𝑑) was the whole set of features of 𝑝5
as stated in 2020. As they were recognized as so important
or evaluated positively by customers, they have later been
adopted by two other products.

FDI1 {(𝑚𝑎𝑛𝑎𝑔𝑒 𝑎 𝑤𝑖𝑠ℎ𝑙𝑖𝑠𝑡, 2021/12/12)} → {(𝑝𝑎𝑦 𝑏𝑦

𝑐𝑟𝑒𝑑𝑖𝑡 𝑐𝑎𝑟𝑑, 2022/12/12)}: products that provide
𝑚𝑎𝑛𝑎𝑔𝑒 𝑎 𝑤𝑖𝑠ℎ𝑙𝑖𝑠𝑡 by the end of 2021 also necessar-
ily provide 𝑝𝑎𝑦 𝑏𝑦 𝑐𝑟𝑒𝑑𝑖𝑡 𝑐𝑎𝑟𝑑 by the end of 2022. This
implication suggests that the wish list feature may have
created users interest for online purchase, through the
features added in the following version. This is true, even if
the wish list feature itself disappears, as in 𝑝6.

4 DISCUSSION AND RESEARCH AGENDA
In this paper, we have presented an ongoing work using Triadic
Concept Analysis (TCA) to highlight and leverage knowledge on
the evolution of features in products of a product line over time.
This work is in an early stage, which has led to many questions to
be answered.

Exploiting more Information. While we were analyzing the three
dimensions (products, features, dates), we observed that additional
information could be included in other dimensions such as the
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software artifacts implementing the features, the fact that some
features are revisions of other features, and the chronology. Adding
software artifacts would consist in adding a 4th dimension, which
can be addressed using the general polyadic concept analysis (𝑛-
dimensional) framework [22]. Another dimension in product line
comes when it is relevant to distinguish various user roles to access
different features depending on the version, i.e. a role may have
access to a feature in a specific version, but not in another one.
Chronology implies considering an order in an additional dimen-
sion by TCA. Feature revision information needs introducing a
particular additional relationship, that we could investigate using a
combination of TCA and Relational Concept Analysis [9].

Alternative FCA Knowledge Patterns. We may also consider us-
ing other formal concept analysis entities as they could provide
different point of views. There are other implication bases that
can be extracted from a formal context, each one having its own
characteristics. In this paper, we have used the proper premises
base. The Duquenne-Guigues base of implications (DGBI) is another
base that has the particularity of being a cardinality minimal set
of non-redundant implications. DGBI has already been used in the
SPLE domain, e.g. in [12] to find additional logical constraints and
in [4] to summarize variability in product descriptions. However,
it is much more costly to compute DGBI than the proper premises
base.

Using the formal concepts, from which the formalism gets its
name, is an alternative to implication bases. While an implication
base is a logical structure that supports reasoning, formal concepts
are groups of objects sharing attributes. In the dyadic formal context
of Table 1, a concept is ({𝑝1, 𝑝2, 𝑝3}, {𝑓1, 𝑓5}), which means that
products 𝑝1, 𝑝2 and 𝑝3 share features 𝑓1, 𝑓5. In the triadic context of
Table 2, a concept is a triple made of subsets of each dimension, i.e.
a set of products, a set of features, and a set of dates. For example,
the concept ({𝑝3, 𝑝5}, {𝑓3, 𝑓5}, {𝑑1, 𝑑2, 𝑑3}) means that products 𝑝3
and 𝑝5 have both features 𝑓3 and 𝑓5 at the three dates 𝑑1, 𝑑2, and
𝑑3. In the dyadic case, concepts are ordered in a lattice structure,
enabling efficient visualization and study of the content of the
data. Concept lattices, or some of their excerpts, have been used
in the dyadic case for Feature Model synthesis [5, 12, 18]. In the
triadic case, although information is richer, it is more difficult to get
good intuitions and how to represent the lattice is an open question.
Approaches tried to propose forms of conceptual navigation in these
triadic graphical representations [10], that we could leverage. Using
such an approach to analyze multidimensional data challenges
SPLE to imagine an intuitive graphical representation of the multi-
dimensional variability.

Develop a Methodology. Finally, we aim at designing a complete
methodology that would guide a product line designer or a product
developer using knowledge extracted by TCA from the evolution of
the existing products. To achieve this objective, we need to complete
our analysis using the lessons learned from the implications in the
several subsets of dimensions.

Both implications and formal concepts are costly to compute
and the approach does not scale well. This could be a limit when
analyzing the variability of product lines with many versions and
features such as Linux [15] or the industrial video generator of [6].
An FCA-based approach thus aims to be devoted to medium-size

dataset, to identified subsets of large datasets, or be combined with
other approaches. FCA, as a symbolic / logic- based method, brings
together exact implications, exact data structuring and knowledge
patterns with explainable results. Other approaches use machine
learning approaches to extract constraints, such as [20]. Finally, a
worthwhile track of research would consist in combining both ap-
proaches. For assessing and parameterizing the approach, including
its scalability and the relevance of results, exploiting the benchmark
of [13] sounds promising.
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