

Trace minerals added to **soils** by **animal effluents**: an **ecotoxicological** issue?

Matthieu N. Bravin, <u>matthieu.bravin@cirad.fr</u> S. Legros, E. Clément, M. Tella, A. Avadí, and E. Doelsch

Sustainable use of trace minerals from the feed to the food

Introduction

From **trace minerals** in animal nutrition to **trace elements** in animal effluents and agricultural soils

Soil background concentrations

- Mineral elements naturally and ubiquitously occurring at trace levels (< 100 mg/kg) in soils (Hooda, ed., 2010)
 Awkward synonyms: heavy metals, potentially toxic elements
- Median concentrations

Concentrations in animal effluents

 Animal urine and feces raw, combined (with plant residues) and/or processed (aerobic and/or anaerobic digestion)
 Animal residues usually rich in organic matter

Input to agricultural soils

• Mean flux to French soils

Belon et al. (2012) Sci. Tot. Environ. 439

 Potential health and environmental impacts

cirad

Global (eco)toxicity assessment

Life Cycle Assessment

Science of the Total Environment 590-591 (2017) 452-460 Contents lists available at ScienceDirect

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

CrossMark

Framework for estimating toxic releases from the application of manure on agricultural soil: National release inventories for heavy metals in 2000–2014

Division for Quantitative Sustainability Assessment, Department of Management Engineering, Technical University of Denmark, Denmark

HIGHLIGHTS

GRAPHICAL ABSTRACT

- A framework for estimating toxic releases from manure applied on land is proposed.
- Release inventories were built for 8 heavy metals and 215 countries in 2000-2014.
- Toxic impacts per area of agricultural land are higher in EU and South-East
- Asia.
 Mercury, copper and zinc are the main contributors to global toxic impacts.
 Harmonised heavy metal concentrations
- are needed for country differentiation.

Leclerc et al. (2017) Sci. Tot. Environ. 590-591

Human toxicity

• Freshwater ecotoxicity

Assessing soil ecotoxicity

Impact = Emission × Comparative Toxicity Potential
 CTP_{water} = FF × BF × EF

Owsianiak et al. (2013) Environ. Sci. Technol. 47

Assessing soil ecotoxicity

USEtox: Comparative Toxicity Potential

 CTP_{soil} = FF × ACF × BF × EF
 CFs = f {soil physical-chemical properties}

Ecotoxicity in amended soils

• CTP ranges within Europe

Sydow et al. (2018) Sustain. 10

Impact at the country level
 Impact = CTP × emission

¹¹A nimine cademy

🥑 cirad

Ecotoxicity: only a matter of quantity?

- According to LCA, animal effluent application to soils could be (eco)toxic: mainly Cu and Zn
- (eco)Toxicity would only depend on the amount of TE applied with animal effluents

 \Rightarrow Confront with the **bioavailability theory** and the **empirical knowledge**

From TE-contaminated soils to ecotoxicity

A (hist)story of bioavailability

Bioavailability: the consensus

- Fraction of total soil TE made available
 by physical-chemically-driven desorption processes
 that can be potentially taken up by soil organisms
- Fraction of available TE
 effectively taken up by a soil organism
 under the control of physiologically-driven processes
 ⇒ Specific of each target organism
- Bio-accumulated fraction of bioavailable TE that may induce a toxic effect

NF EN ISO 17402 (2008)

🖉 cirad

Physical-chemically-related concepts

🖉 cirad

• The free ion concept and its consequences

Biologically-related concepts

• Bio-influence

Soil

Bravin et al. (2009) Environ. Sci. Technol. 43

Biologically-related concepts

Individual plasticity

Leveque et al. (2013) Environ. Pollut. 179

Chaignon et al. (2002) New Phytol. 154

Biologically-related concepts

Taxonomic diversity

Cd uptake, ng m⁻² s⁻¹

Lofts et al. (2013) Environ. Pollut. 178

Earthworms

Microorganisms

USEtox vs Bioavailability theory

 Bioavailability is driven both by physical-chemical and biological processes
 Physical-chemical endpoints are only indicators of bioavailability
 Bioavailability is specific to each target organism

USEtox is in line with the bioavailability theory
 ⇒ To which extend it accounts empirically
 for physical-chemical and biological drivers?

TE bioavailability and ecotoxicity in soils amended with organic residues

including animal effluents

Protective effect: Empirical evidences

- Methodology
 - 22 sites with control and amended soils for a few years to a century
 - Cu availability in control soils spiked as amended soils
 ⇒ Reduction factor
 - Plant toxicity test with control and amended soils similarly spiked
 ⇒ Protection factor

• Reduction factor on soil Cu availability

Smolders et al. (2012) J. Environ. Qual. 41

🖉 cirad

cirad

Protective effect: Empirical evidences

Protection factor (PF) on Cu phytotoxicity

- Experimental limits • Soil pH correction • Protective effect compared to no soil contamination?
- Hypothetical protection mechanisms Lower Cu availability

in organic residues (OR)? No impact of OR-induced soil properties evolution?

Smolders et al. (2012) J. Environ. Qual. 41

Mechanisms: 1. Organic residues

 Cu and Zn speciation in organic residues strongly changes along the process according to the redox state

Mechanisms: 1. Organic residues

• Cu and Zn sulfides evolved very quickly in amended soils

Formentini et al. (2017) Environ. pollut. 222

Formentini et al. (2022) Sci. Tot. Environ. 848

Mechanisms: 1. Organic residues

- Zn speciation in OR partly drives **soil Zn availability**
- Organic matter mineralization partly drives **soil Cu availability**

Tella et al. (2016) Environ. Pollut. 212

Ø cirad

BD

Mechanisms: 2. Amended soils

• Repetitive organic residues applications induce soil pH and DOM increases

Laurent et al. (2020) Sci. Tot. Environ. 709

🥑 cirad

nimine cademy

Mechanisms: 2. Amended soils

Mineral

Organic

 Organic residues and plants mitigate soil Cu and Zn availability

а

Organic

Rhizosphere

а

No fertilization

Laurent et al. (2023b)

Mineral

under revision

10

11

12

13

Mechanisms: 2. Amended soils

• A decade of organic residues applications does not increase Cu and Zn bioavailability

Earthworms

Validation of the protective effect over a decade
Mainly attributed to OR-induced changes in soil pH and DOM

 \Rightarrow Protective effect still effective over several decades?

Laurent et al. (2023a) Environ. Sci. Pollut. Res. 30

Plants

20

Nofertilization Nineral Organic

cirad

USEtox vs soil biogeochemistry!

A unique and dedicated experiment

USEtox vs soil biogeochemistry!

Speciation

in animal effluents • Cu sulfides dominate whatever the animals

Zn sulfides for pig and piglets Zn phosphate for broilers

Tella et al. (2023)

Chemosphere 340

• Induced changes in **soil Cu and Zn availability**

Clément et al. (2023) EAAP and Icobte-Ichmet conferences²⁹

USEtox vs soil biogeochemistry!

• USEtox cannot reproduce the huge AE effect on CTP

Cu

 Δ =1.71 log₁₀CTP

USETox

Experimental

× day per kg_{emitted}

 $og_{10}(\text{CTP})$, m^3

3.5

2.5

2

 Impact less driven by emissions than at the country scale

USEtox needs to be refined for better assessing 5 \bullet the impact of TE added to soils by animal effluents 4.5

The quantitative driver remains dominant, •

but qualitative (biogeochemical) drivers matter too!

Soil + 32 animal effluents World soil properties (Owsianiak et al 2013) European soil properties (Sydow et al 2018)

Clément et al. (2023) EAAP and Icobte-Ichmet conferences

Risk assessment: field case study

• Field trial

- 14 cropping cycles, 7 years
 Market-garden crops
 3 fertilizations
 - Synthetic fertilizers
 - Pig slurry and poultry litter composts: 30-60 t (ha y)⁻¹

Analytical determinations

• TE total concentrations in fertilizers, soils and plants

Soil pH and OM

• Modelling

TE mass-balance in soil
Extrapolation over 1 century
Calculator for soil ecotoxicity assessment

e cirad

Risk assessment: field case study

32

Animal effluents induced soil Cu and Zn contamination

ecotoxicological impacts within a few decades **Synthetic fertilizers** 7.5 Synthetic fertilizers **Pig slurry composts** Poultry litter composts 400 400 Pig slurry composts 7.0 Cu in soil (mg kg⁻¹) 000 000 Cu in soil (mg kg⁻¹) 000 000 6.5 Soil pH PNEC = 184.7 1005y + 536[140.7;236.9] 6.0 adi-R² = 0.95 PNEC = 127 [110.3:145.4] 5.5 28 y 100 100 [14:46] 5.0

25

50

Time (year)

75

100

Ó

2

4 Time (year)

33

6

Soil Cu and Zn contamination could induce

75

50

Time (year)

0

25

100

Risk assessment: field case study

Laurent et al. (2023) in preparation

0

eirad

Conclusion

and perspectives

Take-home messages

- AE-induced soil TE (Cu and Zn) contamination may have an ecotoxicological impact over several decades
- The quantitative driver seems dominant
- Qualitative drivers matter 100!

• Further information in our recent review

Trace contaminants in the environmental assessment of organic waste recycling in agriculture: Gaps between methods and knowledge

Angel Avadi^{a,b}, Pierre Benoit⁶, Matthieu N. Bravin^{b,d}, Benoit Cournoye^{a,e}, Frédéric Feder^{a,b,}, Wessam Galia^a, Patricia Garnie^c, Claire-Sophie Haudin⁶, Samuel Legros^{b,d}, Laure Mamy⁶, Sylvie Nazaret^a, Dominique Patureau⁹, Valérie Pot^c, Laure Weublé Gonod⁶, Tom Wassenaa^{a,b}, and Emmanuel Doelsch^{a,b,e} (ZIRAD, UFR Revylage et ringue, F-3098 Monepiller, France Turvenie Pittischay, INRA, Agopharitröt, UMR ECOXYS, Fr895 Thievral-Grignon, France CIRAD, UFR Revylage et ringue, F-0798 Shim-Dens, La Rainien, France Turvenie Dirakischay, INRA, Agopharitröt, UMR ECOXYS, F-7895 Thievral-Grignon, France CIRAD, UFR Revylage et ringue, F-0774 Shim-Dens, La Rainien, France CIRAD, UFR Revylage et ringue, 5524 Palex, Songel CIRAD, UFR Revylage et Ringue, 15524 Palex, Songel 18BE, Luivernie de Monpeller, Nichome, France

Contents

CHAPTER TWO

1. Introduction	54
 Treatment and agricultural recycling of organic waste 	54
1.2 Contaminants in organic waste and effects of its agricultural recycling	
on soil	56
1.3 Scope and objectives of this review	61
2. Environmental assessment of organic waste treatment and agricultural	
recycling—State of the art: Consideration of contaminants	62
2.1 Environmental assessment frameworks	62
2.2 Toxicity modeling in LCA	76
2.3 Consideration of contaminants in LCA of organic waste treatments	
and agricultural recycling	80
2.4 Toxicity modeling in RA	91
2.5 Consideration of contaminants in organic waste treatment and agricultur	al
recycling RA	92

Avadi et al. (2022) Adv. Agron. 174

Advances in Agronomy, Volume 174 ISSN 0065-2113 https://doi.org/10.1016/bs.agron.2022.03.002 Copyright © 2022 Elsevier Inc. All rights reserved. 53

Perspectives

Accounting for the potential mixture effect

 Antagonisms and synergisms between TE
 Between TE, antibiotics, and human pathogens
 Antimicrobial resistance

Thank you for your attention!

Matthieu N. Bravin, <u>matthieu.bravin@cirad.fr</u> S. Legros, E. Clément, M. Tella, A. Avadi, and E. Doelsch

37

TE vs organic contaminants

• TE most contribute to ecotoxicological impacts in LCA

TE speciation in organic residues

• Zn speciation in organic residues contributes to determine Zn phytoavailability

Bravin et al. unpublished

e cirad

USEtox vs soil biogeochemistry !

 Calculated impacts differ between reference and experimental approaches

Clément et al. (2023) EAAP and Icobte-Ichmet conferences

🖊 cirad

Risk assessment: field case study

• TE does not bioaccumulate more in plants in soils amended with animal effluents

Laurent et al. (2023) in preparation

e cirad

Risk assessment: field case study

 Vegetable contribution to Cd daily intake is excessive

 Vegetable contribution to Cu and Zn daily intake is deficient

42 ¹¹⁹

Laurent et al. (2023) in preparation

Lemaire (2022) in La fabrique de l'agronomie, de 1945 à nos jours. Quae ed.

eirad

Phosphorus

P biogeochemical cycle is driven by the **balance** between **harvest outputs** and **fertilization**

- Satisfy plant requirements
- Sustain soil P availability

Ziadi et al. (2013) Adv. Agron. 122

Plant P requirements vary substantially between plant species

• P speciation in organic residues does not determine P speciation in soil

Annaheim et al. (2015) Geod. 257-258

• P availability in soil

20-y old cropping systems

Pi-water (mg kg⁻¹)

• The **quantitative driver** of soil P availability

• Qualitative drivers of soil P availability

Pi-water/Ptotal (‰)

ecirad

r² adj = 0.78 5 $r^2 adj = 0.60$ 3 2 * Control 0.15 □ Mineral Slurry Ld 1 Slurry Hd 0.5 0.1 Compost Ld 0.3 0.05 0.2 Compost Hd 0.1 5.5 6.5 7.5 4.5 4000 6000 2500 Soil pH Nobile et al. (2020) Chemo. 239 Soil total P (mg kg⁻¹) 48