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Sustainable use of trace minerals
from the feed to the food
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Introduction
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From trace minerals in animal nutrition
to trace elements in animal effluents and agricultural soils



mg/kg

Salminen (ed.) 2005

http://www.gtk.fi/publ/foregsatlas/

Soil background concentrations

• Mineral elements naturally and ubiquitously occurring
at trace levels (< 100 mg/kg) in soils (Hooda, ed., 2010)
oAwkward synonyms: heavy metals, potentially toxic elements

• Median concentrations
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Trace elements



Concentrations in animal effluents

• Animal urine and feces raw, combined (with plant residues) 
and/or processed (aerobic and/or anaerobic digestion)
oAnimal residues usually rich in organic matter
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Input to agricultural soils

• Mean flux to French soils

Zn >> Cu >> Cr > Pb > Ni > As >> Mo > Se > Cd > Hg

15 200 12

• Potential health
and environmental impacts
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Global (eco)toxicity assessment

Life Cycle Assessment • Human toxicity

• Freshwater ecotoxicity
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Leclerc et al. (2017) Sci. Tot. Environ. 590-591
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Assessing soil ecotoxicity

• Impact = Emission × Comparative Toxicity Potential
o CTPwater = FF × BF × EF

 CTPsoil = FF × ACF × BF × EF

8Owsianiak et al. (2013) Environ. Sci. Technol. 47
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Assessing soil ecotoxicity

• USEtox: Comparative Toxicity Potential
oCTPsoil = FF × ACF × BF × EF

o CFs =  {soil physical-chemical properties}

9Thakali et al. (2006) Environ. Sci. Technol. 40
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Ecotoxicity in amended soils

• CTP ranges within Europe • Impact at the country level
o Impact = CTP × emission

10Sydow et al. (2018) Sustain. 10



Ecotoxicity: only a matter of quantity?

• According to LCA, animal effluent application to soils
could be (eco)toxic: mainly Cu and Zn

• (eco)Toxicity would only depend on the amount
of TE applied with animal effluents

 Confront with the bioavailability theory
and the empirical knowledge
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From TE-contaminated soils
to ecotoxicity
A (hist)story of bioavailability 
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Bioavailability: the consensus
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Physical-chemically-related concepts
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• The free ion concept and its consequences
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Biologically-related concepts

• Bio-influence
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Chaignon et al. (2002)

New Phytol. 154

+Fe

Wheat

Biologically-related concepts

• Individual plasticity

16Leveque et al. (2013) Environ. Pollut. 179
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Exposure to Cu in soil
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• Taxonomic diversity
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USEtox vs Bioavailability theory

• Bioavailability is driven
both by physical-chemical and biological processes
oPhysical-chemical endpoints are only indicators of bioavailability

oBioavailability is specific to each target organism

• USEtox is in line with the bioavailability theory
 To which extend it accounts empirically
for physical-chemical and biological drivers?
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TE bioavailability
and ecotoxicity
in soils amended
with organic residues
including animal effluents
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Protective effect: Empirical evidences

• Methodology

o 22 sites with control
and amended soils
for a few years to a century

oCu availability
in control soils spiked
as amended soils
 Reduction factor

o Plant toxicity test
with control
and amended soils
similarly spiked
 Protection factor

• Reduction factor
on soil Cu availability

20Smolders et al. (2012) J. Environ. Qual. 41
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Protective effect: Empirical evidences

• Protection factor (PF)
on Cu phytotoxicity

• Experimental limits
o Soil pH correction
oProtective effect compared to

no soil contamination?

• Hypothetical
protection mechanisms
o Lower Cu availability

in organic residues (OR)?
oNo impact of OR-induced

soil properties evolution?

21Smolders et al. (2012) J. Environ. Qual. 41
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Mechanisms: 1. Organic residues

• Cu and Zn speciation in organic residues
strongly changes along the process
according to the redox state
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Legros et al. (2017)

Environ. Sci. Technol. 51

Le Bars et al. (2018)

Environ. Sci. Technol. 52



Mechanisms: 1. Organic residues

• Cu and Zn sulfides evolved very quickly in amended soils
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Formentini et al. (2017)

Environ. pollut. 222

Formentini et al. (2022)

Sci. Tot. Environ. 848



Mechanisms: 1. Organic residues

• Zn speciation in OR partly
drives soil Zn availability

• Organic matter mineralization
partly drives soil Cu availability
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Mechanisms: 2. Amended soils

• Repetitive organic residues applications
induce soil pH and DOM increases

25
Laurent et al. (2020) Sci. Tot. Environ. 709



Mechanisms: 2. Amended soils

• Organic residues and plants
mitigate soil Cu and Zn availability
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Laurent et al. (2023a)

Environ. Sci. Pollut. Res. 30
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Mechanisms: 2. Amended soils

• A decade of organic residues applications
does not increase Cu and Zn bioavailability
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Laurent et al. (2023a)

Environ. Sci. Pollut. Res. 30

Earthworms

Laurent et al. (2023b)

under revision

Plants

• Validation of the protective effect over a decade

• Mainly attributed to OR-induced changes in soil pH and DOM

 Protective effect still effective over several decades?



USEtox vs soil biogeochemistry!
• A unique and dedicated experiment
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USEtox vs soil biogeochemistry!

• Speciation
in animal effluents
oCu sulfides dominate 

whatever the animals

o Zn  sulfides for pig and piglets

o Zn phosphate for broilers

• Induced changes
in soil Cu and Zn availability
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Tella et al. (2023)

Chemosphere 340

Clément et al. (2023)

EAAP and Icobte-Ichmet conferences
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USEtox vs soil biogeochemistry!

• USEtox cannot reproduce
the huge AE effect on CTP

• Impact less driven by emissions
than at the country scale
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Clément et al. (2023) EAAP and Icobte-Ichmet conferences

World soil properties (Owsianiak et al 2013)

European soil properties (Sydow et al 2018) 
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• USEtox needs to be refined for better assessing

the impact of TE added to soils by animal effluents

• The quantitative driver remains dominant,

but qualitative (biogeochemical) drivers matter too!



Risk assessment: field case study

• Field trial
o 14 cropping cycles, 7 years

o Market-garden crops

o 3 fertilizations

▪ Synthetic fertilizers

▪ Pig slurry and poultry litter 
composts: 30-60 t (ha y)-1

• Analytical determinations
o TE total concentrations

in fertilizers, soils and plants

o Soil pH and OM

• Modelling
o TE mass-balance in soil

o Extrapolation over 1 century

o Calculator
for soil ecotoxicity assessment

31
Laurent et al. (2023) in preparation



Risk assessment: field case study

• Animal effluents induced soil Cu and Zn contamination

32
Laurent et al. (2023) in preparation
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Risk assessment: field case study

• Soil Cu and Zn contamination could induce
ecotoxicological impacts within a few decades

33
Laurent et al. (2023) in preparation
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Conclusion
and perspectives
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Take-home messages

• AE-induced soil TE (Cu and Zn) 
contamination may have
an ecotoxicological impact
over several decades

• The quantitative driver
seems dominant

• Qualitative drivers matter too!

• Further information
in our recent review

35

Avadi et al. (2022)

Adv. Agron. 174



Perspectives

• Accounting for the potential mixture effect
oAntagonisms and synergisms between TE

oBetween TE, antibiotics, and human pathogens
 Antimicrobial resistance

• More environmental
and ecological realism
 Towards Eco-Health
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Thank you
for your attention!
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TE vs organic contaminants
• TE most contribute to ecotoxicological impacts in LCA

38Pizzol et al. (2011) J. Clean. Prod. 19

Sydow et al. (2020)

J. Environ. Manage. 266



TE speciation in organic residues
• Zn speciation in organic residues contributes

to determine Zn phytoavailability

39Bravin et al. unpublished
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USEtox vs soil biogeochemistry !
• Calculated impacts differ

between reference and experimental approaches
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Risk assessment: field case study
• TE does not bioaccumulate more in plants

in soils amended with animal effluents
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Risk assessment: field case study

• Vegetable contribution
to Cd daily intake
is excessive

• Vegetable contribution
to Cu and Zn daily intake
is deficient

42
Laurent et al. (2023) in preparation



Phosphorus

The quest
for the trade-off between
yield and environmental risk

 Closing
the P biogeochemical cycle
in agro-ecosystems

43Lemaire (2022) in La fabrique de l’agronomie, de 1945 à nos jours. Quae ed.
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Phosphorus

P biogeochemical cycle is
driven by the balance between
harvest outputs and fertilization

• Satisfy plant requirements

• Sustain soil P availability

44Ziadi et al. (2013) Adv. Agron. 122

kg P/ha/an



Phosphorus
• Plant P requirements vary substantially between plant species

45

Panagos et al. (2022)

J. Consum. Prot. Food. Saf. 17



Phosphorus
• P speciation in organic residues does not determine

P speciation in soil

46Annaheim et al. (2015) Geod. 257-258
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Phosphorus

• P availability in soil
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Phosphorus

• The quantitative driver
of soil P availability

• Qualitative drivers
of soil P availability

48Nobile et al. (2020) Chemo. 239


